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Introduction
The study of networks [1] has shown that they are ubiquitous in nature and that many 
complex processes that are studied [2] have behaviors defined by their network struc-
ture. The famous initial formulation of a problem where a network (graph structure) is 
explicitly defined is in the Seven Bridges of Königsberg problem [3] which brought ques-
tions for which graph theory and topology later took inspiration from, growing into 
fields of their own. The question of how to traverse nodes in a network in an optimal 
manner is still an active area of research commonly referred to as the travelling salesman 
problem [4]. It is worthy to note that these networks were noticed historically examining 
the human built structures we live within, but network founded organization principles 
have been in use for millions of years in metabolic cycles [5] and within food webs [6]. As 
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society has been building networks, and relying upon other networks to support it, the 
number of nodes is increasing as well as the clustering coefficient for those network sizes 
[7] (Fig. 1 shows this for biological and non-biological network data). The observation of 
how these fundamental networks persist over time allows one to speculate that online 
social networks such as Facebook, Twitter, and Instagram, for instance, will also remain 
as a large component of our interconnected society in some form, as stated in [8]. The 
question explored in this paper is how to model node label classifications based on the 
combination of the features each node contains, and the incorporation of the features 
held by nodes in the vicinity which changes size resulting in different accumulations of 
local influence. Specifically, it addresses how the number of hops taken into considera-
tion in a graph neural network can change the node label predictions due to the range of 
influence in the vicinity. This is important when attempting to provide categorical labels 
to nodes representing users based on their attributes and associations.

Simplifying these networks with many unique node IDs into a smaller set of labels 
assists in the effort to simplify the data and generalize with respect to aggregated behav-
iors. An example is with voting patterns where each eligible voter may have a unique 
perspective on the issues determining a choice, but, ultimately, this information is 
pigeonholed into a smaller set of expressible options where many will have their choices 
coalesced with others of different yet similar opinion holders. This concept is applied in 
collaborative filtering [9] typically for retail where recommendation systems use a cus-
tomer’s interests with that of a community set to predict an affinity for new items. There 
can be a set of communities which a potential customer can be compared with to find 
the maximum expected overlap. What this does not take into account is whether the 
person has links (edges) with a specific set of nodes in those communities, and how that 
information can be useful for the predictions. Nodes can be expected to produce actions 
based on the information contained in the features and the edges where an ideal label 
allocation relies on both sources of information. The value of the edge set inclusion can 
bring to mind the colloquial phrase ’birds of a feather flock together’ [10] which high-
lights how homophily based link creation is prevalent in human populations for a wide 
range of reasons, and this is displayed in the social networks produced through local 
interactions, [11]. As a consequence, the edge set can drive inferences of changes in the 
label allocation even if the inferences of an optimal feature distance metric says other-
wise. How this phenomenon of homophilic edge creation arises in networks during a 
growth phase is very interesting, [12, 13], but in this work, we consider that the link set 
expressing the homophily is provided. These links may be defined by platform-depend-
ent actions such as ’friendship’ or ’following’ links, and the features can be a set of vari-
ables categorical or numerical in nature.

In the effort to understand how the features of a node can propagate through a network 
to influence a node’s categorization, insight can be drawn from the research of infor-
mation spread (or information diffusion [14]), as pieces of content are shared between 
users/agents within online social networks. The established Katz centrality measure 
[15] is based on the number of ’walks’ [16] with a penalization for the number of edges 
traversed in a walk between nodes as a measure for centrality and communicability (in 
static and temporal networks [17, 18]). A key concept is that there is a ranking in the 
ability for nodes to spread information between each other that is inversely proportional 
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to the number of edges traversed [1]. These measures are useful in marketing applica-
tions where brands seek to exploit the sharing mechanism provided by the platforms 
for users themselves to amplify visibility of their marketing campaigns [19] (e.g., ’growth 
hacking’). With various trends emerging from the sharing of content, it then becomes a 
question of where to place the credit for the spread; to the initiation with the crowd or 
to opinion leaders as explored in [20]. It is important to note that these approaches are 
not asking whether features of one node affect another node’s general behavior, since the 
content transmission can be irrespective of the source nodes characteristics for short 
periods of time. Therefore, these actions may be transient and not reflect a category 
membership defined by certain actions that will persist. These category labels can be 
related to consistent behaviors mapped to archetypes [21, 22] based on feature profiles 
which affect decisions. Therefore, this work also seeks to incorporate the fundamental 
formulations to the Katz centrality for information exchange and whether it can be used 
to assist the modeling of the overall feature influence propagation that determines a 
node’s category label assignment (discussed in "Methodology" section).

Models for opinions dynamics find applications in marketing, politics, and urban 
changes amongst others. The work of [23, 24] models how exposure to new ideas can 
change the political opinions within a population but if left alone would revert to a pre-
set independent position. This allows members with extreme opinions to sway the opin-
ions of others iteratively in a simulation without the assumption that there is an actual 
alteration on internalized ideas. Along this principle, this paper explores how users with 
feature sets can have their categorical label identities changed without their own features 
requiring modification due to the exposure. This applies to situations where a node with 
a high proportion of links to nodes of a different label can adopt a different label as a 
result of the exposures. An alternative question from the opposite perspective is whether 
a node taking the role of an influencer, with dominating feature levels, can influence a set 
of different nodes through direct or indirect paths resulting in them taking upon a differ-
ent label.

The methodology of the Simple Graph Convolutional Neural Network (SGC) [25] 
(described in more detail in "Methodology") presents an intuitive, simple, and expressive 
formulation for learning these latent representations of the nodes labels, which builds 
upon the general theory of graph convolutional networks [26]. What makes this meth-
odology appealing is that the operations are linear between the adjacency matrix, the 
features, and the parameters prior to the use of the softmax function. This makes it an 
ideal candidate to work with in exploring different applications of its formulation as the 
feature projections are linear and that the adjacency matrix is clearly an operation aggre-
gating feature information of the vicinity of nodes (number of ’hops’). The SGC is based 
on the Graph Convolutional Neural Network (GCN) [27] which fits a multilayered neu-
ral network to the features in a semi-supervised manner. A different approach taken by 
DeepWalk [28] is where truncated Markov chains are used to simulate exchanges in a 
radius of influence where the latent label distributions are produced based on the sta-
tistics of the chain state visits. Although the work of [27] does explore how the accu-
racy of the method with changes in the number of hidden layers employed, the authors 
do not question whether the ideal number of layers, corresponding to the number of k 
’hops’ (as stated in the paper), reflects the number of edge traversals used by the nodes 
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in establishing their label identity. If this is so, then the methodology can be employed to 
simulate label allocations for different numbers of edge traversals that can be expected 
to occur over time.

Diffusion simulation models for predicting changes typically involve simulations based 
on algorithms that capture information exchange over individual nodes and require a 
large number of iterations representative of social interactions where the mean statistics 
enable a label distribution to be obtained, [29, 30]. The approach taken here utilizing 
the SGC formulation (described in "Methodology" section) allows a different nature of 
a simulation of node label states based on the number of walks taken between nodes 
which influence each other. The results (shown in the Results section) demonstrate how 
labels can change based on the size of the influence neighborhood, and result in oscil-
lations of assignments before convergence is obtained by a common label; as is often 
the objective in stochastic simulations of influence based on message propagation. The 
conclusions (in the Conclusion section) discuss the merits of this approach in light of the 
presented results and the potential applications. This provides a novel exploration of the 
SGC in terms of its ability to demonstrate the effect of the vicinity of influence for which 
a node is exposed to in terms of the label classification. This can be useful for answering 
questions regarding which users once included in a field of influence will alter a node’s 
category label. The Results will present the exploration of a set of simulations on real and 
synthetic data where the label change is apparent given changes in the number of hops 
messages are permitted to travel as a change in the vicinity.

Methodology
A graph is defined as G = (V ,A) where V is the vertex set for the nodes vi ∈ {v1, . . . , v2} 
and A ∈ R

n×n being the adjacency matrix representing the node interconnectivity. Each 
entry in A is denoted as aij and can take different values for the weight between each 
node ( vi and vj ) and the weight for missing edges is 0, aij = 0 . The degree matrix of the 
adjacency matrix is D = diag(d1, . . . , dn) , where di =

∑

j aij , which is the sum of the ele-
ments along the rows of the adjacency (outward edge summation for each node). Each 
node has a feature vector to represent its characteristic attributes and is identified as 
xi ∈ R

d and the set of the feature vectors stacked in a matrix is X ∈ Rn×d . In X , there 
are n rows where each row is a feature vector belonging to a specific node and each col-
umn indexes a particular feature. The label set for which a node can be classified as it is 
unknown, and the ground truth has it as a 1-hot encoded vector yi ∈ {0, 1}C (where C is 
the number of labels creating a C-dimensional vector). The node feature vectors too can 
contain 1-hot encoded feature variables where they are categorical. As will be seen, the 
increase in the number of the columns to facilitate this does not prohibit the methodol-
ogy from operating consistently with the feature representations.

In [25], a detailed description of how the features are propagated and averaged 
(weighted) in the local neighborhood of vi is presented. Considering how CNNs [31] 
represent feature transformations through multiple layers, at layer 0, the input data are 
the feature projection H(0) = X without network information. Each layer k depends 
upon the previous layer k − 1 , so that these hidden layers average the feature represen-
tations consecutively from the node neighborhoods, defined by the adjacency matrix, 
which multilayer perceptrons do not perform. The feature propagation is performed via:
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The component from the diagonal matrix having an increment is understood when not-
ing how self loops are added to the adjacency which assists later on in calculating the 
matrix powers entries with zero edges. It can be seen how for each individual node in the 
network at each layer, there is an averaging of the features from all the other nodes h(k−1)

j  
in the previous layer and from its own previous values h(k−1)

i  . Another detail is worthy to 
notice how the larger dj is, the number of outgoing edges of vj , there will be a reduction 
on its ability to influence vi as a type of ’dilution’ of influence over more nodes occurs. The 
normalized adjacency matrix S will be used, S = D̃− 1

2 ÃD̃− 1
2 where Ã denotes the adja-

cency matrix when self loops are added, and Ã = A + I ( D̃ becomes the degree matrix 
for Ã ). This layer connection can be shown by the relation, H̄(k) ← SH(k−1) . Nodes with 
large weighted edges between themselves will have a greater spread of the averaged fea-
tures, so that the label outcomes will tend to converge to a similar projection.

A weight matrix, �(k) ∈ R
n×C , provides the parameters for the elements of the 

features to be scaled as a linear projection for each node and this is then input to a 
nonlinear activation function (such as ReLU, sigmoid, or the softmax) to produce a 
class label distribution. Each column of �(k) corresponds to a vector of weights for 
a particular class’s projection. Feature vectors of nodes xi belonging to a class c are 
expected to have the largest projection value for that column yc . The classifier of the 
SGC, or GCN with one layer (1-hop), has the predictions for node labels in a matrix 
Ŷ ∈ R

n×C and ŷic denotes the probability for a node i belonging to class c ∈ C via:

What can be seen is that the linear projections of each node’s feature vector along 
each class is produced and then the local averaging of those projections for each 
node’s neighborhood is found via S from which the probabilities for each node class 
membership are found. If taken for subsequent iterations, this performs as the GCN, 
Ŷ = softmax

(

SH(K−1)�(K )
)

 where now K acts as a parameter for the number of hid-
den layers (here, the exponents in parentheses represent layers rather than exponents). 
In this formulation, each subsequent hidden layer is averaging the class membership 
for the nodes after another projection iteration with a new weight matrix for that layer, 
and the same normalized adjacency matrix. A key understanding is that these layers 
each average neighbors 1-hop from each node (walks and paths of length 1), so that at 
K layers each node is receiving feature projection information from k-hops away. The 
SGC performs a linearization by removing the nonlinearity (use of ’softmax’) between 
the layers, so that there is a series of regressions only prior to the use of softmax; 
Ŷ = softmax(S(. . . (S(SX�(1))�(2)) . . . �(K ))) (inner matching parenthesis show the lin-
ear layers). This can be simple using the associative property, so the weight matrix can 
be equivalently represented by another different matrix and the normalized adjacency 
matrix by raising it to the power of the number of hops:

(1)h̄k ←
1

di + 1
h
(k−1)
i +

N
∑

j=1

aij
√

(di + 1)(dj + 1)
h
(k−1)
j .

(2)Ŷ = softmax

(

SH(1)�(1)
)

.
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which produces the formulation of the SGC. Without the adjacency matrix, the for-
mulation becomes logistic regression, Ŷ = softmax(X�) , or with an adjacency matrix 
without any off diagonal entries (setting k = 0 ). This allows the methodology to run very 
quickly compared to other methods requiring optimization of multiple weight matrices. 
In this work, we explore the effect of K on the label allocations not in terms of the accu-
racy but in the nature of the extension to the neighborhood of influence:

The authors of the SGC note that it addresses a pitfall found in the GCN where large 
numbers of layers (more than 3) induce reductions in the accuracy which the SGC 
avoids, allowing for a greater exploration of the influence due to the removed range 
restriction. The Results section demonstrates how this exploration can be used to see 
how influence changes labels over the neighborhood size with K.

From the formulation of Eq. 3, we notice that the inclusion of the component SK differ-
entiates the method from the established method of logistic regression (the Results section 
will provide a visual depiction of the effect of K on S ). Using the adjacency matrix raised to 
a power K, AK produces a K step chain of edge traversals (permitting node revisits) called 
’walks’ [32]. The Katz centrality measure, [15], attaches a constant α representing the prob-
ability of an effective use of an edge (set to 0.8 as recommended from experiment in [17, 
18]). If then a walk of length K takes place, there is a probability αK of it being effective:

The last term is the matrix resolvent which is not used in this work, but in the manner 
which DeepWalk takes truncated Markov chains here the approximation for a limited k 
is taken:

This is approximation which is also employed in commercial practice to avoid the large 
matrix inversion cost [18] and can produce analogous results. In the SGC, the K-hop 
chains lack such an explicit representation of a decay effect with length, but to some 
extent, it is present implicitly with the consecutive multiplications of a set of normalized 
numbers forcing the smaller ones to more quickly shrink. This relative value that even-
tually would become evenly dispersed across the columns for large K does show that 
the local proximity of nodes would have diminishing influence over a continuous long 
stretch of influential passes. Although this makes sense, it does not account for the ’first 
mover’ advantage [33, 34], since local nodes would provide influence prior to more dis-
tant nodes. The formulation introduced for this nature of a simulation is:

(3)Ŷ = softmax

(

SKX�
)

,

(4)[Y1,Y2, . . . ,YK ] =
[

softmax

(

S1X�
)

, softmax

(

S2X�
)

, . . . , softmax

(

SKX�
)]

.

(5)α1A1 + α2A2 + · · · + αkAk + · · · = (I − αA)−1.

(6)Kkatz = α1A1 + α2A2 + · · · + αKAK .

(7)Yk = softmax

(

k
∑

k=1

αkSkX�

)

,
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and we keep � fixed, although the formulation assumes the matrix for the specific ’k’ 
to be used in the semi-supervised scheme, but we assume that the weights are constant 
for the principles of how those features combine irrespective of the data fits that may 
direct it to be otherwise. This equation provides an adaptation of the original SGC for-
mulation for accounting of the different walk lengths (k-hops) that changes the vicin-
ity of influence. Depending upon the penalization of the walk length and the maximum 
walk length permitted, it can be examined which nodes have a change in their inferred 
labels. In practice for threads that do not cascade, a low value of K may be relevant, and 
for longer threads of repropagated information, a larger K would be suitable. Previous 
research has not directly investigated the impact of K or provided a formulation for the 
combined impact of different values of K upon label inferences.

This takes inspiration from agent-based systems modeling where the simulations fre-
quently use a constant set of dynamics for the agent behaviors from their environment 
[35]. This approach is also found in other sociological investigations such as with the 
Schelling model [36] where the dynamics for movements of people depends upon a pre-
fixed set of parameterized decisions. Although data are not used to infer the parame-
ter values of � , previous research [37] has looked at random weights to serve as feature 
extractors, as also noted in [27]. The experiments will also include k = 0 which results in 
the S matrix being the identity matrix, and then, the formulation produces the results of 
logistic regression, so the nodes use only the information of their own features.

Results
Figure  1 shows three of the four networks that the methodological approach will be 
applied to. Subfigure a) shows a synthetic network of an approximately block diagonal 
adjacency matrix. There is a set of three sparsely connected components with random 
perturbations of the densely connected components to create a non-disjoint graph. The 
purpose of this network is to investigate weather influence propagation can cross the 
few boundary nodes linking communities. This has applications in protecting communi-
ties online from hazardous or inappropriate content. Subfigure b) shows the network 
diagram of a real network adjacency matrix produced from the ’Zachary Karate Club’ 
dataset, [38]. The importance of experiments is to see if the iterated SGC with changes 
in the values of k will preserve the segmentation of the influences. The iterated approach 
from Eq. 4, and the cumulative approach of Eq. 7 will be applied to these data. Subfigure 
a) shows a ring network where each node has 2 neighbors and the colors represent the 
value of the single feature variable that ranges between red and blue where grays cor-
respond to values around zero. The range from blue to red is representative of a political 
leaning on the 2 party political spectrum and the application seeks to see how a consen-
sus arises from larger values of K and if from lower values oscillations appear from local 
intermediate consensus outcomes.

Applying the iterated SGC on a ring network

The examination here looks at the context where a set of nodes are placed in a ring 
network (Fig. 1. Each node has a single feature variable value in [−1,+1] . This applica-
tion can potentially correspond to political voting opinions on the spectrum typically 
encountered between ’liberal’ and ’conservative’ where the values place the node’s 
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leaning or possibly neutral position. The methodology of Eq. 4 is applied to see how 
the influence of nodes in a changing vicinity can alter the decisions. The values are 
continuous, but since decision of voting take a discrete value, the rounded values will 
also be explored. The network has 20 nodes and 20 edges, and the density is 0.105 (3 
significant figures).

Figure 2 shows the results of the ring network examination. Subfigure a) shows the 
group membership from the rounding to the nearest [−1,+1] and the proportions for 
each group stacked per value of k. It can be seen how with increasing vicinity, the 
dominant group influences the full network till consensus producing a single out-
come across all nodes. Subfigure b) shows how the values change with k and how the 
changes are increasingly smooth amongst the locality of the nodes with larger k val-
ues. The values per k are not rounded to [−1,+1] and the initial values at k = 0 can 
be seen as well as an approximately uniform final distribution. Subfigure c) shows the 
same as b), but the values are rounded to either −1 or +1 . It can be seen how spo-
radic changes can appear from local associations at low k values. For Subfigure d), 
the changes in the group memberships for the opinions represented in each group 
are shown, so that the exchanges can be tracked. The changes across the subplot can-
cel each other out as node assignments are exchanged between groups. Variability is 

Fig. 1  Different networks used in exploring the methodology. a A network set of three sparsely connected 
clusters with random perturbations as an adjacency matrix. b The layout of the Zachary Karate Club and the 
class membership labels allocated from applying community detection. c A ring network that will be used, 
and the colors depict the value of the single feature variable each node contains (from red to blue with grays 
for in between values)



Page 9 of 17Mantzaris et al. Comput Soc Netw            (2021) 8:12 	

presented just as it would be expected for a stochastic simulation as local network 
arrangements would arrive at local agreements that differ from the macroscopic ones.

Application to a synthetic dataset with three connected clusters of nodes

In this exploration, the network defined by the adjacency matrix shown in Subfigure a) 
of Fig. 1 is used. There are three clusters of nodes differences in the number of nodes 
in each cluster. There is a dense edge set between nodes of the same labels, and pertur-
bations are applied randomly to connect all the components together. The network has 
45 nodes and 391 edges, and the density is 0.395 (three significant figures). The weight 
matrix, � for the three class feature projections is:

For the feature matrix, X , the first three rows correspond to a categorical variable with 
1-hot encoding, the rows 4–6 to a discrete choice of numbers in the set [−1, 0, 1] , and 
the last value is a random normal addition to the mean value of that feature.

Figure  3 shows the results for running the indexed SGC proposed in Eq.  4. Subfig-
ure a) shows the group membership proportions over k. What can be seen in is that the 
smallest cluster is dominated earlier on by the largest cluster losing its identity and the 
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Fig. 2  Application of Eq. 4 to a ring network. a The proportions of the group numbers over the values of k. 
It can be seen how with increased k, one group dominates producing consensus. b The values of the linear 
projection for each node as they change with k. c The value rounded to the nearest [−1,+1] to see what 
’decision’ would be made by each nodes due to the influence vicinity changes. d Has 3 subplots for the 
counts of the changes of the node labels over k with the vicinity changes
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second lowest cluster size required a larger vicinity value of k for the largest cluster to 
overwhelm its local influence. Effectively, the larger k results in local feature projection 
becoming less than the dominant group. This can occur, even though the cross commu-
nity connections which are relatively sparse, so that different groups can find their group 
membership altered from information exchange based on these edges also referred to 
as ’boundary nodes’ [39–41]. Subfigure b) shows the changes in the node membership 
which can be tracked over k per node. It can be seen how the red group can exploit local 
segments of the network to override the influence of the dominant group and the small-
est group (orange). Subfigure c) shows the changes over the three groups per value of k 
and the increments for the group sizes.

Exploration of the indexed SGC with application to the Zachary Karate Club dataset

Here, we explore how the model of influence exchanges over k takes place when the 
iterations are governed by Eq. 4 which is the indexed trace of the SGC over k. The net-
work used is the Zachary Karate Club network with the network adjacency used from 
Subfigure b) in Fig. 1. There is no accumulative effect over the changes of k as each iter-
ation is computed independently and is useful to see the state of the influence spread 
at each value k. What is examined is if a central node (node 1) and a peripheral node 
(node 27) taking influential values (large in magnitude) can affect a large part of the net-
work over k. To start the network in such a state the class membership is modified, so 
that node ’1’ and ’27’ belongs to a group 3, and the feature vector is sampled from a 
different generator. Group 1 samples are taken from [1+ U(0, 10), 1+ U(0, 4),U(0, 1)] , 
Group 2 samples are taken from [1+ U(0, 4), 1+ U(0, 10),U(0, 1)] , and for Group 3 
[U(0, 1),U(0, 1), 30+ U(0, 60)] . The reason Group 3 has been allocated a large expected 
value is that the features that are characteristic for it are meant to be more influential, 
and that this is a manner in which the strength of a node’s influence can be intuitively 
represented and produce an effect in this formulation. Situations for this can be charis-
matic characters, expert opinion holders, or those with dominating personalities. There-
fore, this phenomenon has an intuitive representation by scaling certain feature variable 
values. The weight matrix, � , is set to be the identity matrix. The network has 34 nodes 
and 78 edges, and the density is 0.139 (3 significant figures).

Figure  4 shows the results of using the formulation of the SGC in Eq.  4 where the 
x-axis is k and shows how this parameter changes the number of ’hops’ for which the 

Fig. 3  Application to a network with three dense clusters of nodes. a The group membership of the nodes 
over k and how the vicinity allows the influence of the largest group to dominate the network labels of all 
other nodes. b The changes to each individual node and how the red group can find a k values to exploit a 
local network structure where it briefly dominates some orange nodes more than the more numerous blue 
group. c The individual change of the group over k 
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walks produced that is akin to a simulation based on the vicinity changes of node influ-
ence. Subfigure a) shows the proportions of the nodes which belong to each of the three 
groups for a value of k. Group 3 (’orange’) starts off as a comparatively very small sub-
set of the node population, and then, the influence grows with k for a few steps. It can 
be seen how the two different groups remain stable regardless of the vicinity increases 
which provides insight that this network which arose organically is robust and, there-
fore, would maintain polarity and eventually separate. The experiments with the three 
clusters did not manage to ensure this, even though the boundary nodes (cross com-
munity bridges) were few. This provides insight for how to maintain social integrity from 
polarizing individuals [42]. Subfigure b) presents the same information but the y values 
correspond to node positions, so the changes in node classification can be more pre-
cisely tracked for the simulation trace. It can be seen how the group 3 nodes can sporad-
ically make local changes and that the red and blue maintain relative stability. Subfigure 
c) shows the number of node changes over k as the index of the simulation where each 
subplot shows the difference in the number of nodes for each group. The summation 
over the separate lines cancel each other out. Subfigure d) shows the network group 
membership in a network diagram at the final k value.

Exploring the cumulative iteration of influence exchanges on the Zachary Karate Club 

dataset

Here, we explore how the model of influence exchange over k takes place when the 
iterations are governed by Eq.  7 and how it compares to the results obtained in the 

Fig. 4  Two nodes represent a third group member in the Zachary Karate Club dataset. Here, we can see 
the simulation (using the Zachary network) and how an attempt by a single influential node to spread its 
influence as the neighborhood of interaction increases. a The proportion of nodes per group over k and b 
the specific node changes. c The number of the changes to the group memberships over k. d The layout of 
the Zachary Karate Club and the class membership labels allocated from the simulation at the final step
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previous subsection which does not use accumulated local influences in the itera-
tion or a decay in the influence ability with distance. The is set to α = 0.8 (as pre-
scribed in [18]) and the network used is the Zachary Karate Club network with the 
network adjacency shown in the network diagram from Subfigure b) in Fig.  1. The 
network class membership is modified, so that node ’1’ and ’27’ belongs to group 3, so 
that the feature vector it is sampled from has a different generator. Group 1 samples 
are taken from [1+ U(0, 10), 1+ U(0, 4),U(0, 1)] , Group 2 samples are taken from 
[1+ U(0, 4), 1+ U(0, 10),U(0, 1)] , and for Group 3 [U(0, 1),U(0, 1), 30+ U(0, 60)] . The 
reason Group 3 has been allocated a large expected value is that the features that are 
characteristic for it are meant to be more influential and that this is a manner in which 
the strength of a node’s influence can be intuitively represented. Situations for this can 
be charismatic characters, expert opinion holders, or those with dominating personali-
ties. The weight matrix, � , is set to be the identity matrix. The impact of the formulation 
of Eq. 7 in comparison to Eq. 4 can be seen where the walks of different lengths accumu-
late to produce an overall influence for each node’s classification and the walk lengths 
are penalized with larger k.

Figure 5 shows the results of using Eq. 7. Subfigure a) shows the proportions of the 
nodes which belong to each of the three groups. It can be seen how Group 3 begins 
as a comparatively very small subset, and then, the influence continues to grow with k 
in contrast when the non-accumulative approach is taken. The increase in Group 3 and 
the corresponding decrease in Group 1 show that the change of label membership is 
restricted to one side of the network and that the neighborhood vicinity is too far and 
weak for the influence to extend beyond it. The non-central node 27 within the group 
2 vicinity does not manage to divert the label classifications of many of its surrounding 
nodes in the same way node 1 does. This provides insight for how to maintain social 
integrity from polarizing individuals [42]. Subfigure b) presents the same information, 
but the y values correspond to node positions, so the changes can be more precisely 
tracked for the simulation trace. It can be seen how there are sporadic changes, but a 
trend is maintained which is not seen the results of the previous subsection and is attrib-
uted to the decay of influence for large k values by the factor of αk . Subfigure c) shows 
the number of node changes over k as the index of the simulation where each subplot 
shows the difference in the number of nodes for each group. The summation over the 
separate lines cancel each other out. Subfigure d) shows the network group membership 
at the final value of K. A key difference is that the lower values of k allow nodes to adapt 
more locally when node 1 has less of the influence of the opposing group’s central nodes.

Exploring the influence behaviors on the Eu‑Email‑core dataset

The approaches defined in Eq.  4 and 7 are applied to the dataset of ’email-Eu-core’ 
[43, 44] which is part of the SNAP collection [45]. These network data are pro-
duced from email exchanges between large European research institutions. There 
are 1005 nodes and 25571 edges, and a density of 0.0253 (three significant figures). 
Along with this network is a set of labels for the departments of which there are 42. 
The first 10 departments are taken to be part of Group 2 (’red’ category with 431 
nodes), the departments 11 & 12 to Group 3 (’orange’ category 32 nodes), and the 
rest of the department nodes belong to Group 1 (’blue’ category). Group 1 features 
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are taken from [1+ U(0, 10), 1+ U(0, 4),U(0, 1)] , Group 2 features are taken from 
[1+ U(0, 4), 1+ U(0, 10),U(0, 1)] , and for Group 3 [U(0, 1),U(0, 1), 100+ U(0, 100)] , so 
that Group 3 has the strongest influence score value, but are the least numerous of the 
groups. The simulations use the proposed modification of the SGC to see how influence 
can be spread using the number of k-hops as ’walks’. This is also compared to the simula-
tions where the nodes for each group are chosen based on degree centrality, so that the 
first 32 nodes belong to Group 3, the following 431 nodes to Group 2, and the rest of the 
nodes to Group 1.

Figure 6 presents the results of using this dataset. In subfigures a) and b), the depart-
ment separations are used, and in c) and d), the degree centrality rank is used to allocate 
nodes to each group. Subfigures a) and c) show the results of using Eq. 4, and in b) and 
d) using Eq. 7. From a) and b), it can be seen how the influence of the orange group can 
extend to a larger group and to a lesser extent the red group for a few hops, and then, 
there is a decay as the k continues to increase as most nodes of the network are then 
incorporated in each node group classification. The effect of the decay and accumulation 
of Eq. 7 allows the walks of larger lengths to have a reduced influence and the effect of 
the shorter walks to have a carry-on effect. This produces the effect that there is greater 
stability in the influence of the classifications over the value of k. As an application, it 
demonstrates how a relatively small department can have a large impact upon an insti-
tutional network of academics. The results of c) and d) mirror this effect, but since there 
is also a topological positioning for the influential groups to spread their influence, the 
changes are larger. The most influential nodes could be expected to be part of the nodes 

Fig. 5  A single very influential node and a peripheral node represent a third group member in the Zachary 
Karate Club network to see if their influence can dominate nodes. Here, we can see the cumulative iteration 
applied of Eq. 7 (using the Zachary network) and how node ’1’ and ’27’ can spread their influence as the 
neighborhood of interaction increases. a The proportion of nodes per group and how one group identity 
ceases to exist, but the third group can grow and become stable. b The specific node changes along k. c The 
number of the changes to the group memberships over k. d The network diagram of the Zachary Karate 
Club, and the class membership labels allocated from the simulation at the final step
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with the largest number of direct connections and even if they have the same number as 
for a) and b), we see a greater number of nodes are influenced for lower values of k in c), 
since the orange group has more direct edges to nodes to influence them. As before, in 
d), the accumulation allows for the effect of the shorter walks to take a greater role in the 
category assignment in the presence of longer walks with large k. This further supports 
that approach to using the modified SGC can simulate the spread of influence and for 
groups with different feature values depending upon the walk length.

Figure 7 shows the changes of the results based on the value of α in Eq. 7 which are 
now set to take on the values of [0.25, 0.5, 0.75, 1.0]. The figure shows the range tested on 
Fig. 6d) and it can be seen how with the exception of α = 1.0 . the increases allow for the 
influence of group three to extend further. This is due to the large feature value charac-
teristic of that group having a smaller decay further away. For the larger values of k, the 
blue group (’one’) increases its dominance with long-range non-penalized walks benefit 
its large group population size.

Conclusion
This work shows how the Simple Graph Convolutional Neural Network (SGC) of [25] 
can be used to explore how nodes influence each others’ label allocation with changes in 
the neighborhood vicinity size. The parameter K allows the exploration to examine the 

a b

c d
Fig. 6  This figures presents the results of applying the approaches to the dataset of ‘email-Eu-core’ [43, 
44] part of the SNAP collection [45]. In a, b the nodes in the first ten departments belong to category ’two’ 
(red), the nodes in departments 11 & 12 to category ’three’ (orange), and the rest are in category ’one’ (blue). 
There is asymmetric influence with category ’three’ having the most which affects the label association with 
different values of k. For a, Eq. 4 is used, and in b, Eq. 7 is used. With c, d, the same number of nodes for the 
different categories is used, but instead of choosing those nodes by department, they are selected from the 
ordered degree centrality rank. Both pairs of plots demonstrate how Eq. 4 depicts a mechanism for influence 
spread upon the number of walks, and with Eq. 7 the decay over the length with the carry-on effect
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label allocations for a range of cases including what allocations would exist if nodes did 
not receive external influence from the network ( K = 0 which causes the methodology 
to become equivalent to logistic regression). Large values would result in the local influ-
ence of a node to become diluted as communication from further parts of the network 
take a more equal role. The experiments show how local group memberships decrease 
and can cease to exist with large k values even when the number of edges allowing 
for those cross group connections is sparse. This adds value to the relevant research 
in boundary nodes (spanner nodes) [39–41] and how they can facilitate important 
exchange as a few edges can provide an ability for a larger group to dominate. A formula-
tion proposed here allows the methodology to incorporate the important concepts that 
nodes further away have the walks between nodes penalized in proportion to that walk 
length, and that nodes from a closer vicinity will have a greater influence on other nodes 
due to nodes further away having delayed information arrivals.

Using this approach allows for an efficient mechanism for influence exchanges in a net-
work with an intuitive and explainable set of terms in the formulation. A key feature is 
to examine the changes between labels over the influence vicinity to see if certain groups 
are vulnerable to become dominated by other labels in the connected cluster sets. The 
figures of the results show how changes as differences in the number of nodes included 
can be monitored over a k. Other use cases can see which consensus class labels are pro-
duced with large values of k, and to see if certain network configurations do provide an 
effective barrier against different group influences.

a b

c d
Fig. 7  This figure presents the results of examining the effect of the α parameter used in Eq. 7 to the dataset 
of ’email-Eu-core’ [43, 44] part of the SNAP collection [45]. The different examinations a–d use the α values of 
[0.25, 0.5, 0.75, 1.0]. The scenario of Fig. 6d) is used. An increase in the value allows the influence of the orange 
group to extent further until for very large values of k where the blue group nodes influence for large k gain 
influence without the long walk decay and their numerical advantage can be applied
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Future work could proceed by examining how representations can be made to handle 
known variable interactions in the feature matrix and how to perform dimensionality 
reduction on the feature set needed from the nodes.
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