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Background
Nobody doubts that social networking services (SNSs), such as Twitter, Facebook, Ins-
tagram, and LinkedIn, have played an important role in our lives even though they have 
been developed in virtual places. There are various ways of using SNSs such as private 
and local communication, marketing, advertisements, and political campaigns. Unlike 
conventional mass media such as television, newspaper, and radio, SNSs are maintained 
by a large amount of content that is generated by users’ voluntary participations; thus, 
SNSs collapse if too little content is posted on them. Due to this SNS characteristics, 
users can be lurkers or free riders who read content without posting any content because 
posting articles and comments imposes some costs on users. It is crucial to understand 
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why users voluntarily post content so often while others behave as free riders, and it is 
worth knowing the mechanism by which SNSs flourish and keep active.

There are many studies that discuss the interaction design methodologies and mecha-
nisms for active SNSs from different viewpoints, such as analyzing exchange patterns [1], 
social and psychological viewpoints  [2], evolutionary game theory  [3], and network 
structures and information diffusion  [4–6]. Our study has adopted an evolutionary 
game-theoretic method, which is a learning algorithm to understand users’ reasonable 
behavioral strategies and what incentives affect users’ strategies in SNSs. A few stud-
ies have attempted to understand incentives for voluntary participation on SNSs using 
game-theoretic models. Toriumi et al. [3], for example, have proposed a meta-rewards 
game that models users’ interactions on SNSs and tried to identify their common behav-
iors using evolutionary computation. Because SNSs have a number of characteristics 
that can be observed in public-goods game, the meta-rewards game is an extension of 
Axelrod’s meta-norms game  [7]. Then, they analyzed what could prompt cooperation, 
i.e., continuing posting articles/comments, even in social dilemma situations. Their 
results show that cooperation on SNSs evolved by giving a meta reward, i.e., a reward 
as posting a comment on comments. Then, Hirahara et  al.  [8, 9] proposed an SNS-
norms game by adding the structural interaction features of SNSs to the meta-rewards 
game. For example, users who respond to comments on posted articles are usually those 
who posted the original articles. Then, they identified the optimal or shared reasonable 
behavior in this game from the experiments using agent-based simulations on artificial 
complex networks and a Facebook network.

We have to consider two issues of the conventional studies that used evolutionary algo-
rithms for network analysis to search for a common better strategy for all users. First, 
applying genetic algorithms (GAs) to find a better or dominant strategy that is com-
mon for all users does not fit actual SNSs. For example, the appropriate strategy for hub 
users (such as celebrities) that have very many followers may not be advantageous for 
other ordinary users. All users probably seem homogeneous in the sense that they want 
to maximize the rewards received through the game. However, they are in diverse sur-
roundings because the numbers of friends/followers are very different, and their appro-
priate behaviors must be affected by their surrounding users. Therefore, their behavioral 
strategies must be evolved by taking into account the strategies of the surrounding users. 
Second, the conventional studies focused on only the learned final strategies. We think 
that these strategies evolved through iterative interactions, so the process of learning 
must be more complicated. Thus, we need to attempt to analyze the process of learning; 
i.e., how they learned the strategies that mutually affected neighboring users.

This discussion motivated us to more carefully analyze the differences of the evolved 
strategies between in the artificial networks, such as the connecting nearest-neighbor net-
works, and in a natural network generated by Facebook and its ego networks by reflect-
ing the diversity of agents’ appropriate strategies in their surroundings. For this purpose, 
we propose to use the multiple-world genetic algorithm (multiple-world GA)  [10, 11], 
which is a genetic algorithm of co-evolutionary computation [12] for evolutionary net-
work analysis, to maintain the diversity of nodes in complex networks, where co-evolu-
tion is a phenomenon in which different species affect each other and evolve together. 
Although many studies have investigated how to avoid a local optimal solution and have 
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proposed effective methods such as distributed GA  [13] and diversity control oriented 
GA [14] to find a better solution in a whole system, our objective is to maintain the indi-
viduality of each agent’ strategy in the network and analyze a combination of their dif-
ferent strategies in a solution in social network analysis. In the multiple-world GA, a 
complex network including all nodes (agents) and edges are duplicated to several net-
works in which agents in the same position have different strategies. Then, all agents 
interact with their neighbors using various behavioral strategies in each copy of the net-
work to simulate the effects of various strategies with the neighboring agents with dif-
ferent strategies. Therefore, agents can evolve their own diverse strategies that must be 
appropriate for the neighbors’ various strategies. We have already analyzed the diverse 
strategies of the SNS-norms game in the complex networks of agents using the multiple-
world GA [15]. However, this study used the artificial networks generated by the con-
necting nearest-neighbor model [16], but the natural networks may have characteristics 
different from those observed in the connecting nearest-neighbor networks.

Therefore, in this paper, we analyzed the characteristics of strategies evolved in the 
Facebook network as an example of a real-world network under the condition that all 
agents can evolve their own diverse strategies and compare them with those evolved in 
the connecting nearest-neighbor networks. Of course, the connecting nearest-neighbor 
networks have the network properties that are often observed in human society, but 
some features of the natural networks are still unknown; actually, we observed some 
interesting characteristics in the Facebook network that did not appear in the connect-
ing nearest-neighbor networks. We also investigated the complex process of co-evolved 
strategies over the iterated game interactions and the distribution of strategies on the 
Facebook network.

Related work
Since communication using SNSs became an indispensable part of people’s lives, many 
studies have investigated what factors affect users’ motivation and the reasons they 
constantly use SNSs. Al-Debei et al. [17] examined the intentions of the users’ continu-
ous participation from social and behavioral perspectives, focusing on Facebook. Chen 
et al. [18] investigated four social factors: subjective norms, electronic word-of-mouth, 
images, and critical mass. They attempted to understand which factors affect their con-
tinuous use of social media. They then clarified that user satisfaction with social media 
applications is significantly affected by electronic word-of-mouth and effectively induces 
continuous use of social media. Lin and Lu [2] also empirically studied constant inten-
tion to use SNSs from the viewpoint of network externalities and motivation theory. 
They indicated that enjoyment is the most influential factor for users to motivate to join 
and keep using an SNS. They also conducted clustering analysis of gender and conse-
quently revealed that the gender difference produces different influences.

Other studies have looked into why people become free riders or quit using SNSs [19–
21]. For example, Sun et al. [19] applied a motivation model to clarify why users in online 
communities stop providing content. The researches gave three factors that made users 
become free riders: long response delays, low response rates, sand low-quality messages. 
Then, they also insisted that external stimuli (a kind of reward) and new norms could 
encourage user activation on SNSs. Lőrincz et al. [20] researched the key users who first 
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left an SNS by giving a contrasting explanation based on the users’ structural locations in 
the network. They claimed that a higher degree number (higher number of connections) 
and less clustered ego networks were effective in delaying early withdrawal from an SNS. 
Some researchers focused on the stress and exhaustion of the user when using SNSs [22, 
23]. For example, Adeel et al. [22] utilized the stimulus-organism-response paradigm to 
empirically study the antecedents of intentions to discontinue using Facebook.

Abstract models of SNSs based on the game-theoretic approach have recently been 
proposed to investigate the characteristics of the SNSs from many aspects. Xiong 
et al. [24] proposed a lurker game and attempted to model the dilemma situations among 
the human behaviors observed in big SNSs. Deng et  al.  [25] proposed a theoretical 
dynamic model in social networks based on reciprocal altruism by utilizing the N-player 
prisoner’s dilemma (NPD). There are very many game-theoretical studies on social net-
works and social media (e.g.,  [26–28]), and some of these studies insisted that online 
social networks have common features with public goods [29, 30]. Therefore, some stud-
ies attempt to model SNSs in the framework of the evolutionary game like the public 
goods game [3, 9, 31, 32]. For example, Osaka et al. [31] extended the rewards game and 
meta-rewards game  [3], which are the dual part of Axelrod’s norms and meta-norms 
games, to include reciprocity between users and then clarified that the half-free rider is 
a suitable strategy for the continuous use of SNSs, where half-free riders are users who 
comment on the content posted by their close friends but behave as free riders for other 
content. Toriumi et al. [32] also extended the meta-rewards game to flexibly model users’ 
behaviors on SNSs. Their simulation results indicate that providing content is encour-
aged more if potential commentators/responders can confirm that the content provider 
will respond to their comments.

However, these studies used the conventional GA to find the agents’ evolved strategies 
under the assumption that the good strategies of neighboring agents are beneficial; this 
leads to strategies that have lost diversity by imitating other’s strategies. Therefore, we 
focus more on the diversity of strategies that are the results of the individual network 
locations and the strategies of the neighboring agents.

Modeling SNSs
Overview of multiple‑world genetic algorithm (multiple‑world GA)

Here, we briefly explain the multiple-world GA; see Miura et al. [10, 11] for details. In 
the multiple-world GA, the network including all agents is duplicated to several net-
works where siblings, i.e., agents in the same position1, have different genes (parameters). 
Then, in each generation, all agents interact with the neighbors that are in identical loca-
tions in all duplicated networks but with different strategies, and then the agents for next 
the generation are generated based on the fitness values. Note that each duplicated net-
work is often called world because the agents in each world have diverse experience by 
interacting with the same set of neighboring agents that behave differently.

Therefore, the process of the SNS-norms game  [8] was slightly modified to adopt 
the multiple-world GA to find and examine diverse strategies that are reasonable for 

1  Sibling will be defined formally below.
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individual agents. The overview of this process consists of the following subprocesses 
(SPs). 

SP 1:	 A number of copies (or worlds) of an agent network (a Facebook network in our 
experiments) are generated,

SP 2:	 Four rounds of an SNS-norms game are performed by individual agents in each 
world in one generation,

SP 3:	 Agents’ strategies in each world are evolved for the next generation using the 
genes of sibling agents that had different experience, and

SP 4:	 We iterate SP 2 and SP 3 until the specified generations.

After this process, the genes of the original agents are defined as the gene of one sibling 
that earned the highest rewards; the details will be described later.

Agent network

In the SNS-norms game, agents that correspond to users on an SNS are nodes of a graph 
G = (V ,E) , where V = {v1, . . . , vn} is the set of agents, and E is the set of links that repre-
sent friend relationships between agents. Graph G is also called the agent network. Agent 
vi ∈ V  has a behavioral strategy denoted by two parameters Bi and Li ( 0 ≤ Bi, Li ≤ 1 ). 
Parameter Bi is the probability of contributing to the SNS by posting an article. Param-
eter Li is the probability of giving a comment on a read article or a meta-comment, i.e. 
a comment that is a reply to a received comment. Therefore, agents with high Bi and/
or Li actively participate on the SNS. Because our purpose in this paper is to investigate 
agents’ behavior in an actual network, we focus on the agent network generated by Face-
book (ego) networks from the Stanford Large Network Dataset Collection [33].

To start the SNS-norms game with the multiple-world GA, the master network 
G = (V ,E) is duplicated to W networks for using the multiple-world GA, where a 
positive integer W is the number of worlds. This process corresponds to the subproc-
ess SP 1 in the previous subsection. For 1 ≤ ∀l ≤ W  , we represent the l-th network as 
Gl = (V l ,El) , where V l = {vl

1
, . . . , vln} is the set of agents in the l-th network, and vli is 

the copy of agent vi ∈ V  . For ∀vi ∈ V  , let Ai = {v1i , . . . , v
W
i } be the set of copy agents of 

vi in a different world, and the agents in Ai are called the sibling agents or simply siblings. 
We also often call vi the master agent of vli . Although the network characteristics of indi-
vidual sibling agents on the duplicated networks are identical, initial strategies Bl

i and 
Lli are randomly given to all agents, so they can evolve differently, where the Bl

i and Lli 
parameters determine the strategy of vli ∈ V l . The strategies Bl

i and Lli in each duplicated 
network are encoded by three-bit genes for the genetic operators in the evolution phase; 
thus, they take on a discrete value, 0/7, 1/7, . . . , or 7/7.

SNS‑norms game

All agents conduct three sequential steps in the SNS-norms game. The flow of the SNS-
norms game is illustrated in Fig. 1, which shows the sequential steps of the SNS-norms 
game. Figure 2 shows the conceptual diagram of this game. For agent vli ( 1 ≤ ∀l ≤ W  , 
∀i ∈ V  ), 0 ≤ Sli,t ≤ 1 , which represents the degree of interest in the content of the article 
that vli intends to post, is randomly selected.
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In the first step, agent vli in the l-th world posts an article and pays a cost F ( ≤ 0 ) if 
Sli,t ≥ 1− Bl

i . An article post is regarded as a contribution to the SNSs so the neighbor-
ing agent vlj ∈ Nl

i = {vlj | (v
l
i , v

l
j ) ∈ El} can receive benefit M ( > 0 ) as a reward by reading 

the posted article. In the second step, vlj ∈ Nl
j  posts a comment on the posted article 

with probability Llj . Then, vjj pays cost C ( ≤ 0 ), while the article writer vli who posted the 
original article receives reward R > 0 . Posting a comment on posted article is regarded 
as giving a reward to the agent that posted the original article, which can be seen as 
another contribution behavior.

Then, in the third step, vli may provide a meta-comment to vlj , the agents that com-
mented, with probability Lli . If vli posts a meta-comment, it pays cost C ′′ ( < 0 ), and vjj 
receives meta-reward R′′(> 0) . These steps are done in a game turn of vi , and all agents 
in V l (for 1 ≤ ∀l ≤ W  ) complete the game turn in a round.

Fig. 1  Flow of SNS-norms Game

Fig. 2  Conceptual diagram of SNS-norms Game
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Table 1 lists the cost and reward parameters used in this paper, where their values in 
this table were defined on the basis of the experiments done by Axelrod [7] and are also 
identical to those used in other studies [3, 9, 15] so that we could examine the effect of 
the multiple-world GA properly. Table  2 lists the agent’s total reward (or payoff) in a 
game turn, where Nc(a) is the number of comments posted by neighboring agents on 
article a, and Ncc(a) is the number of meta-comments posted in reply to the received 
comments. Nm(c) is the number of meta-comments on comment c, which is 0 or 1 in 
the SNS-norms game. In this table, “cooperate” means “posting articles” and/or “mak-
ing comments,” and “defect” means “just reading articles/comments without posting or 
commenting.” Note that we assume that the reward for posting an article follows the 
Weber-Fechner law  [34] and increases logarithmically with the number of comments 
received [35].

The game runs in parallel on each duplicated network, and the evolution phase comes 
when all agents complete four rounds in a generation. The fitness value of the agent on 
each network is defined as the total rewards of the agent in a generation; thus, the sib-
lings of an agent have different fitness values because their neighboring agents have dif-
ferent strategies.

Evolution by multiple‑world GA

At the end of each generation, each agent in all duplicated networks simultaneously 
evolves its own strategy. The evolution of the multiple-world GA proceeds by the follow-
ing three operations: selection, crossover, and mutation. The main feature of multiple-
world GA is that agent vli ∈

⋃W−1

l=1
V l selects itself as one parent and selects another 

parent from its siblings A−l
i = Ai \ {v

l
i} with the probability distribution {Pl

i }i∈A−l
i

 , where

where f (vli) is the fitness function whose value is the fitness value of the given agent vli 
(see Table 2), and fmin = minv∈Ai f (v) . Note again that agents in Ai stand in the same 
position in all duplicated networks. For 1 ≤ ∀l ≤ W − 1 , vli ’s gene for the next genera-
tion is generated from the selected sibling and itself, and then the uniform crossover and 
flip-bit mutation with a probability of 0.005 for each bit are applied to vli ’s gene. There-
fore, for example, if W = 10 , approximately one bit of the gene of a sibling of a master 
agent is inverted every four generations (because 9× 6× 0.005 = 0.27 ). Then, the sib-
ling agent with the generated gene is placed at vli for the next generation.

On the other hand, the gene of agent vWi ∈ VW  in the next generation is set to that 
of the agent whose fitness value is highest in Ai . This operation indicates that the W-
th world consists of all agents whose fitness values are highest in Ai = {v1i , . . . , v

W
i } for 

1 ≤ ∀i ≤ n . Therefore, W-th world can be seen as a trial execution world because it 
consists of the agents who possibly have the best genes in the previous generation from 
the viewpoints of individual agents but may have interactions with different neighbors. 
Thus, we can assume that the agents in VW

i  are provisional agents that have provisional 
genes, and these genes are expected to become the most suitable ones after a sufficient 
number of evolution processes. Note that the resulting gene of agent vi ∈ V  in a certain 

(1)Pl
i =

(f (vli)− fmin)
2

∑
v∈A−l

i
(f (v)− fmin)

2
,
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generation is defined as the gene of vWi ∈ AW
i  . This is used to generate the dynamic pro-

cess of gene evolution.

Experiments and discussion
Experimental setting

We conducted the experiments of SNS-norms games running on a network generated 
by the actual Facebook network  [33] and the ten associated ego networks (these net-
works are simply called the Facebook network and Facebook ego networks after this) and 
investigated how agents individually learn (co-evolve) their suitable strategies, which are 
specified by the probability of posting article B and the probability of posting comment 
L through interactions with their neighboring agents. The network characteristics of the 
Facebook network we used are listed in Table 3. We conducted these experiments using 
the multiple-world GA for 10,000 generations, and our results were compared with those 
using the conventional GA [3, 9] in which agents probabilistically copy the better strate-
gies from neighboring agents for the next generation. The number of world W in the 
multiple-world GA is 10, and the mutation rate of genetic operation in both multiple-
world GA and conventional GA is 0.005. We also conducted experiments using artificial 
complex networks, connecting nearest-neighbor networks, to compare their distribu-
tions of strategies in the artificial networks and the Facebook network. These connect-
ing nearest-neighbor networks were generated with the conversion probability u = 0.955 
which represents the probability that one potential link is converted into an actual link 
and was defined so that the average degree of the connecting nearest-neighbor networks 
is almost identical to that of the Facebook network. Other network characteristics of the 
connecting nearest-neighbor networks are also shown in Table 3. The values of Bi and 
Li plotted in the figures below are those of the provisional agents in AW

i  in the specified 
generations. The results shown below are the average values of independent 100 experi-
mental runs based on different random seeds, unless otherwise noted. Therefore the val-
ues of Bi and Li plotted in the figures take continuous values.

Comparison between conventional GA and multiple‑world GA: strategy distribution

First, let us compare the distributions of strategies that agents took in the connect-
ing nearest-neighbor networks and the Facebook network by using the conventional 

Fig. 3  Distribution of probability of posting rate Bi and comment rate Li (connecting nearest-neighbor 
network)
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GA and the multiple-world GA. The experimental results are shown as scatter graphs 
(Figs. 3 and 4).

Let us look at the scatter graphs of the connecting nearest-neighbor networks when 
using the conventional GA (Fig.  3). We can see that all agents have similar strate-
gies in which L is near 1.0, and many agents have low values of B, regardless of their 
degree numbers, because in the evolution process, all agents were likely to take on the 
better strategies of their neighboring agents. In particular, the hub agents, which have 
much higher degree numbers than other agents, were likely to earn more rewards; 
its neighboring (and also their neighboring) agents tended to copy the strategies of 
nearby hub agents. However, all agents have high L values; we think that such uni-
form strategies are not realistic in the actual SNSs.

On the other hand, Fig.  3 also indicates that when using the multiple-world GA, 
the agents’ evolved strategies were diverse depending on their network locations and 
the strategies taken by their neighboring agents. Here, we classified agents into four 
groups: free riders (that have low values of Bi and Li ), comment writers (that have a 
low value Bi and a high value of Li ), article writers (that have a high value of Bi and 
a low value of Li ), and active agents (that have high values of Bi and Li , so they fre-
quently post articles and comments). From Fig. 3, it can be seen that some free rid-
ers appear in the connecting nearest-neighbor networks because just reading articles 
posted by their neighboring agents is often beneficial, and this is quite common in an 
actual SNS (and in human society). This suggested that the results using the multiple-
world GA reflected users’ activities in the real world. These results are consistent with 
our previous results [15].

In the Facebook network, agents took more varied strategies, as shown in Fig.  4. 
When using the conventional GA, we can observe some clusters of evolved strate-
gies. This is because the actual network consists of a number of clusters (commu-
nities) that have different network characteristics, and agents in each community 
have similar strategies, i.e., similar values of Bi and Li . In contrast, agents in the Face-
book network have diverse strategies. One interesting property observed in Fig. 4 is 
that, unlike the results of the connecting nearest-neighbor networks, no free riders 
appeared in the Facebook network; none of the agents think that free riding is a good 
strategy. Another property observed in the Facebook network is that there are many 
comment writers. It seems costly to keep making many comments, and so there were 

Fig. 4  Distribution of probability of posting rate Bi and comment rate Li (Facebook network)
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no comment writers in the connecting nearest-neighbor networks. The conditions 
under which comment writers can have benefits is when their neighbors also have 
high L (and moderate B) and are connected densely; otherwise, free riding is more 
beneficial. These properties can be attributed to only the characteristics of the net-
work, and we think that it is necessary to investigate these characteristics.

Comparison between conventional GA and multiple‑world GA: Average posting/comment 

rates, fitness values, and dispersion

We would like to confirm whether the agents could identify better strategies and so gain 
higher fitness values using the multiple-world GA than those obtained by using the con-
ventional GA, which is often used in the existing research.

Figure 5 shows the transition of the average of agents’ probabilities of posting article Bi 
and comment Li in the SNS-norms game on the Facebook network(the indices of agent 
vi are omitted in this and other figures) when using the multiple-world GA and the con-
ventional GA. Figure 7 shows the transition of average fitness values of all agents. Note 
that in these figures, the bold lines indicate the average values of the 100 times runs, and 
the light colored vertical lines indicate the max and min values. We can see in Fig. 5 that 
B and L converged to around 0.7 and 0.6, respectively, when using the multiple-world 
GA, while they were 0.2 and 0.8, respectively, at the end of generation when using the 
conventional GA. Furthermore, the values of dispersion, which is defined as the differ-
ence between the max and min values, were quite large when using the GA; this indi-
cates that the agents’ strategies were extremely unstable. On the other hand, the values 

Fig. 5  Probability of average posting rate B and average comment rate L 

Fig. 6  Probability of average posting rate B and average comment rate L in a single run
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of dispersion when using the multiple-world GA were quite small, so their strategies 
seemed much stabler.

We can see the reason for this stability and instability from Fig. 6, which indicates the 
result of a certain single experimental run and how agents identify their strategies in 
detail. The graph of the conventional GA in Fig. 6 shows that the average posting arti-
cle rate B and comment rate L of all agents fluctuated (B is mainly between 0 and 0.2, 
and L is mainly between 0.82 and 1.0). Furthermore, B and L suddenly but temporarily 
changed in around the 3600th to 4000th generations in Fig. 6; this is probably the result 
of mutation, and such changes drastically affected the entire strategies. In contrast, the 
average B and L when using the multiple-world GA in Fig. 6 were stabler and were not 
significantly different from those in Fig. 5. Of course, the mutation occurred, but such 
changes were negated by the surrounding agents. Note that we can see the strategies 
fluctuated rapidly in the earlier generations (L spiked temporarily, and B dropped tem-
porarily). We found that these sudden changes were the result of searching for the bet-
ter strategies, which were also affected by the neighboring agents that also searched for 
their better strategies.

Finally, we insist that the strategies identified by the multiple-world GA were better 
than those identified by the conventional GA. As shown in Fig. 7, the average fitness val-
ues converged to approximately 50 at the end of generation when using the conventional 
GA but converged to over 200 and were stable when using the multiple-world GA.

Strategy distribution on the whole Facebook network

To understand the effectiveness of the multiple-world GA for agents to identify their 
own appropriate strategies based on the network locations and the surroundings, we 
investigated the strategies that agents on the Facebook network took during the evolu-
tion. First, we show the distribution map of strategies on the example network, which 
is identical to that of Fig. 6, at the end of evolution in Figs. 8 and 9 when using the con-
ventional GA and the multiple-world GA, respectively. In this figure, nodes are agents 
on the network, and the edges correspond to the connections among agents. The circle 
sizes of the nodes represent the probability of posting articles (a large node has a high B), 
and the color of the nodes represents the probability of commenting (as L increases, the 
color turns from blue to red).

As shown in the strategy distribution map when using the conventional GA (Fig. 8), 
almost all agents learned to have a low posting article rate B and high comment rate L, 
and these values were quite similar to those of their neighboring agents. Although only 
the community at the bottom (indicated by an arrow in Fig. 8) has comment rates that 
are L different from other agents, the agents in other communities had similar strategies. 
When using the multiple-world GA, in contrast, we can observe all clusters (communi-
ties in the Facebook network) have both red and blue nodes, and a number of communi-
ties contain a few subcommunities whose members have different strategies (mainly blue 
nodes) than those of other agents, as shown in the strategy distribution map in Fig. 9.

Dynamics of Strategies in the Facebook network

Next, we analyzed the dynamics of the strategies selected by agents in the Facebook 
network. Because Figs.  5 and 7 suggest that agents’ strategies changed by the first 
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400 generations and then stabilized, we plotted the strategies evolved in agents every 
100 seconds from the 0th generation in Fig. 10 and  11. The agents in Fig. 10 have 
low degree (less than 100), and the agents in Fig.  11 have high degree (more than 
100).

Figures 10a and  11a indicate that most of high degree agents were comment writ-
ers who have high L and low B values, and most of low degree agents were active 
agents who have high B and high L in earlier generations. The motivation for the 
comment writers is to receive comments on their comments (meta-rewards) from 
the active users in these generations, and actually, active agents gained many com-
ments from comment writers by posting articles. However, once the active agents 
realized that they could gain more rewards by posting articles without commenting 
to anyone, some active users with low degrees gradually changed to be article writ-
ers, since they did not need to pay costs for posting comments (Fig. 10b, c). Hence, 
because the comment writers could not receive sufficient rewards, the average fit-
ness value rapidly decreased as shown in Fig. 7, and thus, most of comment writers 
changed to be article writers to give up receiving rewards by commenting (Fig. 11b–
d); during this process, the average fitness value gradually increased because they 
still could gain comments from remaining active agents in Fig. 10d.

Table 1  Parameter values of costs and rewards in experiments

Parameter Description Value

F Cost of posting article −3.0

M Reward for reading article 1.0

C and C ′′ Costs of comment and meta-comment −2.0

R and R′′ Rewards for receiving comment and meta-comment 9.0

Table 2  Sum of rewards (costs) for each game turn

Type of action Cooperate Defect

Article (post article a) F + R × loge(Nc(a)+ 1)+ C
′′ × Ncc(a) 0

Comment (post comment c) M+ C + R
′′ × loge(Nm(c)+ 1) M

Fig. 7  Fitness values
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Influence of rewards for comment and meta‑comment

We examined how the ratio of the rewards for comment to the cost for comment and 
meta-comments in various networks affect their strategies and what types of networks 
are sensitive to this ratio in the second experiment because the value of L seems to affect 
agents’ strategies from the previous results. For this purpose, we extracted 10 ego net-
works from the Facebook network used in the previous experiment; the network char-
acteristics of these ego networks are listed in Table 4, where their network ID numbers 
are assigned in ascending order of the average degrees. We ran the 10 experimental trials 
using the multiple-world GA with different rewards of comment and meta-comment, 
1 ≤ R = R′′ ≤ 20 , for each ego network until the 10,000th generation. The other param-
eter values were set to the same values as those of the previous experiments (Table 1). 
The results we show below are the average of 10 experimental trials for each ego network 
with the 10 random seeds.

Figures 12 and 13 show the average posting article rate B and comment rate L between 
the 9000th and 10,000th generations for some rewards for comment R. Figure 12 indi-
cates that the posting article rate B gradually increased with increasing reward for com-
ment until R = 6 in all ego networks. Then, it suddenly rose in all networks, especially 

Fig. 8  Strategy distribution on Facebook network (Conventional GA). The circle sizes of the nodes represent 
the probability of posting articles (a large node has a high B), and the color of the nodes represents the 
probability of commenting (as L increases, the color turns from blue to red)
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in a few networks with low degrees whose network ID numbers are 1 and 2 (see Fig. 12), 
and it gradually increased in accordance with the values of R when R ≥ 7 . We can also 
find that L decreased with increasing of R until R = 6 (from Fig. 13) in all ego networks 
(this is the opposite change of B in Fig. 12). Then, L also soared (the higher the average 
degrees, the more slowly they rose). However, when R ≥ 9 , B temporarily decreased in 
networks whose ID numbers are 7, 8, 9, and 10 in Fig. 13). From these results of the sec-
ond experiment, the average values of B and L of all agents in the networks whose aver-
age degrees are smaller are likely to be influenced by the value of R.

Let us look at Fig.  13 between R ( = R′′ ) = 1 and 6; the increase of the comment reward 
R can be seen as an increase of the incentive to comment on posted articles, but the 
value of L decreased, while the value of B increased. This is because if R′′ gets higher 
and L is high, an agent that posts an article is likely to received many comments and 
the agent has to reply to these many comments; this is costly. Thus, a lower value of L 
became the dominant strategy.

In the same way, when R ≥ 7 agents in the networks whose average degrees were 
higher receive many comments from their neighbors, they have to reply to these com-
ments. Thus, their increases of L became were moderate. Furthermore, B of agents in the 

Fig. 9  Strategy distribution on Facebook network (multiple-world GA). The circle sizes of the nodes represent 
the probability of posting articles (a large node has a high B), and the color of the nodes represents the 
probability of commenting (as L increases, the color turns from blue to red)
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Fig. 10  Dynamics in co-evolved strategies (probability of average posting rate B and average comment rate 
L) on Facebook network (low degree agents)

Fig. 11  Dynamics in co-evolved strategies (probability of average posting rate B and average comment rate 
L) on Facebook network (high degree agents)
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high-degree networks temporarily decreased to avoid the cost rise caused by many com-
ment replies when R ≥ 9 . Therefore, we can say that the increase of R led to more incen-
tive to post articles but this was outweighed by the cost of replying to many comments 
from many neighboring agents. We think that this phenomenon is social network fatigue, 
which has been discussed by Yamakami et al. [23]; they revealed in their empirical study 
that getting tired of commenting on friends’ comments on an SNS was a high-ranking 

Fig. 12  Relationship between posting article rate B and the value of rewards R ( = R
′′)

Fig. 13  Relationship between comment rate L and the value of rewards R ( = R
′′)

Table 3  Parameters and characteristics of the Facebook and connecting nearest-neighbor 
networks

Parameter Description Facebook Connecting 
nearest-
neighbor

n Number of agents 4039 4039

〈k〉 Average degree (average number of friends) 43.691 43.483

CC Average clustering coefficient 0.606 0.449

AL Average characteristic path length 3.693 3.566

R-squared R-squared for fitted power-law line 0.809 0.867
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reason for quitting the SNS. Finally, note that we conducted the same experiments using 
the conventional GA and found that a similar phenomenon occurred, but the agents’ 
strategies fluctuated and were unstable.

Discussion

We summarize a number of characteristics of the Facebook network using the multiple-
world GA found in our experiments by comparing them with those of the connecting 
nearest-neighbor networks that were also shown in our conference paper  [15]. First, 
we can see the experimental results using the multiple-world GA were more realistic 
than those using the conventional GA, and all agents could evolve to have diverse strate-
gies depending on the locations and the strategies of surrounding agents. Furthermore, 
almost all agents had higher fitness values; this was consistent with the results reported 
in Miura et al. ’s study [15]. One interesting and unexpected characteristic found in the 
Facebook network is that no agents evolved to behave as free riders. Because agents can 
get benefits by just reading articles and comments with no cost, free riding seems a good 
strategy; actually, this is an equilibrium in a kind of dilemma situation. Because we only 
focus on the network structure, our experimental results suggest that some sort of coop-
eration can be realized by carefully designing the connections between agents.

We suppose that being connected with friends who have similar network character-
istics in the Facebook network could maintain the cooperative behavior. As a common 
example, the user builds dense friendship network on the Facebook like in the real world 
and actively interacts with their friends even though the user’s friends are not so many 
on the Facebook. Considering the network characteristics of connecting nearest-neigh-
bor model, some agents sparsely connected to neighbors whose network features are 
not similar to them at all because of the algorithm of generating networks. Under the 
situation that the agents are strongly affected their neighboring behaviors, users’ coop-
erative strategies in a sparse network easily collapse. Degree of connectivity between 
friends with similar characteristics is partly measured by assortativity [36–38], but there 
are a number of different definitions of assortativity; we will investigate the relationship 
between such various assortativity measures and evolution of cooperation in the future. 
We would like to note that this discussion is based on our recent results.

Table 4  Parameters and characteristics of the Facebook ego networks

ID 〈k〉 n CC AL R-squared

1 5.6 44 0.455 2.57 0.395

2 8.8 40 0.725 1.95 0.146

3 15.13 324 0.522 3.75 0.804

4 18.03 532 0.546 3.45 0.634

5 19.7 168 0.534 2.43 0.503

6 22.6 148 0.679 2.69 0.0469

7 28.5 224 0.544 2.52 0.431

8 35.68 775 0.471 3.04 0.557

9 51.74 1034 0.526 2.95 0.683

10 80.34 744 0.638 2.56 0.343
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Second, from the experiment that investigates the effect of the relative relationship 
between variable rewards and costs on the evolved strategies in the second experi-
ment, we found that agents in the ego networks, whose average degree is low, are likely 
to be sensitive to the increase of reward R ( = R′′ ), which is given to the agents when 
they receive comments and meta-comments. However, the agents with high degrees did 
not simply increase the comment rate L as R increased. On the contrary, L temporar-
ily decreased because the cost of replying to many comments of its neighboring agents 
was very large, so the increase of the average of L was slow, as shown in Fig. 13, and the 
average value of B also temporarily decreased to reduce the number of comments and 
meta-comments in the ego networks with high average degrees, as shown in Fig. 12. In 
general, it is costly to keep the value of L high; therefore, agents could not take the strat-
egy of comment writers in the connecting nearest-neighbor network, but some agents in 
Facebook took it (but not that many; we think that such comment writers exist in actual 
SNSs). This characteristics was also caused by the structure of the network.

Finally, the previous discussion also explains the strategy distribution shown in Fig. 9. 
Almost all agents in the Facebook network were expressed by the red and relatively large 
circle nodes, meaning that they were active in posting articles and commenting. How-
ever, we can also see a number of clusters of blue nodes in a large community, mean-
ing the strategy of the article writer that rarely comments on other articles. We think 
that agents in these clusters were densely connected and so can maintain the strategy of 
article writers with each other. At first, agents in this type of subcommunities took the 
strategy of comment writers, like other agents. Then, due to the mutation, a few agents 
posted articles, and because their neighbors are mostly comment writers and all agents 
were connected densely, they received high rewards and kept the strategy. Then, they 
could find that even if they did not comment, they could receive sufficient rewards with 
less cost, so they became article writers (which are shown as blue circles). We think that 
a similar phenomenon has also been reported in high-clustered scale-free networks [39] 
and we would like to investigate the relationships with these studies.

Conclusion
We simulated the game-theoretic model of social networking services (SNSs) on the real 
Facebook network with the multiple-world genetic algorithm (multiple-world GA), a co-
evolutionary algorithm, to understand the users’ diverse strategies and the process of 
evolution on the SNS and compared the evolved strategies with those in the artificial 
networks, the connecting nearest-neighbor networks. Through these comparisons, we 
found that agents in the Facebook network did not take the strategy of free riding, which 
is often an equilibrium of public-goods games like the SNS-norms game, although many 
free riders appeared in the connecting nearest-neighbor networks. Agents in the Face-
book network also did select the strategies of the comment writers, who often comment 
on posted articles and comments by other agents but rarely post articles, but comment 
writers are usually costly and it is difficult for them to continuously receive sufficient 
rewards, so no comment writers were evolved in the connecting nearest-neighbor net-
works. These characteristics found in our experiments are caused only by some struc-
tural characteristics of the Facebook network, and to identify the reason is crucial future 
issue.
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We also compared the results with those of the conventional GA that is used in the 
existing studies with those of the multiple-world GA. Then, we confirmed that agents 
with the multiple-world GA evolved the diverse strategies that were suitable for their 
surroundings because they had higher fitness values. Thus, we believe that a plausible 
model of dynamic behaviors could be reproduced with the multiple-world GA to explain 
well the process of behavior selections in actual SNSs.

We plan to conduct a simulation of the co-evolutionary SNS model with the heteroge-
neous agents that have the individually different benefit/cost for the behaviors on SNSs; 
this study might be helpful to understand the users’ cooperation behavior on the SNS in 
detail.
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