Backstrom L, Leskovec J. Supervised random walks: predicting and recommending links in social networks. In: WSDM. New York: ACM; 2011. p. 635–44.
Akoglu L, Tong H, Koutra D. Graph based anomaly detection and description: a survey. Data Min Knowl Discov. 2015;29(3):626–88.
Article
MathSciNet
Google Scholar
Zhang S, Zhou D, Yildirim MY, Alcorn S, He J, Davulcu H, Tong H. Hidden: hierarchical dense subgraph detection with application to financial fraud detection. In: SDM. Philadelphia: SIAM; 2017. p. 570–8.
Chapter
Google Scholar
Li Y, Yu R, Shahabi C, Liu Y. Diffusion convolutional recurrent neural network: data-driven traffic forecasting. 2018.
Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein MM. Geometric deep learning on graphs and manifolds using mixture model cnns. In: CVPR, vol. 1. 2017. p. 3.
Zhou D, Zhang S, Yildirim MY, Alcorn S, Tong H, Davulcu H, He J. A local algorithm for structure-preserving graph cut. In: KDD. New York: ACM; 2017. p. 655–64.
Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U. Complex networks: structure and dynamics. Phys Rep. 2006;424(4–5):175–308.
Article
MathSciNet
Google Scholar
Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science. 2000;290(5500):2319–23.
Article
Google Scholar
Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;290(5500):2323–6.
Article
Google Scholar
Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS. 2002. p. 585–91.
Perozzi B, Al-Rfou R, Skiena S. Deepwalk: online learning of social representations. In: KDD. New York: ACM; 2014. p. 701–10.
Grover A, Leskovec J. node2vec: scalable feature learning for networks. In: KDD. New York: ACM; 2016. p. 855–64.
Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell. 2007;29(1):40–51.
Article
Google Scholar
Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: methods and applications. 2017. arXiv preprint arXiv:1709.05584
Cui P, Wang X, Pei J, Zhu W. A survey on network embedding. TKDE. 2018.
Goyal P, Ferrara E. Graph embedding techniques, applications, and performance: a survey. Knowl Based Syst. 2018;151:78–94.
Article
Google Scholar
Cai H, Zheng VW, Chang K. A comprehensive survey of graph embedding: problems, techniques and applications. TKDE. 2018.
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. p. 580–7.
Gehring J, Auli M, Grangier D, Dauphin YN. A convolutional encoder model for neural machine translation. 2016. arXiv preprint arXiv:1611.02344
Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process Mag. 2013;30(3):83–98.
Article
Google Scholar
Kipf TN, Welling M. Variational graph auto-encoders. 2016. arXiv preprint arXiv:1611.07308
Wang H, Wang J, Wang J, Zhao M, Zhang, W, Zhang F, Xie X, Guo M. Graphgan: graph representation learning with generative adversarial nets. In: Thirty-second AAAI conference on artificial intelligence. 2018.
You J, Ying R, Ren X, Hamilton WL, Leskovec J. Graphrnn: a deep generative model for graphs. 2018. arXiv preprint arXiv:1802.08773
Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph attention networks. 2017. arXiv preprint arXiv:1710.10903
Lee JB, Rossi R, Kong X. Graph classification using structural attention. In: KDD. New York: ACM; 2018. p. 1666–74.
Li Y, Tarlow D, Brockschmidt M, Zemel R. Gated graph sequence neural networks. 2015. arXiv preprint arXiv:1511.05493
Tai KS, Socher R, Manning CD. Improved semantic representations from tree-structured long short-term memory networks. 2015. arXiv preprint arXiv:1503.00075
Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P. Geometric deep learning: going beyond euclidean data. IEEE Signal Process Mag. 2017;34(4):18–42.
Article
Google Scholar
Zhou J, Cui G, Zhang Z, Yang C, Liu Z, Sun M. Graph neural networks: a review of methods and applications. 2018. arXiv preprint arXiv:1812.08434.
Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS. A comprehensive survey on graph neural networks. 2019. arXiv preprint arXiv:1901.00596
Lee JB, Rossi RA, Kim S, Ahmed NK, Koh E. Attention models in graphs: a survey. 2018. arXiv preprint arXiv:1807.07984
Bruna J, Zaremba W, Szlam A, LeCun Y. Spectral networks and locally connected networks on graphs. 2013. arXiv preprint arXiv:1312.6203
Henaff M, Bruna J, LeCun Y. Deep convolutional networks on graph-structured data. 2015. arXiv preprint arXiv:1506.05163
Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. In: NIPS. 2016. p. 3844–52.
Hammond DK, Vandergheynst P, Gribonval R. Wavelets on graphs via spectral graph theory. Appl Comput Harmon Anal. 2011;30(2):129–50.
Article
MathSciNet
Google Scholar
Dhillon IS, Guan Y, Kulis B. Weighted graph cuts without eigenvectors a multilevel approach. IEEE Trans Pattern Anal Mach Intell. 2007;29(11):1944–57.
Article
Google Scholar
Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. 2016. arXiv preprint arXiv:1609.02907.
Shervashidze N, Schweitzer P, Leeuwen EJ, Mehlhorn K, Borgwardt KM. Weisfeiler-lehman graph kernels. JMLR. 2011;12:2539–61.
MathSciNet
MATH
Google Scholar
Chen J, Ma T, Xiao C. Fastgcn: fast learning with graph convolutional networks via importance sampling. 2018. arXiv preprint arXiv:1801.10247.
Chen J, Zhu J, Song L. Stochastic training of graph convolutional networks with variance reduction. In: ICML. 2018. p. 941–9.
Huang W, Zhang T, Rong Y, Huang J. Adaptive sampling towards fast graph representation learning. In: Advances in neural information processing systems. 2018. p. 4563–72.
Levie R, Monti F, Bresson X, Bronstein MM. Cayleynets: graph convolutional neural networks with complex rational spectral filters. IEEE Trans Signal Process. 2017;67(1):97–109.
Article
MathSciNet
Google Scholar
Liao R, Zhao Z, Urtasun R, Zemel RS. Lanczosnet: multi-scale deep graph convolutional networks. 2019. arXiv preprint arXiv:1901.01484.
Xu B, Shen H, Cao Q, Qiu Y, Cheng X. Graph wavelet neural network. In: International conference on learning representations. 2019. https://openreview.net/forum?id=H1ewdiR5tQ.
Li R, Wang S, Zhu F, Huang J. Adaptive graph convolutional neural networks. In: Thirty-second AAAI conference on artificial intelligence. 2018.
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 2012. p. 1097–105.
Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W. Cnn-rnn: a unified framework for multi-label image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 2285–94.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv preprint arXiv:1409.1556.
Girshick R. Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision. 2015. p. 1440–8.
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 3431–40.
Chen L.-C, Papandreou, G, Kokkinos, I, Murphy, K, Yuille, AL. Semantic image segmentation with deep convolutional nets and fully connected crfs. 2014. arXiv preprint arXiv:1412.7062.
Niepert M, Ahmed M, Kutzkov K. Learning convolutional neural networks for graphs. In: International conference on machine learning. 2016. p. 2014–23.
Gao H, Wang Z, Ji S. Large-scale learnable graph convolutional networks. In: KDD. New York: ACM; 2018. p. 1416–24.
Chang J, Gu J, Wang L, Meng G, Xiang S, Pan C. Structure-aware convolutional neural networks. In: Advances in neural information processing systems. 2018. p. 11–20.
Du J, Zhang S, Wu G, Moura J.M, Kar S. Topology adaptive graph convolutional networks. 2017. arXiv preprint arXiv:1710.10370
Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP. Convolutional networks on graphs for learning molecular fingerprints. In: Advances in neural information processing systems. 2015. p. 2224–32.
Atwood J, Towsley D. Diffusion-convolutional neural networks. In: NIPS. 2016.
Fey M, Lenssen JE, Weichert F, Müller H. Splinecnn: Ffast geometric deep learning with continuous b-spline kernels. In: CVPR. 2018. p. 869–77.
Simonovsky M, Komodakis N. Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 3693–702.
Jia X, De Brabandere B, Tuytelaars T, Gool L.V. Dynamic filter networks. In: Advances in neural information processing systems. 2016. p. 667–75.
Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. In: NIPS. 2017. p. 1024–34.
Li Q, Han Z, Wu X.-M. Deeper insights into graph convolutional networks for semi-supervised learning. In: Thirty-second AAAI conference on artificial intelligence. 2018.
Taubin G. A signal processing approach to fair surface design. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques. New York: ACM; 1995. p. 351–8.
Xu K, Li C, Tian, Y, Sonobe, T, Kawarabayashi K.-i, Jegelka S. Representation learning on graphs with jumping knowledge networks. 2018. arXiv preprint arXiv:1806.03536
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 770–8.
Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans Neural Netw. 2009;20(1):61–80.
Article
Google Scholar
Khamsi MA, Kirk WA. An introduction to metric spaces and fixed point theory, vol. 53. New York: Wiley; 2011.
MATH
Google Scholar
Dai H, Kozareva Z, Dai B, Smola A, Song L. Learning steady-states of iterative algorithms over graphs. In: International conference on machine learning. 2018. p. 1114–22.
Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing for quantum chemistry. In: Proceedings of the 34th international conference on machine learning, vol. 70. 2017. p. 1263–72. http://JMLR.org
Xu K, Hu W, Leskovec J, Jegelka S. How powerful are graph neural networks? 2018. arXiv preprint arXiv:1810.00826
Garcia V, Bruna J. Few-shot learning with graph neural networks. 2017. arXiv preprint arXiv:1711.04043
Kampffmeyer M, Chen Y, Liang X, Wang H, Zhang Y, Xing EP. Rethinking knowledge graph propagation for zero-shot learning. 2018. arXiv preprint arXiv:1805.11724
Narasimhan M, Lazebnik S, Schwing A. Out of the box: reasoning with graph convolution nets for factual visual question answering. In: Advances in neural information processing systems. 2018. p. 2659–70.
Cui Z, Xu C, Zheng W, Yang J. Context-dependent diffusion network for visual relationship detection. In: 2018 ACM multimedia conference on multimedia conference. New York: ACM; 2018. p. 1475–82.
Yao T, Pan Y, Li Y, Mei T. Exploring visual relationship for image captioning. In: Proceedings of the European conference on computer vision (ECCV). 2018. p. 684–99.
Chapter
Google Scholar
Xu D, Zhu Y, Choy C.B, Fei-Fei L. Scene graph generation by iterative message passing. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 5410–9.
Dai B, Zhang Y, Lin D. Detecting visual relationships with deep relational networks. In: Proceedings of the IEEE conference on computer vision and Pattern recognition. 2017. p. 3076–86
Yang J, Lu J, Lee S, Batra D, Parikh D. Graph r-cnn for scene graph generation. In: Proceedings of the European conference on computer vision (ECCV). 2018. p. 670–85.
Chapter
Google Scholar
Chen Q, Koltun V. Photographic image synthesis with cascaded refinement networks. In: Proceedings of the IEEE international conference on computer vision. 2017. p. 1511–20
Johnson J, Gupta A, Fei-Fei L. Image generation from scene graphs. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. p. 1219–28
Yan S, Xiong Y, Lin D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-second AAAI conference on artificial intelligence. 2018.
Gao X, Hu W, Tang J, Pan P, Liu J, Guo Z. Generalized graph convolutional networks for skeleton-based action recognition. 2018. arXiv preprint arXiv:1811.12013.
Wang X, Gupta A. Videos as space-time region graphs. In: Proceedings of the European conference on computer vision (ECCV). 2018. p. 399–417
Chapter
Google Scholar
Zhang T, Zheng W, Cui Z, Li Y. Tensor graph convolutional neural network. 2018; arXiv preprint arXiv:1803.10071
Qi C.R, Su H, Mo K, Guibas LJ. Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 652–60
Shen Y, Feng C, Yang Y, Tian D. Neighbors do help: deeply exploiting local structures of point clouds. 2017. arXiv preprint arXiv:1712.06760
Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM. Dynamic graph cnn for learning on point clouds. 2018. arXiv preprint arXiv:1801.07829
Te G, Hu W, Guo Z, Zheng A. Rgcnn: regularized graph cnn for point cloud segmentation. 2018. arXiv preprint arXiv:1806.02952
Verma, N, Boyer, E, Verbeek, J. Feastnet: feature-steered graph convolutions for 3d shape analysis. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. p. 2598–606.
Wang C, Samari B, Siddiqi K. Local spectral graph convolution for point set feature learning. In: Proceedings of the European conference on computer vision (ECCV). 2018. p. 52–66.
Chapter
Google Scholar
Valsesia D, Fracastoro G, Magli E. Learning localized generative models for 3d point clouds via graph convolution. In: International conference on learning representations. 2019.
Boscaini D, Masci J, Rodolà E, Bronstein M. Learning shape correspondence with anisotropic convolutional neural networks. In: Advances in neural information processing systems. 2016. p. 3189–97.
Wang P-S, Liu Y, Guo Y-X, Sun C-Y, Tong X. O-cnn: octree-based convolutional neural networks for 3d shape analysis. ACM Trans Graph (TOG). 2017;36(4):72.
Google Scholar
Litany O, Bronstein A, Bronstein M, Makadia A. Deformable shape completion with graph convolutional autoencoders. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. p. 1886–95.
Zhuang C, Ma Q. Dual graph convolutional networks for graph-based semi-supervised classification. In: Proceedings of the 2018 world wide web conference on world wide web. International World Wide Web Conferences Steering Committee; 2018. p. 499–508.
Yao L, Mao C, Luo Y. Graph convolutional networks for text classification. 2018. arXiv preprint arXiv:1809.05679
Gao H, Chen Y, Ji S. Learning graph pooling and hybrid convolutional operations for text representations. 2019. arXiv preprint arXiv:1901.06965
Peng H, Li J, He Y, Liu Y, Bao M, Wang L, Song Y, Yang Q. Large-scale hierarchical text classification with recursively regularized deep graph-cnn. In: Proceedings of the 2018 world wide web conference on world wide web. International World Wide Web Conferences Steering Committee; 2018. p. 1063–72.
Qian Y, Santus E, Jin Z, Guo J, Barzilay R. Graphie: a graph-based framework for information extraction. 2018. arXiv preprint arXiv:1810.13083
Zhang Y Qi P, Manning C.D. Graph convolution over pruned dependency trees improves relation extraction. 2018. arXiv preprint arXiv:1809.10185
Zhang N, Deng S, Sun Z, Wang G, Chen X, Zhang W, Chen H. Long-tail relation extraction via knowledge graph embeddings and graph convolution networks. 2019. arXiv preprint arXiv:1903.01306
Liu X, Luo Z, Huang H. Jointly multiple events extraction via attention-based graph information aggregation. 2018. arXiv preprint arXiv:1809.09078
Nguyen T.H, Grishman R. Graph convolutional networks with argument-aware pooling for event detection. In: Thirty-second AAAI conference on artificial intelligence. 2018.
Marcheggiani D, Titov I. Encoding sentences with graph convolutional networks for semantic role labeling. 2017. arXiv preprint arXiv:1703.04826
Bastings J, Titov I, Aziz W, Marcheggiani D, Sima’an K. Graph convolutional encoders for syntax-aware neural machine translation. 2017. arXiv preprint arXiv:1704.04675
Marcheggiani D, Bastings J, Titov I. Exploiting semantics in neural machine translation with graph convolutional networks. 2018. arXiv preprint arXiv:1804.08313
Strubell E, McCallum A. Dependency parsing with dilated iterated graph cnns. 2017. arXiv preprint arXiv:1705.00403
Henrion I, Brehmer J, Bruna J, Cho K, Cranmer K, Louppe G, Rochette G. Neural message passing for jet physics. 2017.
Qu H, Gouskos L. Particlenet: jet tagging via particle clouds. 2019. arXiv preprint arXiv:1902.08570
Choma N, Monti F, Gerhardt L, Palczewski T, Ronaghi Z, Prabhat P, Bhimji W, Bronstein M, Klein S, Bruna J. Graph neural networks for icecube signal classification. In: 2018 17th IEEE international conference on machine learning and applications (ICMLA). New York: IEEE; 2018. p. 386–91.
Mrowca D, Zhuang C, Wang E, Haber N, Fei-Fei LF, Tenenbaum J, Yamins DL. Flexible neural representation for physics prediction. In: Advances in neural information processing systems. 2018. p. 8799–810
Kearnes S, McCloskey K, Berndl M, Pande V, Riley P. Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des. 2016;30(8):595–608.
Article
Google Scholar
Li X, Yan X, Gu Q, Zhou H, Wu D, Xu J. Deepchemstable: chemical stability prediction with an attention-based graph convolution network. J Chem Inf Model. 2019.
Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018;34(13):457–66.
Article
Google Scholar
Feinberg E.N, Sur D, Wu Z, Husic BE, Mai H, Li Y, Sun S, Yang J, Ramsundar B, Pande VS. Potentialnet for molecular property prediction. 2018. arXiv preprint arXiv:1803.04465
Fout A, Byrd J, Shariat B, Ben-Hur A. Protein interface prediction using graph convolutional networks. In: Advances in neural information processing systems. 2017. p. 6530–9.
Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett. 2018;120(14):145301.
Article
Google Scholar
Bruna J, Li X. Community detection with graph neural networks. 2017. arXiv preprint arXiv:1705.08415
Harada S, Akita H, Tsubaki M, Baba Y, Takigawa I, Yamanishi Y, Kashima H. Dual convolutional neural network for graph of graphs link prediction. 2018. arXiv preprint arXiv:1810.02080
Chen J, Xu X, Wu Y, Zheng H. Gc-lstm: graph convolution embedded lstm for dynamic link prediction. 2018. arXiv preprint arXiv:1812.04206
Qiu J, Tang J, Ma H, Dong Y, Wang K, Tang J. Deepinf: social influence prediction with deep learning. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. New York: ACM; 2018. p. 2110–9.
Vijayan R, Mohler G. Forecasting retweet count during elections using graph convolution neural networks. In: 2018 IEEE 5th international conference on data science and advanced analytics (DSAA). New York: IEEE; 2018. p. 256–62.
Monti F, Frasca F, Eynard D, Mannion D, Bronstein MM. Fake news detection on social media using geometric deep learning. 2019. arXiv preprint arXiv:1902.06673
Wu L, Sun P, Fu Y, Hong R, Wang X, Wang M. A neural influence diffusion model for social recommendation. 2019. arXiv preprint arXiv:1904.10322
Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J. Graph convolutional neural networks for web-scale recommender systems. 2018. arXiv preprint arXiv:1806.01973.
Wang X, He X, Wang M, Feng F, Chua T-S. Neural graph collaborative filtering. 2019. arXiv preprint arXiv:1905.08108
Maron H, Ben-Hamu H, Serviansky H, Lipman Y. Provably powerful graph networks. 2019. arXiv preprint arXiv:1905.11136
Keriven N, Peyré G. Universal invariant and equivariant graph neural networks. 2019. arXiv preprint arXiv:1905.04943
Chen Z, Villar S, Chen L, Bruna J. On the equivalence between graph isomorphism testing and function approximation with GNNs. 2019. arXiv preprint arXiv:1905.12560
Monti F, Bronstein M, Bresson X. Geometric matrix completion with recurrent multi-graph neural networks. In: NIPS. 2017. p. 3697–707.