
Structural hole centrality: evaluating social 
capital through strategic network formation
Faisal Ghaffar1,2*   and Neil Hurley2

Introduction
With the proliferation of online social networks, the spreading of ideas and informa-
tion has become easier than ever before. Individuals on these networks connect with 
each other for various reasons and purposes. In a knowledge-sharing environment, 
such as professional services or a software development organisation, employees lever-
age internal social networking platforms to access information in order to solve complex 
problems. In such competitive environments, individuals who are better at finding infor-
mation should perform better. It has been shown that when it comes to accessing infor-
mation and solving problems, people not only rely on their skills and memory, but also 
heavily on other people [1, 2]. Thus, it can be anticipated that networks that facilitate 
access to information effectively constitute an important form of social power or value 
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and contribute to the performance of those engaged in knowledge-intensive work. The 
underlying structure of a network plays an important role in the spreading and accessing 
of information [3–5], and studies have shown that certain types of structures are more 
beneficial than others. For example, Granovetter [1] conceptualised the strength of weak 
ties (SWT) theory, in which strong ties corresponds to links in a social network over 
which a high frequency of interactions occur and weak ties correspond to acquaintances. 
The SWT suggests that weak ties are more likely the source of unique information than 
strong ties. Similarly, in the enterprise context, studies have found that having more 
contacts in diverse business units can give access to a wide range of resources that are 
relevant for the instrumental objectives of career success [6, 7].

Organisations such as enterprises with large work-forces are becoming more inter-
ested in understanding the dynamics of networking among employees and in identify-
ing those employees who are key to the flow of information and knowledge through the 
organisation and those who facilitate innovation and new ideas. Individual workers, on 
the other hand, are realising the necessity to build and manage their own social contacts 
in a way that develops their own career prospects. Thus, there is an interest in under-
standing the nature of social capital, how to detect it and how to curate it. It is in this 
context that the work of this paper is presented. The paper is focused on social capital, 
which is understood to depend on an individual’s ability to bond with others and to form 
bridges between diverse groups. In particular, we study social capital through the prism 
of a new strategic network formation game. Such games have been studied in the state-
of-the-art as models of how networks evolve through the actions of nodes choosing their 
connections in order to optimise some measure of personal utility attained from the net-
work. In particular, we present a game in which the utility corresponds to social capital 
value. The paper offers two contributions; one in this area of strategic network formation 
and a second in the area of social capital measurement. Specifically, 

1.	 We propose a new model for strategic network formation that generalises and com-
bines two models from the state-of-the-art and takes into account value accru-
ing to individuals in the network due to both their direct and indirect contacts (i.e. 
value attained through bonding); and value accruing due to acting as intermediaries 
between other individuals in the network (i.e. value attained through bridging);

2.	 from the network formation game, we derive a new measure of social capital—
a structural hole centrality measure that identifies individuals in a social network 
whose social connections provide them with bonding and bridging advantages over 
their peers.

We demonstrate the application of this new measure on a number of networks and carry 
out a thorough comparison of it, to a number of other well-known centrality measures, 
using a dataset of 299 networks from different application domains.

The remainder of the paper is organised as follows. In the next section, we review 
the state-of-the-art on social capital measures and strategic network formation. In “A 
bonding and bridging strategic game” section, we develop the new strategic network for-
mation model and in “Structural hole centrality (shce)” section, we derive the new “struc-
tural hole centrality” measure. Finally in “Evaluation” section, we present an analysis and 
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evaluation of the new centrality measure. This section is completed with a case-study 
of how new measure can be used in practice, in a study of social capital in a network of 
Norwegian board directors.

Related work
Social capital and its measurement

At its simplest, social capital is the value derived from social structures, such as social 
relationships and social groups, in pursuit of one’s goals [8]. Among various defini-
tions of social capital, Putnam’s influential work in [8] describes it as: “Social capital is 
about the value of social networks, bonding similar people and bridging diverse people 
with norms of reciprocity”. This definition emphasises the difference between bonding, 
the value obtained through direct friendship links within communities of homogeneous 
groups of people, and bridging, the value obtained by being a social connector between 
heterogeneous groups of people. Also influential is Burt’s Structural Hole Theory [2], 
which focuses on the role an individual plays in a social network and the position that an 
individual holds relative to others in the network. A structural hole, is a ‘gap’ in the social 
network, an absence of connections between different social groups. An individual who 
can straddle that gap, by forming a bridge between these disparate groups has access 
to multiple sources of information and the advantage to control the information flow 
between these groups. It is by bridging such holes, that new innovation and ideas are 
often generated [9]. Burt refers to this as the social capital of brokerage. In fact it is pos-
sible (see, e.g. [10]) to distinguish between bridging and brokerage, by recognising bridg-
ing as a property of edges in the network, related to the extent to which an edge forms a 
bridge and brokerage is a node level property, that captures the extent to which a node 
controls the bridges in the network.

A natural question that arises, then, is how an individual’s social capital can be meas-
ured? Given the distinction between homogeneous and heterogeneous groups in Put-
nam’s definition, one approach may be to determine the diversity or similarity of social 
groups, through the attributes of individuals in the network. However, most work has 
focused on deriving measures of social capital directly and solely from the network 
structure due to data privacy concerns associated with individual attributes data. This 
second approach is also the focus of this paper.

A social capital measurement assigns a numerical value to each actor or node in a 
social network, that represents their social value. When such a value is based solely on 
network structure, then the social capital value function is a type of network centrality 
measure. Such centrality measures assign value to nodes in a network according to their 
“importance”, where different notions of importance have been adopted. Many central-
ity measures have been proposed; Oldham [11] studies the similarities and differences 
between 17 such measures. In the context of social capital, the most notable measures 
are closeness centrality [12], that measures an individual’s average distance to all other 
nodes in the network and betweenness centrality [13], which measures the extent to 
which a node lies on shortest paths between other pairs of nodes in the network. Close-
ness may be considered as a network measurement of bonding, where a node with high 
closeness centrality is connected directly or along short paths to many other nodes 
in the network. Betweenness, on the other hand, can be considered as a measure of 
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brokerage, since a node with high betweenness centrality is a connector on many short 
paths between other nodes in the network.

Also notable are a number of centrality measures where the centrality value assigned 
to a node is the corresponding component of the dominant eigenvector of a particular 
linear map associated with the graph. Such measures arise when the notion of impor-
tance is defined recursively, such that a node’s “importance” is based on its association 
with other “important” nodes. Eigenvector centrality [14] is formed from the compo-
nents of the dominant eigenvector of the adjacency matrix of the graph and correlates 
well with degree centrality, that values nodes with a large number of connections highly. 
The Page-rank centrality [15] is formed from the components of the dominant eigen-
vector of a matrix derived from a random walk over the (directed) edges of the graph. 
In this paper, we will follow this approach by proposing another linear map, relevant to 
bonding and bridging capital.

While the above are general network measures that have been applied in many con-
texts to networks of different types, a number of measures have been proposed specif-
ically for the purpose of measuring social capital in social networks. Burt’s constraint 
measure [9], captures the extent to which a node is constrained from being a connector, 
due to the energy that the individual expends on maintaining a tightly knit neighbour-
hood of direct contacts. Thus, a node with a high constraint value, is weak in terms of 
its ability to act as a broker. Everett and Valente [10] discuss a number of other meas-
ures of brokerage and propose that brokerage can be calculated as an induced centrality 
measure [16], that is, that a node’s centrality of brokerage, can be derived from an edge 
centrality measure of bridging. In fact, they specifically propose that a node’s brokerage 
centrality be measured as the average edge-betweenness centrality of the edges incident 
to it.

One approach that an analyst can take is to compute multiple different centrality met-
rics on a network and to reach a perspective on a node’s social capital, through observ-
ing its rank when ordered according to these different metrics. Later in this paper, we 
will propose a new centrality measure for social capital which is parameterised in a way 
that allows analysts to directly observe how a node’s social capital is divided among its 
bonding and bridging capabilities. This single measure can then be used to characterise 
different node types in the network, according to the mix of social capital value that they 
have accrued.

Strategic network formation

The issue of how networks are formed and evolve is another general question in com-
plex network analysis that has received much attention. Processes such as preferential 
attachment have been argued to lead to the complex network structures that are seen 
in diverse fields such as sociology, economics, computer science, and biology. Jackson 
and Wollinsky [17] introduced an economic perspective to network formation, argu-
ing that networks form as a result of actors in the network strategically choosing their 
connections in order to maximise some personal utility. In particular, they proposed the 
Connections model, in which actors derive value or benefits through connections along 
direct or indirect paths to other nodes, where this value diminishes with path length. 
The core idea is that individuals receive benefits from direct and indirect connections 
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but must bear some cost of maintaining their direct connections. Individuals make a 
decision about what personal links to maintain, based on a utility which is the difference 
between the benefit and cost of their connections. The total value of the network is then 
the sum of the value of each node’s utility and an efficient network is one in which the 
total value is maximised. An alternative perspective is to consider firstly the total value 
of the network, and then to consider an allocation function that determines how that 
total value is distributed to the nodes in the network.

The process of multiple individuals simultaneously seeking to maximise the utility 
they receive from the network can be modelled in a game theoretic manner where each 
player’s strategy consists of a set of actors to which they want to link. The research ques-
tion arises as to whether a network formation game can reach an equilibrium in which 
no individual can gain by modifying their links and what sort of networks are equilib-
rium networks of this game. A number of different network formation games have been 
formulated (see [18] for a survey). Modelling as a non-cooperative game must address 
the fact that conceptually two nodes (aka players in the game) must agree to form a link. 
Much analysis (e.g. [19, 20]) of the Connections model has focused on the weaker con-
cept of pairwise stability, where a network is stable when no pair of nodes can increase 
their utility by agreeing to form a link and no individual can increase their utility by uni-
laterally breaking a link. An alternative approach, adopted by Kleinberg et al. [21] is to 
model network formation as a non-cooperative game in which players are allowed to 
unilaterally form links. The Connections model may be thought of as a bonding game—
value is derived through connection—and does not model the value of bridging/broker-
age. To capture bridging benefits, Kleinberg et. al. [21] proposed a model for network 
formation which captures the bridging benefits that an intermediary node (a node con-
necting two unconnected nodes) accrues as a connector between these end-points. It is 
these two models that we generalise and combine to form a bridging and bonding strate-
gic game, in which value is derived from direct and indirect connections, as well as from 
bridging along paths between other nodes.

Our proposed strategic network formation model is most closely related to that pro-
posed in [22], which also encapsulates benefits from direct and indirect connections that 
decay with path length, as well as intermediary benefits. In this work, the authors firstly 
propose a network value function that generalises that of the Connections model. They 
then propose a class of allocation rules to determine how the total value of the network 
is distributed to individual nodes. Within this class of allocation rules is the Myerson 
value [23] that allocates utilities to nodes in such a way that benefits are attributed to 
nodes for their role as intermediaries. Nevertheless, the parameterised allocation rule 
that we propose allows for a simple control mechanism for determining the relative 
weight of bonding and bridging benefits, and, as we discuss later, this model leads to a 
parameterised measure of social capital.

A bonding and bridging strategic game
Our starting point for developing a strategic game in which players consider their social 
capital in choosing their network connections, is Jackson’s Connections game [17] and 
the structural hole game proposed in [21]. We first review these two games and then 
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show how these can be combined into a single model, in which both bonding and bridg-
ing benefits are taken into consideration when forming links.

Connections model

The connections model, which we will refer to as conn was proposed originally in [17] 
and introduces the following payoff function, representing the utility or value that a 
player u receives from a network G:

where duv is the geodesic (shortest path) distance between u and v, δuv ≤ 1 , is the benefit 
obtained from having a direct link to node v, and cuv is the cost of forming a direct link to 
v. An important characteristic of this model is that only direct links incur a cost to player 
u, but u can benefit through indirect connections. However, benefit diminishes the fur-
ther u is from v. When faced with a decision of who to connect with, the player weighs 
the cost of that direct connection, with the direct benefit, δuv , together with the indirect 
benefits obtained along paths through v’s connections. A common setting for analysis of 
this model is the symmetric conn, in which δuv = δ and cuv = c , are constant for all u, v.

The main point to note about the conn model is that value through the connections is 
accrued to the sources of those connections. The fact that u has a path to another player 
v, allows u to reap the benefit of that connection. Intermediary nodes along the path 
between u and v obtain value through their own connections to v, but they do not obtain 
any benefit for their role as connectors between u and v. Thus the conn does not assign 
value for the role of being a connector in a structural hole and hence cannot be consid-
ered to model the utility of bridging social capital.

Kleinberg’s structural hole model

A different strategic network formation model that models the payoff of being a con-
nector in a structural hole is proposed in [21]. We will refer to this as the ksh model. 
The key difference between ksh and conn is that, in the ksh, the value of indirect paths is 
assigned to the connectors along these paths, rather than the end-points. Thus, if w is a 
player that forms a length-two path between vertices u and v, i.e. the edges (u,w) ∈ G 
and (w, v) ∈ G , then the value δuv that u would obtain for a connection to v, is allocated 
to w instead. In an undirected graph, w accrues both v’s value to u, δuv and u’s value to v, 
δv . More exactly, since there may be many length-two paths between u and v, the value 
obtained by each intermediary, w, is a monotonically decreasing function of the number 
of such paths.

The structural hole model is limited only to intermediaries along length-two paths. 
A constant payoff δ is associated with direct links. An interesting version of the model 
considers a Harmonic intermediary benefit, in which the value that could be obtained 
by a direct link between u and v, is instead allocated equally among all intermediaries 
on length-two paths between them. Keeping with the notation of the conn model, if δ is 
the value that a direct link between u and v would assign to u, then an intermediary w, 
obtains the value

(1)µu(G) =
∑

v �=u

δduvuv −
∑

v

auvcuv ,
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where m2uv is the number of length-two paths between u and v, such that u and v are not 
directly connected. In the undirected case, this becomes

as the intermediary receives u’s value from v, as well as v’s value from u. Interestingly, for 
this version of the model, the network as a whole attains the same total value, summed 
over all intermediaries, from length-two paths, as it would if those end-points were 
directly connected. The total value of the network, the sum over all node utilities, is then

which can be optimised by choosing edges to maximise the total benefit over the num-
ber of direct and length-two paths formed by a given cost of direct links.

Value functions and allocation rules

The conn and ksh games are examples of a value function/allocation rule game. A network 
is formed in which individuals are connected by social links and those interconnections 
convey on the group as a whole some total productivity or value. Given individual utili-
ties, such as those defined in Eq. (1), the value function of the network is given by

For a given value function, that assigns a real number to each network over some fixed 
number of n nodes, it is interesting to consider its efficient networks, i.e. those networks 
that attain the maximum value. For the conn and the ksh, we have arrived at the value 
function by summing individual payoffs. Instead, given a value function, it is possible 
to define an allocation rule, that is, a function that distributes the total network value, 
µ(G) , to the nodes, so that each node obtains a payoff µu(G) such that Eq. (2) holds. It 
is worth noting, that, for the specialisation of the conn game in which only length-two 
paths accrue any benefit, i.e. δduvuv = 0 when duv > 2 , the conn and the ksh have the same 
total value, but it is allocated differently—all benefit goes to the source nodes in the case 
of conn, while the indirect benefit goes to the intermediary nodes in the case of ksh.

Limitations of the conn and ksh

There are a number of limitations to the conn and ksh models. In particular,

•	 The ksh model only considers length-two paths for indirect benefits.
•	 The ksh model allocates the entire indirect benefit to intermediary nodes. This elimi-

nates any personal motivation for a player to form indirect links.
•	 The conn model allocates no benefit to intermediary nodes, ignoring the important 

role that they play in creating value in the network.

βw(u, v) =

{

δ
m2uv

m2uv > 0 and auv = 0

0 otherwise ,

βw(u, v) =
2δ

m2uv

δ

(

∑

uv

auv +
∑

uv

(1− auv)1(m2uv > 0)

)

−
∑

uv

auvcuv ,

(2)µ(G) =
∑

u

µu(G) .
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•	 Neither model takes account of the structural quality of the connecting nodes.

Considering this last point, the efficient networks of the symmetric conn are studied 
in [17] and, depending on the relationship between the fixed direct benefit δ and the 
cost c, consist of either a fully connected network, an empty network or a complete 
star network, see Fig. 2. In particular, the efficient networks do not contain any trian-
gles, which are known as strong social structures. We argue that the advantage that 
a node gains from paths in the network, depends on the quality of the end-points of 
these paths. If the end-points are gateways into strong communities, then there is sig-
nificant advantage, while if the end-points are themselves dead-ends, or have limited 
reach into the rest of the network, then they yield relatively less value. We illustrate 

Fig. 1  Network payoff vs clustering coefficient of network resulted from ksh 

Fig. 2  Example efficient networks of the shc model, using ‘equal’ benefits and using ‘tri’ benefits. δ = 0.5
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this point in Fig. 1. Here, we measure the ksh value of a network, as the network is 
modified to increase its clustering. Specifically, starting with a network with a scale-
free degree distribution, we carry out pairwise swaps of edges in the network in such 
a way that the degree distribution remains fixed, while the clustering coefficient of the 
network varies. The interesting features of this plot are where the payoff remains fixed 
or nearly fixed, while the clustering coefficient decreases. The reduction in clustering 
coefficient is indicative of intermediaries in structural holes are connecting between 
ever weaker community structures. We argue that the payoff of being an intermedi-
ary in such a situation should also ideally decrease. We aim to develop a model that 
accounts for this anomaly and whose efficient networks contain the sort of social 
structures that we might expect to find in real social networks.

The structural hole connections model (shc)

The literature on social capital suggests that an individual’s social capital is enhanced by 
their bridging and bonding capabilities. The ksh assigns value to bridging, while the conn 
focuses more on bonding, over direct and indirect links. Our goal is to propose a new 
model, that merges the features of the conn and the ksh, to capture both bonding and 
bridging social capital. We call our model the structural hole connections model (shc). In 
particular,

•	 We consider the structural value of nodes as the end-points of connections.
•	 We extend the ksh to longer paths, maintaining the Harmonic allocation of value to 

intermediaries on these paths.
•	 We combine this extended ksh with the conn model, so that value is allocated to both 

source and intermediary nodes along each path.

As will be seen, by maintaining a Harmonic distribution, our extended model retains 
the same overall value as that of a conn model and hence our model can be understood 
as a new allocation function for the value in that model. However, rather than restrict 
ourselves to the symmetric conn, instead we consider that the benefit is dependent on the 
end node, v, so that:

where we define bv as some benefit or value that is obtained through a direct connec-
tion to v and the discounting by distance is via a constant δ.1 The value bv represents 
the attraction of forming a connection to player v. For an undirected network, in which 
edges are bidirectional, the value obtained by u through a connection to v is δduv−1bv , 
while that obtained by v is δdvu−1bu . Hence, each end-point may value the connection 
differently.

While bv > 0 , could capture any type of benefit which may make sense in different 
contexts, for the purpose of social capital we primarily have in mind, measures of value 
that capture a node’s quality as a connector into a strong community. It is a structural 

δuv = δduv−1bv ,

1  Note that we are normalising here such that the value of a direct link is 1.
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measurement of the neighbourhood v. Such a nodal benefit ensures that the anonymity 
of the network value function is maintained. That is, that the value remains independent 
of the node labels.2 Several such measures are readily available in the complex networks 
literature. For example,

where σv is the number of triangles that include v as a vertex. Nodes in the network 
that form many triangles with their neighbours are members of closely knit communi-
ties and are hence worth to connect with, either directly or indirectly. Another measure, 
which considers the density of triangles, rather than a simple count, is the clustering 
coefficient:

where dv is the degree of v. Another possible measure is:

where pvw = avw/dv . This is Burt’s constraint measure which captures the extent to 
which a node is constrained by the community it belongs to. The smaller the constraint, 
the better a node can act as a structural hole broker. On the other hand, such a broker 
would like to connect to constrained nodes, as they are members of strong communities.

The ksh assumes that intermediaries connecting nodes u and v, that are not directly 
connected, receive the value that would otherwise go to the end-points. The value is 
assigned entirely to the intermediary, while the conn assumes that nodes obtain value for 
other nodes to whom they have indirect, as well as direct, connections. In merging these 
two perspectives, we consider that a source node on a connecting path retains some 
fraction γ ≤ 1 of the value of the end-point of the path, while the remainder of the value, 
(1− γ ) , goes to the intermediaries. Thus, we allocate 100× γ% of the value, as the conn 
does, to the source of the connection and 100× (1− γ )% of the value, as the ksh does, to 
the intermediaries.

Finally, we extend the ksh to longer paths. We retain the Harmonic benefit allocation 
used in the ksh, so that the full value of an indirect link is retained in the network, but is 
allocated between intermediary and source nodes. In particular, any intermediary w on a 
length ℓ geodesic path between u and v, obtains the benefit

btriv = σv ,

bccv =
σv

(

dv
2

) ,

bconv =
∑

w

avw

(

pvw +
∑

u

pvupuw

)2

,

βw(ℓ,u, v) =

{

(1− γ ) δℓ−1bv
(ℓ−1)mℓuv

0 < mℓuv , ℓ ≤ dmax

0 otherwise ,

2  More exactly, given a network G(V,  E) defined over nodes {v1, . . . , vn} , and a permutation π of the labels 1, . . . n . If 
Gπ (Vπ , Eπ ) is the network such that (vπ(i) , vπ(j)) ∈ Eπ ⇔ (vi , vj) ∈ E . Then µ(G) = µ(Gπ ).
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where mℓuv is the number of geodesic paths of length ℓ between u and v and dmax is 
some maximum distance beyond which value is lost. (To consider all connecting paths, 
set dmax to the diameter of the graph; to reduce to the length-two path of the ksh, use 
dmax = 2 .) Note that, in this definition, the intermediary benefit is allocated equally to 
ℓ− 1 intermediaries along each path over all mℓuv paths. Also, we have retained the path 
distance discounting ( δℓ−1bv ) of the conn model, which was not applied in the original 
ksh model. To summarise, in the shc model, a node obtains value from the network

•	 by direct connections to other nodes;
•	 by being the source of a length ℓ geodesic path to another node;
•	 by being an intermediary on a length ℓ geodesic path to another node,

where 1 < ℓ ≤ dmax.
In the following, we write the utility of a node w in the graph, by considering these three 

types of benefit. Firstly, the value obtained by w due to the direct connections can be 
obtained by summing the nodal benefits bv over all nodes v that are directly connected to w:

Next, the value obtained by w due to being a source of a geodesic path of length ℓ is:

where swv is defined by the expression between brackets, which is arrived summing over 
all possible path lengths ℓ , the discounted benefit obtained by being connected to a node 
v at the end of such a length ℓ path.

Finally, the value obtained by w due to being an intermediary on a geodesic path of length 
ℓ is

where fℓuwv is the fraction of all length ℓ geodesic paths between u and v that contain w 
and hwv is defined as the expression above it in brackets, which is arrived at by consider-
ing all geodesic paths of length j from a node u to w, followed by all geodesic paths of 
length ℓ− j from w to v.

∑

v

awvbv .

�

v





dmax
�

ℓ=2

δℓ−1
1(mℓwv > 0)



bv ≡
�

v

swvbv ,

dmax
�

ℓ=2

�

v

�

u

βw(ℓ,u, v)

=

dmax
�

ℓ=2

�

v

�

u

ℓ
�

j=2

δℓ−1mjuwm(ℓ−j)wv

(ℓ− 1)mℓuv
bv

=
�

v





dmax
�

ℓ=2

δℓ−1

ℓ− 1

�

u

fℓuwv



bv

≡
�

v

hwvbv ,
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Now, if we define the matrices S = {swv} and H = {hwv} and the cost of connecting to a 
node v as cv and the vector of costs as c . Then the utility vector µ = {µw} for the shc can 
be written as:

where A is adjacency matrix. Note that we have represented the dependence of S and 
H on the parameters δ and dmax . Observe that 

∑

w swv =
∑

w hwv , confirming that the 
application of either matrix yields the same total value to the network, but the total value 
is distributed differently by each matrix. In particular, it follows that �S�1 = |H�1.

We note that scaling the value vector b by any multiple does not change the relative 
value of one node over another. However, if btri is used, then the benefit values are inte-

gers in the set {0, . . .
(

n− 1
2

)

} , but if bcc is used, then the values are rational numbers in 

the interval [0, 1]. It makes sense therefore to scale b to a single range of values. In the 
remainder of this paper, b is normalised so that, whenever b  = 0 , it contains the same 
total benefit as the symmetric conn model, where ∀v, bv = 1 . That is:

We can then scale the cost, to compare different cost/benefit tradeoffs without having to 
account for any scaling issues due to the choice of the nodal benefit function.

Discussion

While it is beyond the scope of this paper to explore in detail the efficient networks of 
the shc, in Fig. 2, we show some example efficient networks for n = 6 , for the case of a 
constant benefit bv = b

equal
v = 1 , corresponding to a symmetric conn model, and when 

bv = btri . It may be observed that, in the second case, efficient networks containing tri-
angles are found, as only nodes connected to triangles have a non-zero nodal benefit. 
This shows that the shc, with bv = btriv  yields a richer set of efficient networks than the 
symmetric conn and that they contain structures that are commonly observed in real 
social networks.

Structural hole centrality (shce)
Our primary interest in this paper is to use the shc game as a means of defining a struc-
tural hole centrality measure that can identify nodes in a social network with high social 
capital.

In the derivation of the shc, the γ parameter controls the allocation of value to nodes in 
the network. Different values of γ may be considered as different allocation functions, that 
distribute the total network value, which is determined by δ , dmax , bv and the cost c. This 
total network value is obtained as a sum over all the paths in the network of the path-length 
discounted benefits obtained from end-points of those paths. The question of a fair alloca-
tion of such network value has been addressed in works such as [24]. One approach is to 
identify desirable properties of the allocation function and determine an allocation that sat-
isfies those properties. Two desirable properties of a fair allocation are that it be component 

(3)µ =

(

A+ γ S(δ, dmax)+ (1− γ )H(δ, dmax)

)

b− Ac ,

bv ←

{

n bv
∑

u bu
provided maxu bu > 0

0 otherwise
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additive, that is, the value generated by any connected component in a network should be 
allocated among the nodes in that component; and that it satisfy equal bargaining power, 
that is, that if two nodes, u and v are connected, then the change in the value allocated to 
node u when the edge (u, v) is removed, should equal the change in the value allocated to 
node v. Equal bargaining power says that the pair of nodes each benefit or suffer equally 
from the addition of a link between them. These two properties hold if and only if nodes are 
allocated their so-called “Myerson value”, defined as:

where the sum is over all subsets W of the nodes in the network not containing u and 
G|W  means the network restricted only to those nodes in W. The Myerson allocation will 
often allocate high value to intermediate nodes, as they are crucial for the creation of 
value on paths that traverse them. However, it is not tractable to compute the Myerson 
value on real-world networks, since the sum is over 2n−1 possible subsets.

Instead, the shc game allows for the exploration of a range of different allocations, by 
modifying the value of γ and, when 0 < γ < 1 , all nodes along a path get allocated some 
proportion of the value that is generated by that path. In fact it is generally the case, that 
the Myerson value correlates strongly (in rank order) to the node utilities of the shc for 
some value of γ , typically when γ ≈ 0 . On the other hand, modifying γ allows an analyst 
to explore how different nodes benefit from different allocation strategies and this can give 
some insight into their position of influence in the network: when γ ≈ 1 , nodes that are 
connected along short paths to many other nodes can expect to benefit from a high payoff, 
while when γ ≈ 0 , nodes that are intermediaries on many short paths can expect a high 
payoff. Hence we define the structural hole centrality measure, shce, as the payoff of the shc 
game. To parameterise the cost, we stick with a fixed cost c for every link, and note that the 
total value in the network is zero when

Hence, we define shce as

µu(G) =
∑

W⊂V \{u}

(

|W |!(n− |W | − 1)!

n!

)

(µ(G|W∪{u})− µ(G|W )),

c1T A1 = 1
T (A+ S)b.

SHCE(δ, dmax,b, γ , η) =

(

A+ γ S + (1− γ )H

)

b− η

(

1
T (A+ S)b

1T A1

)

A1,

Table 1  shce centrality parameters

Parameter Description

bv Benefit associated with connecting to a node v, where that benefit captures the structural quality of 
v in the network

δ Indirect path benefit discount, such that a path of length ℓ ≥ 2 to a node v, accrues a benefit of 
δℓbv

dmax The maximum path length, such that there is no benefit to being connected along a path of greater 
length

γ Proportion of the indirect path benefit that is associated to the source of a path

η The scaled cost of a connection to a node
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where η ∈ [0, 1] , allows the exploration of costs ranging from a zero-cost model to a cost 
that reduces the value of the network to zero. The parameters of the shce are summa-
rised in Table 1.

Relationship to other centrality measures

In “Evaluation” section, we carry out a detailed comparison of the shce with a set of other 
commonly used centrality measures in network analysis. From the above presentation, it is 
clear that the shce is similar to closeness centrality (a measure of the average closeness of a 
node to other nodes in a network) when γ = 1 and is similar to edge-betweenness central-
ity (a measure of the extent to which a node is found on shortest paths in the network), 
when γ = 0 . Nevertheless, the shce is not identical to either measure. In fact the dmax and δ 
parameters allow for a restriction in the horizon over which a node’s distance to other nodes 
influences its shce value, while closeness and edge-betweenness consider the relationship to 
all nodes in the network. The γ parameter, then allows for a mixture of the betweenness and 
closeness perspectives. The difference in the measures is illustrated for the Minnesota road 
network, shown in Fig. 3, which has a diameter of 98. The settings of the shce focus value 
strongly on intermediate nodes, by taking γ = 0 , along with a maximum cost of η = 1.0 for 
edges. The plot shows the tied rank of the measures, where nodes with largest centrality 
value have rank n and nodes with smallest have rank 1. The Spearman rank correlation of 
shce with closeness and betweenness is not particularly strong for these settings. The shce 
also has similarities to the Katz centrality measure, which computes a node’s centrality in 

Fig. 3  shce, betweenness and closeness centrality on the Minnesota network
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relation to its discounted distance to other nodes in the network. However, the Katz allo-
cates its value solely to the source nodes on such paths and so cannot be used as a measure 
of bridging capital. We will show in our case-study in “Evaluation” section that computing 
a profile of shce centrality scores as γ is varied allows for some insight into the mix of values 
that actors get from the position in a social network and provides a single framework with 
which social capital can be assessed.

Comparison of shce with Myerson value

It is instructive to compare the shc allocation of value to that of the Myerson value in a sim-
ple network, with a constant benefit function. In Fig. 4a, we show a network consisting of a 
single 4-node undirected path. By counting all shortest paths in this network, we can find 
the total network value as

which may be observed by counting 3 direct connections (with cost η ), 2 paths of length 
2 and a single path of length 3, which occur with multiplicity 2, considering that edges 
are bidirectional. The Myerson value allocates the value of each path evenly among all 
the nodes along the path, since each node is equally responsible for bringing that value 
to the network. Hence, each node is allocated the value 2δ2/4 for its contribution to the 
length 3 path, the end-points receive a value of δ/3 for each of the two length-two paths 
that start or terminate at them and so on. We can arrive at the Myerson allocation as

On the other hand, the shce allocation depends on the value of γ and is given by

µ(G) = 2(3(1− η)+ 2δ + δ2),

µ
myerson(G) =









1− η + 2δ/3+ δ2/2

2(1− η)+ 4δ/3+ δ2/2

2(1− η)+ 4δ/3+ δ2/2

1− η + 2δ/3+ δ2/2









.

Fig. 4  Myerson and shce values on a simple path
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If a fifth node is added in order to produce a second length-three path connecting the 
end-points, as shown in Fig. 4b, c, then the Myerson will distribute the 2δ2 value of that 
path as shown in Fig. 4b, while the shce will do so as shown in Fig. 4c. Both methods give 
higher weight to node 3 than nodes 2 and 5, since the value remains in the network if 
either one of these is removed. However, the value that shce gives to the end-points of 
paths depends on the γ parameter.

For further comparison, we examine the relationship between the shce and the Myer-
son value on a random network of n = 13 nodes, using both the triangle nodal benefit 
( btriv  ) and constant nodal benefit ( bequalv  ) functions. Again, in Fig. 5, the colour indicates 
the rank of the node. In the case of the triangle benefit, value is concentrated on the 
nodes that form the single triangle in the network (nodes, 1, 4 and 13), for both meas-
ures. The Myerson gives higher values to peripheral nodes 7 and 8, since these nodes 
add to the value of the network by linking to nodes with non-zero benefit. With γ = 0.0 , 

µ
SHCE(G) =









1− η + γ δ + γ δ2

2(1− η)+ (2− γ )δ + (1− γ )δ2

2(1− η)+ (2− γ )δ + (1− γ )δ2

1− η + γ δ + γ δ2









.

Fig. 5  shce vs Myerson value
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the shce focuses more value on intermediary nodes such as 3 and 11 that straddle paths 
to the non-zero benefit nodes. The overall rank correlation of the shce and Myerson is 
0.34 in this case. When all nodes have the same benefit, high Myerson values attach to 
nodes 3 and 5 that add value to the network by forming the path that connects the nodes 
in the lower left corner to the rest. But, again Myerson credits the peripheral nodes 7, 8 
and 9 because they too add to the overall value in the network. The highest correlation 
(0.99) between these Myerson scores and the shce score occurs when we choose a value 
of γ = 0.5 , that allocates the value equally between source and intermediary nodes on 
connecting paths. From these examples, it is clear that there is no best value of the shce 
parameters, in the fairness sense from which the Myerson is derived. But it is also gener-
ally the case that some settings of the shce parameters can achieve centrality scores that 
correlate strongly with the Myerson. While adjusting γ cannot lead to a fair allocation 
in the sense of the Myerson value, it can allow insight to be derived into which nodes 
benefit, when the allocation of value favours bridging capital over bonding or vice versa. 
The shce relies on the analyst to determine an insightful allocation of the value in the 
network by adjusting its parameters, while the Myerson provides a single best allocation 
in some well-defined sense. We note however that work such as [24] argues that the fair-
ness criteria of the Myerson may not be appropriate, depending on the context in which 
the strategic game is analysed.

Evaluation
shce correlation with other centralities

The work of [11] is the most comprehensive recent study of network centrality meas-
ures. This work examines the correlations between 17 centrality measures across a large 
range of different graphs, drawn from different application domains. According to this 
work, the general observed trend for most networks is a “high and positive correlation” 
between centrality metrics, although there is also “considerable heterogeneity”. To obtain 
a good understanding of where the shce fits in relation to other metrics, it is worthwhile 
applying this same analysis to the shce.

Following the work of [11], we evaluate the proposed shce centrality measure using a 
subset of the CommunityFitNet corpus of networks [25] which, in total, contains 572 
real-world networks drawn from the Index of Complex Networks (ICON) [26]. The 
CommunityFitNet corpus includes a variety of network sizes and structures. Our analy-
sis assumes unweighted, simple, undirected networks. We only consider networks with 
a single connected component and also reject any other networks for which any of the 

Table 2  Networks from ICON

Domain Number Percent

Biological 117 39

Economic 12 4

Informational 17 6

Social 84 28

Technological 53 18

Transportation 16 5
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analysed centrality measures fails to compute.3 There remains 299 networks, on which 
our analysis is performed, which come from 6 different domains (see Table  2), with a 
range of nodes from 8 to 3155 (average 464) and a mean sparsity of 4.72%.

Following [11], we use Spearman’s ρ as the centrality measure correlation (CMC) 
between the shce measure and various other node centrality measures. This statistic 
is chosen in [11] on the basis that relationships between measures can be nonlinear, 
though they are generally always monotonic. The centrality measures that we compare 
against are listed and defined in Table 3. From their definitions, the connections to the 
shce are apparent. In particular, shce relies on values measured along shortest paths, sim-
ilarly to the cc, hc, bc and kc. Like the cc and hc , path contributions are inversely 
proportional to their lengths. Like the kc, the contribution of a path decays according to 
a benefit factor δ < 1 , such that a path’s contribution is proportional to δℓ , where ℓ is the 
path length. Nevertheless, the γ , δ and η parameters allow control over the shce, so that 
preference can be given to a node’s bonding or bridging capabilities.

It is interesting to note the similarities between the shce and the Katz measure, kc . 
Differently to many other centrality measures (such as cc and hc , where only the length 
of the path is important), both kc and shce accumulate a contribution along all shortest 
paths between pairs of nodes, in proportion to δℓ . However, for the Katz measure, this 
contribution is associated with the source of the path, while in the shce, we can use γ to 
control whether the contribution is assigned to the source, or among the intermediary 
nodes on the path.

Considering the parameters of the shce, we note that δ , dmax , η and bv relate to how 
the network is valued—the extent to which value is placed on indirect paths, and how 
the end-points of these paths are relatively valued. The parameter γ relates to how 
that value is allocated to the nodes in the network. Generally, actors bring value to 
the network through the paths that they occupy and that value is allocated to them 
proportionately, as determined by γ . The parameter η controls the value of direct con-
nections, the more costly they are, the more value needs to attain through the indirect 
connections that they help form. dmax and δ together determine the distance horizon 
over which an actor can attain some value for others in the network. In the following 

Table 3  Node centrality measures

Note that ℓwv is shortest path distance between w and v, δ is the benefit of a direct link, such that a connection along a 
length ℓ path gets benefit δℓ , ev is the eigenvector of A corresponding to the dominant eigenvalue �1 ; mℓuv , pwv and fℓuwv are 
as defined in “A bonding and bridging strategic game” section

Measure Symbol Formula

Shortest-path betweenness centrality bc cw =
∑

u�=v �=w

∑

ℓ �(mℓuv > 0)fℓuwv

Shortest-path closeness centrality cc cw = n−1
∑

v ℓwv

Eigenvector centrality ec cw = 1

�1

∑

v awvev

Katz centrality kc cw =
∑

v

(

(I− δAT )−1 − I
)

wv

Degree centrality dc cw =
∑

v awv

Harmonic centrality hc cw = 1

n−1

∑

v
1

ℓwv

Constraint centrality conc cw =
∑

v awv(pwv +
∑

u pwupuv)
2

3  Betweenness centrality (scikit-learn) failed to compute for some networks.
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analysis, we fix dmax = 10 , which for most of the involved networks exceeds or is close 
to their diameter and set δ = 0.9.

In Figs. 6 and 7, we show boxplots of the correlations of the shce with the centrali-
ties defined in Table  3 when η = 0.0 and η = 0.5 , respectively, and a constant nodal 
benefit function is used. Figures 8 and 9 contain the analogous boxplots for the case 
of the triangle benefit function. We can observe the effect of varying the γ parameter 
to distribute the network value in different ways. When γ = 0.0 , the value from indi-
rect links is placed fully on the intermediaries, the shce correlates most strongly with 
the betweenness centrality bc and this correlation weakens as γ is raised to 1.0. At the 
same time, we see a strengthening of the correlation to the cc, bc and hc that value 
short connections from source nodes to other nodes in the network. Generally, when 
η = 0.0 and there is no cost associated with direct link formation, so that high degree 
nodes are not penalised, we see that the shce is consistently negatively correlated with 
the conc, which values dense neighbourhoods. On the other hand, when a cost for 
link formation is introduced (Figs. 7 and 9), then the shce exhibits increasing positive 
correlation with conc as value is focused away from intermediaries. We can see that 
the shce becomes less well-correlated with standard centrality measures as a mixture 
of benefits (Figs. 7b and 9b) is valued. We also see less strong correlations with the 
standard centrality measures when the triangle benefit function is used. It should be 
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Fig. 6  CMC measures for 299 networks from CommunityFitNet corpus, for different values of γ and δ , with 
δ = 0.9 , η = 0.0 , bv = b

equal
v
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noted that, particularly, for some of the smaller networks in the dataset, these can be 
a high fraction of nodes that are not incident on any triangles, reducing the benefit of 
connecting to them to zero.

Similar to correlation analysis between centrality measures in [11], in Fig.  10, we 
examine the similarity of shce with other centrality measures. Different combinations 
of γ , η , and δ were used to measure shce values using both constant and triangle-based 
nodal benefits. The Spearman’s ρ correlation plots show that most of the pairs of cen-
trality measures have medium-to-high positive correlation (with the exception of 
conc) with each other when compared using mean between-network CMC (the mean 
CMC for each pair of centrality measures across 299 networks) values. Similar to the 
boxplots, in these plots, for both constant and triangle-based benefits, the conc is 
negatively correlated with other measures as it values for zero values of γ and η at 
δ = 0.9.

In addition to correlation between shce and other centrality measures, we also 
examined the association between network properties and the CMC for different net-
works. We used following six out of the eight global network properties used for the 
similar analysis in [11]: assortivity, connection density, clustering, global efficiency, 
majorization gap, and spectral gap. In particular, objective of this analysis to examine 
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Fig. 7  CMC measures for 299 networks from CommunityFitNet corpus, for different values of γ and δ , with 
δ = 0.9 , η = 0.5 , bv = b
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how the shce relates to the network topology as well as how it is compared relative 
to other centrality measures. Before results of this analysis are discussed, we briefly 
remind ourselves the definitions of network topological properties that were used in 
the analysis. Assortivity measures node’s preferences to connect with other nodes 
with similar degree. Clustering is the number of closed triangles in the network. The 
efficiency measure defined by [27] is the inverse of path connecting two nodes in the 
network and at global scale global efficiency is the average of efficiency for all the 
nodes in the network [28]. The majorization gap is the difference between empirical 
network and idealised threshold network [29]. It is calculated as difference in network 
degree sequence and its corrected conjugate sequence. Networks with high majoriza-
tion gap will be distant from a threshold network and have lower CMCs [11]. Finally, 
the spectral gap is the difference between moduli of two largest eigenvalues of the 
adjacency matrix. It quantifies the extent to which a network being sparse and well 
connected at the same time [11].

Figure  11 shows the association between the network measures and the mean 
within network CMC including the shce with γ = 0.5 , δ = 0.5 , η = 0.5 calculated for 
both, the triangle nodal benefit ( btriv  ) and the constant nodal benefit ( bequalv  ) functions, 
shown in Fig. 11a and 11b, respectively. The lower triangle in each subplot indicates 
the Spearman correlation between CMC and the network property. The upper triangle 
indicates if this correlation was significant (grey) or not (while). Through our analysis 
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Fig. 8  CMC measures for 299 networks from CommunityFitNet corpus, for different values of γ and δ , with 
δ = 0.9 , η = 0.5 , bv = btriv



Page 22 of 27Ghaffar and Hurley ﻿Comput Soc Netw             (2020) 7:5 

bc cc ec kc dc hc conc

-1

-0.5

0

0.5

1

bc cc ec kc dc hc conc
-1

-0.5

0

0.5

1

bc cc ec kc dc hc conc
-1

-0.5

0

0.5

1

bc cc ec kc dc hc conc

-1

-0.5

0

0.5

1

a γ = 0.0 b γ = 0.5

c γ = 0.7 d γ= 1.0
Fig. 9  CMC measures for 299 networks from CommunityFitNet corpus, for different values of γ and δ , with 
δ = 0.9 , η = 0.5 , bv = btriv
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Fig. 10  Mean of between network  CMCs standard centralities correlation with shce for different values of γ 
and η , with δ = 0.9 , dmax = 10
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with various combinations of parameters, we observed that shce consistently is signif-
icantly correlated with path-based network measures and negatively correlated with 
assortivity across various values of γ.

Overall, it may be concluded that the shce behaves in an expected manner and aligns 
with other centrality measures to a greater or lesser extent, depending on the setting of 
its parameters. However, a single measure that allows control over a node’s bonding and 
bridging capabilities can be useful. For instance, an analysis of a node’s rank vs γ , can 
allow an analyst to better understand how the actor’s social status is composed. A low 
rank will indicate low status, in any case, but a rank which diminishes with γ suggests 
that status is being maintained mainly through bonding relationships, suggesting a route 
to increasing social capital would focus on enhancing its role as a bridges.

Fig. 11  Correlation between network topology and CMCs with shce for values of γ = 0.5 , η = 0.5 , δ = 0.9 , 
and dmax = 10
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The Norwegian boards social network

We illustrate an application of the shce in the analysis of the social network of Norwe-
gian boards of directors introduced in [30]. This set of networks were originally used 
to analyse the social capital of women directors in Norway. We take the May 2011 one-
mode dataset in which actors correspond to board members and a link between a pair 
of actors exists in the network if they are members of a common board. We extract the 
largest connected component of this network, which consists of 784 nodes and 2522 
edges. For each actor in the network, we compute the shce value with dmax = 10 , δ = 0.9 , 
η = 0.5 , bv = b

equal
v  and a range of γ values from 0 to 1. Thus, we allow long paths up to 

10 connections to impact on the shce and discount according to path length relatively 
slowly. We examine the different shce profiles that result, where a profile of each actor 
is a graph of an actor’s shce centrality vs γ . We focus on how the profile can allow broad 
categories of actor to be identified. In particular, we examine at what value of γ an actor 
achieve their highest shce value. A large majority of actors (83%) achieve their maximum 
shce value at γ = 1 , indicating that it is primarily through their bonding (over direct and 
indirect paths) to other actors that their social status is achieved. Only two actors, who 
are both female, achieve them maximum shce score at γ = 0 , indicating indicating that 
it is primarily through their bridging capabilities that their social status in the network is 
achieved. Just 6 out of 784, have a balanced profile, in which their greatest shce value is 
achieved at γ = 0.5 . Four out of six of these ‘balanced’ profiles are female. Examples of 
the three different profile types, are illustrated in Fig. 12, where ego-networks, extend-
ing to depth two from the ego are displayed alongside the shce profile. We can observe 
in these examples, how actor 646, whose profile shce increases with γ is bound in a 
tightly knit community, while actor 273 bridges along many paths between friends-of-
a-friend; the balanced profile actor 751 is also a good bridge, while having many direct 
connections in well-connected neighbours. As another indication that female actors are 
somewhat more inclined to act as bridges in the social network, the actors are ordered 
according to the value of γ at which their shce profile peaks, so that actors whose shce 
profile peaks at γ = 0 are ordered first and those whose profile peaks at γ = 1 are last in 
the ordering. Focusing only on the 17% of actors whose peak is before γ = 1 , in Fig. 13, 
we plot the cumulative proportion of females and males in that ordering. We see that 
females are over-represented among the low values of γ , indicating a greater tendency 
for female actors to get more value from the network, when that value is allocated to 
bridges.

The purpose of this example is to illustrate the potential of the shce to shed light on 
issues of social capital in social networks. We do not offer definitive conclusions and 
refer readers to [30] for a deep sociological analysis of these networks. However, we do 
contend that the shce can yield deeper insights, in comparison to the betweenness cen-
trality measure that was exploited in the original study.

Conclusion
This paper has extended the state-of-the-art on strategic network formation by propos-
ing a new utility with associated formation game, that generalises and combines the pre-
viously proposed conn and ksh network formation games. While we have shown some 
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examples of efficient networks that emerge from this game, the main focus of this paper 
has been on a new centrality measure, that is defined as a fixed point of the linear system 
that spreads the benefit associated with each node in the network, among those nodes 
that connect to it along geodesic paths. The new centrality measure has the advantage 
of the Katz measure in that it depends on the connecting paths, rather than simply on 
path-lengths. But, more particularly, it is parameterised in a way that allows the analyst 
to control the way nodes are valued according to their bonding and bridging capabilities. 
We have benchmarked the new measure against a number of other common centrality 
measured and showed its application on some example networks. In future work, we 

Fig. 12  shce profiles and the corresponding ego-networks of three actors from the Norwegian boards social 
network
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will provide a more detailed analysis of the bonding and bridging game and identify the 
structures that emerge as stable networks from this game.
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