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Introduction
Abuse of prescription drugs and of illicit drugs has been declared a “national emer-
gency” [1]. This crisis includes the misuse and abuse of cannabinoids, opioids, tran-
quilizers, stimulants, inhalants, and other types of psychoactive drugs, which statistical 
analysis documents as a rising trend in the United States. The most recent reports from 
the National Survey on Drug Use and Health (NSDUH) [2] estimate that 10.6% of the 
total population of people ages 12 years and older (i.e., about 28.6 million people) mis-
used illicit drugs in 2016, which represents an increase of 0.5% since 2015 [3]. According 
to the Centers for Disease Control and Prevention (CDC), opioid drugs were involved in 
42,249 known deaths in 2016 nationwide [4]. In addition, the number of heroin-involved 
deaths has been increasing sharply for 5 years, and surpassed the number of firearm 
homicides in 2015 [5].

In April 2017, the Department of Health and Human Services announced their “Opi-
oid Strategy” to battle the country’s drug-abuse crisis [1]. In the Opioid Strategy, one 
of the major aims is to strengthen public health data collection, to inform a timeliness 

Abstract 

Drug abuse continues to accelerate towards becoming the most severe public health 
problem in the United States. The ability to detect drug-abuse risk behavior at a popu-
lation scale, such as among the population of Twitter users, can help us to monitor the 
trend of drug-abuse incidents. Unfortunately, traditional methods do not effectively 
detect drug-abuse risk behavior, given tweets. This is because: (1) tweets usually are 
noisy and sparse and (2) the availability of labeled data is limited. To address these 
challenging problems, we propose a deep self-taught learning system to detect and 
monitor drug-abuse risk behaviors in the Twitter sphere, by leveraging a large amount 
of unlabeled data. Our models automatically augment annotated data: (i) to improve 
the classification performance and (ii) to capture the evolving picture of drug abuse 
on online social media. Our extensive experiments have been conducted on three mil-
lion drug-abuse-related tweets with geo-location information. Results show that our 
approach is highly effective in detecting drug-abuse risk behaviors.

Keywords:  Deep learning, Self-taught learning, Drug abuse, Twitter

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Hu et al. Comput Soc Netw            (2019) 6:10  
https://doi.org/10.1186/s40649-019-0071-4

*Correspondence:   
phan@njit.edu 
1 New Jersey Institute 
of Technology, University 
Heights, Newark 07102, USA
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-2555-9236
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40649-019-0071-4&domain=pdf


Page 2 of 19Hu et al. Comput Soc Netw            (2019) 6:10 

public health response, as the epidemic evolves. Given its 100 million daily active users 
and 500 million daily tweets [6] (messages posted by Twitter users), Twitter has been 
used as a sufficient and reliable data source for many detection tasks, including epide-
miology [7] and public health [8–13], at the population scale, in a real-time manner. 
Motivated by these facts and the urgent needs, our goal in this paper is to develop a 
large-scale computational system to detect drug-abuse risk behaviors via Twitter sphere.

Several studies [10, 13–17] have explored the detection of prescription drug abuse on 
Twitter. However, the current state-of-the-art approaches and systems are limited in 
terms of scales and accuracy. They typically applied keyword-based approaches to col-
lect tweets explicitly mentioning specific drug names, such as Adderall, Oxycodone, 
Quetiapine, Metformin, Cocaine, marijuana, weed, meth, tranquilizer, etc. [10, 13, 15, 
17]. However, that may not reflect the actual distribution of drug-abuse risk behaviors 
on online social media, since: (1) the expressions of drug-abuse risk behaviors are often 
vague, in comparison with common topics, i.e., a lot of slang is used and (2) relying on 
only keyword-based approaches is susceptible to lexical ambiguity in natural language 
[12]. In addition, the drug-abuse risk behavior Twitter data are very imbalanced, i.e., 
dominated by non-drug-abuse risk behavior tweets, such as drug-related news, social 
discussions, reports, advertisements, etc. The limited availability of annotated tweets 
makes it even more challenging to distinguish drug-abuse risk behaviors from drug-
related tweets. However, existing approaches [10, 13, 15, 17] have not been designed to 
address these challenging issues for drug-abuse risk behavior detection on online social 
media.

Contributions: To address these challenges, our main contributions are to propose: (1) 
a large-scale drug-abuse risk behavior tweets collection mechanism based on super-
vised machine-learning and data crowd-sourcing techniques and (2) a deep self-taught 
learning algorithm for drug-abuse risk behavior detection. Based on our previous work 
[18], we extended the analysis of the classification results from our three million tweets 
dataset with the analysis of word frequency, hashtag frequency, drug name-behavior co-
occurrence, temporal distribution (time-of-day), and state-level spatial distribution.

We first collect tweets through a filter, in which a variety of drug names, colloquial-
isms and slang terms, and abuse-indicating terms (e.g., overdose, addiction, high, abuse, 
and even death) are combined together. We manually annotate a small number of tweets 
as seed tweets, which are used to train machine-learning classifiers. Then, the classifiers 
are applied to large number of unlabeled tweets to produce machine-labeled tweets. The 
machine-labeled tweets are verified again by humans on Mechanical Turk, i.e., a crowd-
sourcing platform, with good accuracy but at a much lower cost. The new labeled tweets 
and the seed tweets are combined to form a sufficient and reliable labeled dataset for 
drug-abuse risk behavior detection by applying deep learning models, i.e., convolution 
neural networks (CNN) [19], long–short-term memory (LSTM) models [20], etc.

However, there are still a large amount of unlabeled data, which can be leveraged to 
significantly improve our models in terms of classification accuracy. Therefore, we fur-
ther propose a self-taught learning algorithm, in which the training data of our deep self-
taught learning models will be recursively augmented with a set of new machine-labeled 
tweets. These machine-labeled tweets are generated by applying the previously trained 
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deep learning models to a random sample of a huge number of unlabeled tweets, i.e., 
the three million tweets in our dataset. Note that the set of new machine-labeled tweets 
possibly has a different distribution from the original training and test datasets.

After the model is trained, we apply it to our geo-location-tagged dataset to acquire 
classification results for analysis. Results from the aforementioned analysis show that the 
drug-abuse risk behavior-positive tweets have distinctive patterns of words, hashtags, 
drug name-behavior co-occurrence, time-of-day distribution, and spatial distribution, 
compared with other tweets. These results show that our approach is highly effective in 
detecting drug-abuse risk behaviors.

The rest of this paper is organized as follows. We review related work in the next section. 
Then, we describe the implementation of our method in detail, followed by experiment 
results and data analysis. Finally, we conclude this paper and propose future directions.

Background and related work
On one hand, the traditional studies and organizations, such as NSDUH [2], CDC [4], 
Monitoring the Future [21], the Drug-Abuse Warning Network (DAWN) [22], and the 
MedWatch program [23] are trustworthy sources for getting the general picture of the 
drug-abuse epidemic. On the other hand, many studies that are based on modern online 
social media, such as Twitter, have shown promising results in drug-abuse detection 
and related topics [7–17]. Many of the existing studies were focusing on the quantitative 
analysis utilizing data from online social media. Meng et  al. [24] used traditional text 
and sentiment analysis methods to investigate substance use patterns and underage use 
of substance, and the association between demographic data and these patterns. Ding 
et  al. [25] investigated the correlation between substance (tobacco, alcohol, and drug) 
use disorders and words in Facebook users’ “Status Updates” and “Likes”. Their results 
showing word patterns are different between users who have substance us disorder and 
users who do not have. Hanson et al. [15] conducted a quantitative analysis on 213,633 
tweets discussing “Adderall”, a prescription stimulant commonly abused among college 
students, and also published another study [14] focused on how possible drug-abuser 
interact with and influence others in online social circles. The results showed that strong 
correlation could be found: (1) between the amount of interaction about prescription 
drugs and a level of abusiveness shown by the network and (2) between the types of 
drugs mentioned by the index user and his or her network. Shutler et al. [17] performed 
a qualitative analysis of six prescription opioids, i.e., Percocet, Percs, OxyContin, Oxys, 
Vicodin, and Hydros. Tweets were collected with exact word matching and manual clas-
sification. Their primary goal was to identify the key terms used in tweets that likely 
indicate drug abuse. They found that the use of Oxys, Percs, and OxyContin was com-
mon among the tweets, where there were positive indications of abuse. McNaughton 
et al. [16] measured online endorsement of prescription opioid abuse by developing an 
integrative metric through the lens of Internet communities. Simpson et al. [26] demon-
strated an attempt to identify emerging drug terms using NLP techniques. Furthermore, 
Twitter and social media have been shown to be reliable sources in analyzing drug abuse 
and public health-related topics, such as cigarette smoking [8, 12], alcohol use [11], and 
even cardiac arrest [9]. However, these studies generally did not propose methods that 
apply to large-scale automated monitoring tasks.
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Our previous work [27] showed the potential of applying machine-learning models 
in a drug-abuse monitoring system to detect drug-abuse-related tweets. Several other 
approaches also utilized machine-learning methods in detecting and analyzing drug-
related posts on Twitter. For instance, Coloma et  al. [28] illustrated the potential of 
social media in drug safety surveillance with two case study multiple online social media 
platforms. Sarker et  al. [13] proposed a supervised classification model, in which dif-
ferent features such as n-grams, abuse-indicating terms, slang terms, synonyms, etc., 
were extracted from manually annotated tweets. Then, these features were used to 
train traditional machine-learning models to classify drug-abuse tweets and non-abuse 
tweets. Recently, many works, including one of our works [29], explored the use of more 
advanced deep learning models for drug-related classification tasks on online social 
media. Following our work, Kong et al. [30] proposed deep learning model that utilizes 
geographical prior information as input features. Chary et al. [10] discussed how to use 
AI models to extract content useful for purposes of toxicovigilance from social media, 
such as Facebook, Twitter, and Google+. Weissenbacher et al. [31] proposed deep neu-
ral network based model to detect drug name mentions in tweets. Mahata et  al. [32] 
proposed an ensemble CNN model to classify tweets from three classes, i.e., personal 
medication intakes, possible personal medication intake, and non-intake. Works have 
also been done in perspectives other than content-based analysis and classification. 
Zhang et  al. [33] proposed a complex schema, which models all possible interactions 
between users and posts, for automatic detection of drug abusers on Twitter. Li et  al. 
[34] evaluated deep learning models against traditional machine-learning models on the 
task of detecting illicit drug dealers on Instagram.

Although existing studies have shown promising approaches towards the detecting of 
drug-related posts and information on popular online social media platforms, such as 
Twitter and Instagram, their limitations can be identified as: (1) limited in scale, as the 
methods proposed in many studies do not scale well, or rely on larger manually anno-
tated training dataset for higher performance; (2) limited in scope, as most studies focus 
on a small group of drugs; and (3) limited in performance, as many methods use tra-
ditional machine-learning models. In this paper, we propose a novel deep self-taught 
learning system to leverage a huge number of unlabeled tweets. Self-taught learning [35] 
is a method that integrated the concepts of semi-supervised and multi-task learning, in 
which the model can exploit examples that are unlabeled and possibly come from a dis-
tribution different from the target distribution. It has already been shown that deep neu-
ral networks can take advantage of unsupervised learning and unlabeled examples [36, 
37]. Different from other approaches mainly designed for image processing and object 
detection [38–41], our deep self-learning model shows the ability to detect drug-abuse 
risk behavior given noisy and sparse Twitter data with a limited availability of annotated 
tweets.

Deep self‑taught learning system for drug‑abuse risk behavior detection
In this section, we present the definition of the drug-abuse risk behavior detection prob-
lem, our system for collecting tweets, labeling tweets, and our deep self-taught learning 
approach. The system overview is shown in Fig. 1.
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Problem definition

We use the term “drug-abuse risk behavior” in the wider sense, including misuse and 
use of Schedule 1 drugs that are illegal; and misuse of Schedule 2 drugs, e.g., Oxycodone, 
which includes the use thereof for non-medical purposes, and the symptoms and side-
effects of misuse. Our task is to develop classification models that can classify a given 
unlabeled tweet into one of the two classes: a drug-abuse risk behavior tweet (positive) 
or a non-drug-abuse risk behavior (negative) tweet. The main criteria for classifying a 
tweet as drug-abuse risk can be condensed into: “The existence of abusive activities or 
endorsements of drugs.” Meanwhile, news, reports, and opinions about drug abuse are 
the signals of tweets that are not considered as containing abuse risk.

Collecting and labeling tweets

In our crawling system, raw tweets are collected through Twitter APIs. For the collec-
tion of focused Twitter data, we use a list of the names of illegal and prescription drugs 
[42] that have been commonly abused over time, e.g., Barbiturates, OxyContin, Ritalin, 
Cocaine, LSD, Opiates, Heroin, Codeine, Fentanyl, etc. However, the data are very noisy, 
since: (1) there is no indication of how to distinguish between drug abuse and legiti-
mate use (of prescription drugs) in collected Tweets and (2) many of slang terms are 
used in expressing drug-abuse risk behavior. To address this problem, we added slang 
terms for drugs and abuse-indicating terms, e.g., “high,” “stoned,” “blunt,” “addicted,” 
etc., into our keyword search library. These slang terms are clearly expressing that the 
tweets in question were about drug abuse. As a result, most of the collected data are 
drug abuse-related.

To obtain trustworthy annotated data, we design two integrative steps in labeling 
tweets. In the first step, 1,794 tweets randomly chosen from collected tweets were man-
ually annotated as positive or negative by three team members who have experience in 
health informatics. Several instances of positive tweets and negative tweets are illus-
trated in Table 1. These labeled tweets are considered seed tweets, which then are used 

Fig. 1  Drug-abuse detection system. There are 4 steps as follows: (1) Tweets will be collected through Twitter 
APIs. (2) Pre-processed tweets will be labeled by humans, AI techniques, and crowd-sourcing techniques. (3) 
Labeled tweets will be used to augment the training data of our AI models and data analysis tasks to identify 
tweets with drug-abuse risk behaviors, through a self-taught algorithm. In addition, (4) trained systems will 
be used in different drug-abuse monitoring services and interactive user interfaces
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to train traditional binary classifiers, e.g., SVM, Naive Bayes, etc., to predict whether a 
tweet is a drug-abuse risk behavior tweet or not. The trained classifiers are applied to 
unlabeled tweets to predict their labels, which are called machine labels. In the second 
step, 5000 positive machine-labeled tweets with high classification confidence are veri-
fied again on Amazon Mechanical Turk (AMT), which is a well-known crowd-sourcing 
platform. To improve the trustworthiness and to avoid bias in the annotated data, each 
tweet is labeled by three individual workers. The workers are instructed to follow with 
the same annotation instructions that our annotators have followed. Our annotators also 
labeled a random sample of 1000 tweets and compare the labels with the results from 
AMT, as a quality check.

Tweet vectorization

Raw tweets need to be first pre-processed, then represented as vectors, before they can 
be used in training machine-learning models. In this study, we choose a commonly used 
pre-processing pipeline, followed by three different vectorization methods. The pre-pro-
cessing pipeline consists of following steps:

•	 The tweets are tokenized and lower cased. The special entities, i.e., including Emojis, 
URLs, mentions, and hashtags, are removed or replaced with special keywords. The 
non-word characters, i.e., including HTML symbols, punctuation marks, and foreign 
characters, are removed. Words with three or more repeating characters are reduced 
to at most three successive characters.

•	 Stop words are removed according to a custom stop-word list. Stemming is applied 
using the standard Porter Stemmer.

After the pre-processing steps, common vectorization methods are used to extract 
features from tweets, including: (1) term frequency, denoted as tf, (2) Tf-idf, and (3) 
Word2vec [43]. Word2vec is an advanced and effective word embedding method that 
converts each word into a dense vector of fixed length. We considered two differ-
ent word2vec models: (i) a custom word2vec model, which was trained on our three 
million drug-abuse-related tweets. The model contains 300-dimensional vectors 
for 1,130,962 words and phrases and (ii) Google word2vec, which is a well-known 

Table 1  Instances of manually annotated positive tweets and negative tweets

Tweets

Positive “Ever since my Acid trips like whenever I get super high I just start—lightly hallucinating and it’s tbh 
creepy”

“drove like 10 miles on these icy ass roads all to get some weed if imma—be locked up in my house 
for awhile imma need some weed”

“Smoking a blunt at home so much better than going to the woods in—Brooksville and puking on 
yourself Bc you drank too much reball”

Negative “Just watched Fear and Loathing in Las Vegas for the first time—and I think I should have been on acid 
to fully understand it”

“today I was asked if I do heroin because I went to Lancaster????”

“Morgan told me my Bitmoji looks like a heroin addict?”



Page 7 of 19Hu et al. Comput Soc Netw            (2019) 6:10 

pre-trained word2vec model built from part of a Google News dataset with about 
100 billion words, and the model contains 300-dimensional vectors for three million 
words and phrases.

Deep self‑taught learning approach

By applying both traditional and advanced machine-learning models, such as SVM, 
Naive Bayes, CNN, and LSTM to the small and static annotated data, i.e., 6794 
tweets, we can achieve reasonable classification accuracies of nearly 80%, as indi-
cated in Fig. 3 when the number of iteration k is zero, which is equivalent to apply-
ing models without the proposed self-taught method. However, to develop a scalable 
and trustworthy drug-abuse risk behavior detection model, we need to: (1) improve 
classification models to achieve higher accuracy and performance and (2) leverage 
the large number of unlabeled tweets, i.e., three million tweets related to drug abuse, 
to improve the system performance. Therefore, we propose a deep self-taught learn-
ing model by repeatedly augmenting the training data with machine-labeled tweets. 
The pseudo-code of our algorithm is as follows: 

Step 1:	� Randomly initialize labeled data D consisting of 5794 annotated tweets as the 
training set. Initialize a test data T consisting of the remaining 1000 annotated 
tweets.

Step 2:	� Train a binary classification model M using the labeled data D. M could be a 
CNN model or an LSTM model.

Step 3:	� Use the model M to label the unlabeled data U, which simply consists of three 
million unlabeled tweets. The set of new labeled tweets is denoted as D , which 
is also called machine-labeled data.

Step 4:	� Sample tweets from the machine-labeled data D with a high classification con-
fidence, and then add the sampled tweets D+ into the labeled data D to form a 
new training dataset: D = D

⋃
D+ . A tweet is considered to have a high clas-

sification confidence if it has a classification probability p ∈ [0, 1] higher than a 
predefined sampling threshold δ . Sampled machine-labeled tweets will not be 
sampled again: U = U − D+.

Step 5:	� Repeat Steps 2–4 for k iterations, where k is a user-predefined number. Return 
the trained model M.

With the self-taught learning method, the training data contain the annotated 
data D, which is automatically augmented with highly confident, machine-labeled 
tweets, in each iteration. This approach has the potential of increasing the classi-
fication performance of our model over time. In addition, the unlabeled data can 
be collected from the Twitter APIs in real time, to capture the evolving of English 
(slang) terms about drug-abuse risk behaviors. In the literature, data augmentation 
approaches have been applied to improve the accuracy of deep learning models [36]. 
However, the existing approaches [36, 39–41] are quite different from our proposed 
model, since they focused on image classification tasks, instead of drug-abuse risk 
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behavior detection as in our study. Note that, to ensure fairness, test data T are sepa-
rated from other data sources during the training process.

Experimental results
To examine the effectiveness and efficiency of our proposed deep self-taught learn-
ing approaches, we have carried out a series of experiments using a set of three mil-
lion drug-abuse-related tweets collected in the past 4 years. We first elaborate details 
about our dataset, baseline approaches, measures, and model configurations. Then, 
we introduce our experimental results.

Experiment settings

Dataset

The seed dataset contains 1794 tweets that were manually labeled by three annotators, 
including 280 positive tweets and 1514 negative tweets. The agreement score among 
three annotators is 0.414, measured by Krippendoff ’s Alpha. We then selected 5000 
tweets labeled by the machine-learning model (i.e., SVM) with a high confidence level 
( δ > 0.7 ), and rendered them verified on AMT. The AMT workers have the agreement 
score of 0.456, measured by Krippendoff ’s Alpha. Note that both agreement scores 
should be considered as reliable result in out study settings [44], since: (1) our task is 
to reduce variability in data annotation, instead of typical content analysis [45] and 
(2) the Krippendoff ’s Alpha is sensitive to data imbalance and sparseness, which are 
the characteristics of our dataset. Our integrative labeling approach resulted in a reli-
able and well-balanced annotated dataset, with 6794 labeled tweets, including 3102 
positive labels and 3677 negative labels. For the unlabeled data, we have the three 
million drug-abuse-related tweets with geo-location information covering the entire 
continental US (lower 48 states and D.C.).

Baseline methods

In our experiments, Random Forest (RF), Naive Bayes (NB), and SVM are employed as 
baseline approaches for the binary classification task, i.e., to classify whether a tweet 
is a drug-abuse risk behavior tweet or not. Table  2 shows the parameter settings of 
baseline approaches and the proposed models. Note that for the Naive Bayes method, 
we use Gaussian Naive Bayes with word2vec embedding. Meanwhile, we use term fre-
quency (i.e., tf) and tf-idf vectorization for Multinominal Naive Bayes. This is because: 
(1) the vectors generated by term frequency-based vectorization has a very high num-
ber of dimensions and could be only represented by sparse matrix, which was not 
supported by the chosen implementation of Gaussian Naive Bayes and (2) the multi-
nominal Naive Bayes require non-negative inputs, but vectors generated by word2vec 
embedding have negative values. Regarding our self-taught CNN (st-CNN) and self-
taught LSTM (st-LSTM) models, the Adam optimizer algorithm with default learn-
ing rate is used for training. The number of iterations k is set to 6, and the sampling 
threshold δ is set to 0.7, for all methods. All the experiments have been conducted on 
a single GPU, i.e., NVIDIA TITAN Xp with 12 GB memory and 3072 CUDA cores.
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Measures

Accuracy, recall, and F1-value are used to validate the effectiveness of the proposed 
and baseline approaches. Due to the small size and the imbalanced label distribution, 
we adopted the Monte Carlo cross-validation technique. In each run, a fixed number 
of data instances are sampled (i.e., without replacement) as the test dataset, and the 
rest of the data as the training dataset. Multiple runs (i.e., 3 times) are generated for 
each model in each set of parameters and experimental configurations. We report the 
average of these runs as result. Definitions of the accuracy, recall, and F1-value are 
given as follows, where TP,TN ,FP,FN  are the number of true positives, true negatives, 
false positives, and false negatives, correspondingly.

Experiment questions

Our task of validation concerns three key issues: (1) which parameter configurations are 
optimal for the baseline models on the seed dataset, i.e., SVM, RF, and NB? (2) which 
self-taught learning model is the best in terms of accuracy, recall, and F1-value, given the 
6794 annotated tweets and the three million unlabeled tweets? and (3) which vectoriza-
tion setting is more effective? To address these concerns, our series of experiments are 
as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
; Recall =

TP

TP + FN
; F1-value =

2TP

2TP + FP + FN

Table 2  Parameter settings for all models

Baseline model Parameter setting

SVM C = 5.0, gamma = 0.01, kernel:rbf

Random Forest N_estimators = 500, class_weight = balanced, max_depth = 20

Naive Bayes (Gaussian) Default

Naive Bayes (multinominal) Default

Proposed model Layers Parameter setting

Self-taught CNN (st-CNN) Embedding Size: 300, max_length: 20

Dropout Dropout_rate: 0.2

Convolutional Kernel_sizes: [2,3,4], number_kernels: 20 activa-
tion_function: Relu, strides: 1

Max pooling Pool_size: 2

Flatten No parameter

Concatenate No parameter

Dropout Dropout_rate: 0.5

Two dense layers Dense_layer_1: size: 520 × 500; dense_layer_2: 
size: 500 × 2

Self-taught LSTM (st-LSTM) Embedding Size: 300, max_length: 20

Dropout Dropout_rate: 0.2

LSTM Sequence_output: false

Dropout Dropout_rate: 0.5

Two dense layers Dense_layer_1: size: 300 × 500; dense_layer_2: 
size: 500 × 2
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Experimental results

Experiment on seed dataset with baseline models

Figure  2 illustrates the accuracy, recall, and F1-value of each algorithm with different 
parameter configurations, i.e., term frequency tf, tf-idf, and word2vec, on the (annotated) 
seed dataset. The term “custom” is used to indicate the word2vec embedding trained 
with our own drug-abuse-related tweets, compared with the pre-trained Google News 
word2vec embedding, denoted as “google.” It is clear that the SVM model using the cus-
tom-trained word2vec embedding achieves the best and the most balanced performance 
in terms of all three measures, i.e., accuracy, recall, and F1-value, at approximately 67%. 
Other configurations usually have a lower recall, which suggests that the decisions they 
make bias towards the major class, i.e., non-drug-abuse risk behavior tweets. From the 
angle of classifiers, SVM model achieves the best overall performance. Random Forest 
has slightly less average accuracy than the SVM model, but worse recall and F1-value. 
Furthermore, from the view of vectorization approach, it is clear that word2vec embed-
ding outperforms term frequency and tf-idf in most of the cases. Several possible combi-
nations of settings are not shown in Fig. 2 due to poor performances.

Fig. 2  Accuracy, recall, and F1-value of each baseline model on the seed dataset

Fig. 3  Accuracy, recall, and F1-value of the five self-taught learning models, including st-CNN, st-LSTM, 
st-SVM, st-NB, and st-RF
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Experiment on self‑taught learning models

As shown in the previous experiment, SVM model using the custom-trained word2vec 
embedding achieves the best performance, we decided to apply the same model struc-
ture to compare with our deep self-taught learning approaches. In this experiment, at 
each epoch, 10,000 machine-labeled tweets were randomly sampled and merged into 
the training set. Figure 3 shows the experimental results of the five self-taught models, 
including self-taught CNN (st-CNN), self-taught LSTM (st-LSTM), self-taught SVM (st-
SVM), self-taught NB (st-NB), and self-taught RF (st-RF). All configurations of classifiers 
and vectorization methods are tested. For the sake of clarity, we only illustrate the best 
performing setting for each model in Fig. 3. It is clear that our proposed deep self-taught 
learning approaches (i.e., st-LSTM and st-CNN) outperform traditional models, i.e., 
st-SVM, st-NB, and st-RF, in terms of accuracy, recall, and F1-value, in all cases. Deep 
learning models achieve 86.53%, 88.6%, and 86.63% in terms of accuracy, recall, and 
F1-value correspondingly.

Experiment on vectorization settings

The impact of two different word2vec representations on the st-CNN, i.e., the custom 
word2vec embedding we trained from our corpus, and pre-trained Google News word-
2vec embedding, is shown in Fig.  4. The Google News word2vec achieves 0.1%, 0.4%, 
and 0.3% improvements in terms of accuracy, recall, and F1-value (86.63%, 89%, and 
86.83%, respectively) compared with the custom-trained word2vec embedding. In addi-
tion, it is clear that Google News word2vec embedding outperforms the custom-trained 
word2vec in most of the cases. This is because the Google News word2vec embedding 
was trained on a large-scale corpus, which is significantly richer in contextual informa-
tion, compared with our short, noisy, and sparse Twitter datasets.

An insight analysis of drug‑abuse risk behavior on Twitter
To gain insights in drug-abuse risk behaviors on Twitter, we use our best perform-
ing deep self-taught learning model to annotate over three million drug-abuse-related 
tweets with geo-tags and perform quantitative analysis. There are 117,326 tweets clas-
sified as positive, and 3,077,827 tweets classified as negative. The positive tweets cor-
respond to 3.67% of the whole dataset. We performed analysis from three aspects: word 
and phase distributions, temporal distributions, and spatial distributions.

Fig. 4  Performance comparison between custom word2vec embedding and Google News word2vec 
embedding
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Word and phase distributions

We first visualize the top frequent words by word cloud, as shown in Fig. 5. The word 
distribution in positive tweets (Fig. 5a) is remarkably different from word distribution 
in negative tweets (Fig. 5b). In fact, drug-abuse tweets usually consist of abuse-indicat-
ing terms, and drug names, such as “blunt,” “high,” “smoke,” “weed,” “marijuana,” “grass,” 
“juic,” etc. (Fig. 5a). In addition, the high concentration of dirty words, e.g., “s**t,” “f**k,” 
“as*,” “bit**,” etc., clearly suggests the expression patterns that the drug abusers may have 
(Fig. 5a). This expression pattern does not likely exist in negative tweets. Then, we fur-
ther show the comparison of normalized word frequency between positive tweets and 
negative tweets (words from positive tweets got normalized by the number of positive 
tweets, and negative words by negative tweets), regarding the 25 most frequent words in 
positive tweets (Fig. 6) and 25 most frequent words in negative tweets (Fig. 7). Note that 
in Fig. 6, the y-axis is clipped at 0.25, which is the value of word “weed”, while the word 
“smoke” has the normalized frequency of 0.44. These two figures further show that: (1) 
positive-frequent words are more likely to have lower normalized frequency in negative 
tweets, and vise versa and (2) some ordinary words, i.e., “go”, “want”, “day”, and “good”, 
still share similar normalized frequency between positive and negative tweets.

Hashtags also play an import role in the Twitter sphere as a way for users to: (1) to 
express their opinion more clearly and (2) to improve information sharing efficiency. 
Tweets that share same Hashtags can be grouped together and easily found, while popu-
lar Hashtags can make the tweets more visible to wider audience. Table 3 shows the most 
frequent Hashtags in positive tweets and negative tweets. It is clear that the Hashtags in 
positive tweets are almost exclusively related to drug abuse, while the Hashtags in nega-
tive tweets cover much wider range of topics.

Fig. 5  Word frequency distribution

Fig. 6  Normalized frequency of top 20 frequent words in positive tweets, compared with in negative tweets
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Fig. 7  Normalized frequency of top 20 frequent words in negative tweets, compared with in positive tweets

Table 3  Most frequent Hashtags in positive tweets and negative tweets

Positive tweets #weed, #smoke, #cannabis, #marijuana, #glassofig, #scientificglass, #WeedFirm, #maryjane, 
#dabs, #kush, #3wordsbetterthanIloveyou, #MarijuanaFunFacts, #pot, #dank, #high, #thc, 
#stoner, #blunt, #highlife, #AcademyAward, #OscarNominations, #ganja, #waterpipes, #np, 
#herblife

Negative tweets #job, #snow, #hiring, #photo, #traffic, #CareerArc, #NBAVote, #Simon, #winter, #jobs, #Hospi-
tality, #peace, #WomensMarch, #love, #Toronto, #Trump, #STAR, #nowplaying, #Orlando, 
#AZ, #np, #Veterans, #Retail, #SoundCloud, #nyc, #Inauguration, #cat, #weather, #MAGA​

Table 4  Drug name and  abuse behavior co-occurrence frequency differences 
between positive tweets and negative tweets

Combo Pos_count Neg_count Ratio_diff (%) Relative_ratio (%)

Trash high 1131 1387 0.9189 1166.04

Acid trip 547 239 0.4585 1863.66

Acid drop 256 168 0.2127 1603.13

Glass amp 374 3472 0.2060 171.11

Acid take 222 167 0.1838 1509.61

Lean amp 280 2391 0.1610 192.55

Coke high 195 186 0.1602 1343.14

Coke take 185 512 0.1410 646.57

Lean hit 180 745 0.1292 446.33

Acid amp 162 367 0.1262 761.96

Molly pop 160 328 0.1257 823.11

Acid hit 132 138 0.1080 1278.34

Lean pop 121 118 0.0993 1327.49

Acid use 115 238 0.0903 817.21

Shrooms trip 105 55 0.0877 1751.49

Lean high 108 136 0.0876 1147.54

Lean use 159 1479 0.0875 170.62

Blow high 125 675 0.0846 337.93

Upper high 112 382 0.0830 537.16

Dope high 106 509 0.0738 383.46

Coke amp 137 1413 0.0709 146.07

Acid high 65 57 0.0535 1402.44

Coke snort 82 571 0.0513 251.20

Molly amp 88 777 0.0498 183.80

Crack hit 108 1360 0.0479 104.18
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Finally, for word and phase analysis, we extract the co-occurrence frequencies of com-
binations of drug name and drug-abuse behavior. For each combination, we count the 
number of positive tweets and negative tweets that contain all words in that combina-
tion, then sort it by the absolute difference of normalized frequency between positive 
tweets and negative tweets. Table 4 shows the top 25 observed combinations. The “Rela-
tive_ratio” column is showing the ratio that the combination appears in positive tweets 
over the appears in all tweets. This analysis spots the more frequently used drug-abuse 
risk behavior indication word combinations, which will support further data collection.

Temporal analysis

To examine if there are different time patterns for positive tweets and negative tweets 
to be posted, we extract the local posting time of each tweet, then perform 1-h interval 
binning. As shown in Fig.  8, where x-axis are time slots, and y-axis is the proportion 
(normalized count) of tweets. The results shown in Fig. 8 are very interesting. The time 
patterns are obviously different between positive tweets and negative tweets. In fact, the 
Chi-square test results on the data in Fig. 8 shown in Table 5 clarifies that the pattern 
differences are significant for the time frames of ‘All day’ and ‘Night time.’ This result 
shows a very plausible phenomenon that tweets with drug-abuse risk behaviors are more 
active in night time than in day time.

Spatial analysis

The geo-location information tagged in tweets is very useful for capturing the distribu-
tion of drug-abuse risk behaviors. The geo-tagging information on Twitter usually comes 
in two forms: GPS coordinates, or a “Place Object” associated with the tweet. We first 
visualize geo-distribution of the positive tweets by plotting each geo-tag across the 

Fig. 8  Time of day distribution comparison between positive tweets and negative tweets

Table 5  Chi-square test of time of day distribution

(**)  p < 0.01, (***)p < 0.001

Type Chi square p-value

All day 46.467257 0.002615305(**)

Day time (8 a.m. to 6 p.m.) 6.87318202 0.650321116

Night time (6 p.m. to 8 a.m.) 39.5940753 0.000160637(***)
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continental United States in Fig. 9. By making this fine granularity, we can confirm that 
the collected tweets generally follow the population distribution. Then, we aggregate the 
geo-tags into state level, normalized with state’s population of age group 12 or older, 
and draw Fig. 10 with the numbers scaled to [− 1,1]. From Fig. 10, we can see that the 
District of Columbia has an extremely high ratio of positive tweets, follow by Louisiana, 
Texas, and Nevada that have relative high rate. Other states with high rate including Cal-
ifornia, Georgia, Maryland, and Delaware. Furthermore, the distribution of other states’ 
data showing that the collected tweets align relatively well with state-level population 
distribution. 

The other spatial analysis we perform is the alignment between our state-level counts 
of positive tweets, normalized with state population, and the 2016–2017 National Sur-
vey on Drug Use and Health (NSDUH) survey data. Here, the normalization is meant to 
decorrelate the count of tweets from the population of each state, and is done by sim-
ply dividing the count of positive tweets by the population (2017 census estimation) for 
each state. We choose to perform normalization with population for two reasons: (1) we 

Fig. 9  Dot map of positive tweets across the United States

Fig. 10  Number of positive tweets, per state, normalized by state population of 12 or older
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have little to no control of the sampling process, in terms of geo-location distribution, 
when crawling data from Twitter, which means the bias is unavoidable and uncontrolla-
ble and (2) thus, the state population figures are more reliable, stable, and representative. 
NSDUH is a creditable source of drug-abuse-related population scale estimation. If our 
Twitter data can align with the reliable survey data, we can argue that the Twitter-based 
studies have the prediction power that should not to be ignored. By computing the Pear-
son’s R between the normalized number of tweets and the NSDUH prevalence rate, over 
the same age group (12 or older), it is surprising to find that in our study even without 
further categorization, the Twitter data are significantly correlated ( p < 0.05 ) with some 
of the most important categories in the NSDUH study: (1) “Illicit Drug Use Other Than 
Marijuana in the Past Month” ( r = 0.387 ); (2) “Cocaine Use in the Past Year” ( r = 0.421 ); 
(3) “Methamphetamine Use in the Past Year” ( r = − 0.372 ); (4) “Pain Reliever Use Dis-
order in the Past Year” ( r = − 0.375 ); and (5) “Needing But Not Receiving Treatment at 
a Specialty Facility for Illicit Drug Use in the Past Year” ( r = 0.336 ). We argue that when 
large quantity of Twitter data is available, we can perform more detailed and creditable 
studies on the population scale.

Discussion and limitations

According to our experimental results, our deep self-taught learning models achieved 
promising performance in drug-abuse risk behavior detection in Twitter. However, 
many assumptions call for further experiments. First, how to optimize the classifica-
tion performance by exploring the correlations among parameters and experimental 
configurations. For instance, for SVM and RF models, unigram feature works better 
than n-gram feature on term frequency; however, for tf-idf, it is the opposite situ-
ation. Second, the pre-trained Google News word2vec embedding performs better 
than the custom-trained word2vec embedding may also be situational. These findings 
indicate the necessity of leveraging size and quality of the training data for training 
word embedding, given that the available data may better fit the classification task but 
be short in quantity. Nevertheless, among the measures, recall receives a more signifi-
cant boost than accuracy and F1-value. We may argue that the proposed self-taught 
algorithm helped correcting the bias in the classifiers caused by the imbalanced 
nature of the training dataset. However, more experiments need to be conducted to 
verify this interesting point.

Future research

The study we presented in this paper can be improved in many ways. Here, we elabo-
rate several of the future research directions. First, we plan to incorporate the well-
trained classifier into a real-time drug-abuse risk behavior monitoring and analysis 
system that aims at providing community-level stakeholders with timely accessible 
detection results for supporting their efforts, such as recovery services and public 
educations, on combating the opioid crisis. Second, we can utilize more information 
that can be extracted from tweets, such as user tweeting history, user demographic 
attributes, and user interactions, to further improve the model in terms of perfor-
mance, scope, and credibility. Third, the extra information that we extract further 
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enables the analysis of connections among users and tweets, on both social network 
plane and geospatial network plane, which can help to acquire knowledge regard-
ing how the drug trend propagates through both planes. Last but not least, we may 
expand the study to other major online social media platforms, i.e., Reddit and Insta-
gram, and more specialized online forum Blulelight.

Conclusion
In this paper, we proposed a large-scale drug-abuse risk behavior tweet collection 
mechanism based on supervised machine-learning and data crowd-sourcing tech-
niques. Challenges came from the noisy and sparse characteristics of Twitter data, 
as well as the limited availability of annotated data. To address this problem, we pro-
pose deep self-taught learning algorithms to improve drug-abuse risk behavior tweet 
detection models by leveraging a large number of unlabeled tweets. An extensive 
experiment and data analysis were carried out on three million drug-abuse-related 
tweets with geo-location information, to validate the effectiveness and reliability of 
our system. Experimental results shown that our models significantly outperform 
traditional models. In fact, our models correspondingly achieve 86.53%, 88.6%, and 
86.63% in terms of accuracy, recall, and F1-value. This is a very promising result, 
which significantly improves upon the state-of-the-art results.

Further data analysis gain insights into the expression patterns and the geo-distribu-
tion that the drug abusers may have on Twitter. For example, the words and phrases used 
in drug-abuse risk behavior-positive tweets have distinctive frequencies that can be used 
in data collection to improve the quality of raw data. The uneven geographical distribu-
tion of tweets makes it appealing to perform further analysis that associates tweets with 
other geographical data.

Abbreviations
NSDUH: National Survey on Drug Use and Health; CDC: Centers for Disease Control and Prevention; CNN: convolution 
neural networks; LSTM: long–short-term memory; DAWN: drug-abuse warning network; SVM: support vector machine; 
NB: Naive Bayes; RF: Random Forest; AMT: Amazon Mechanical Turk; URL: uniform resource locator; HTML: hypertext 
markup language; tf: term frequency; tf-idf: term frequency-inverse document frequency; API: application programming 
interface; GPU: graphics processing unit; GPS: global positioning system; NDTA: National Drug Threat Assessment.

Acknowledgements
The authors gratefully acknowledge the support from the National Science Foundation (NSF) Grants CNS-1650587, CNS-
1747798, CNS-1624503, CNS-1850094, and National Research Foundation of Korea NRF-2017S1A3A2066084.

Authors’ contributions
DD and RJ have a significant and intellectual advice to shape the extension with spatial data analysis, combining with 
offline data collected from NDTS [46]. Thanks to XY, KD, and DK with their expertises in geospatial data analysis and drug-
abuse behaviral analysis, all the results in the analysis were verified and irrelevant results were eliminated. KD and DK 
are experts in statistics, especially in substance abuse, verified all the results in Fig. 8 and Table 5. KD and DK also verified 
the statistical results in the comparison between our data with the NDTS data [46] to eliminate uncertain results. Upon 
that, we discovered new interesting and statistically significant data correlations. HH and NP conducted and verified the 
experiment. HV contributed the data and the visualization part. SAC and JG contributed to the system development and 
data annotation processes. All authors read and approved the final manuscript.

Funding
The authors gratefully acknowledge the support from the National Science Foundation (NSF) Grants CNS-1650587, CNS-
1747798, CNS-1624503, CNS-1850094, and National Research Foundation of Korea NRF-2017S1A3A2066084.

Availability of data and materials
The data are available upon request, following the data privacy policy of Twitter.

Competing interests
The authors declare that they have no competing interests.



Page 18 of 19Hu et al. Comput Soc Netw            (2019) 6:10 

Author details
1 New Jersey Institute of Technology, University Heights, Newark 07102, USA. 2 City University of New York, 2800 Victory 
Blvd, Staten Island 10314, USA. 3 The City College of New York, 160 Convent Ave, New York 10031, USA. 4 Kent State 
University, 800 E. Summit St., Kent 44242, USA. 5 University of Oregon, 1585 E 13th Ave., Eugene 97403, USA. 

Received: 2 June 2019   Accepted: 17 October 2019

References
	1.	 U.S. Department of Health and Human Services: HHS acting secretary declares public health emergency to 

address national opioid crisis. 2017.
	2.	 Substance Abuse and Mental Health Services Administration, U.S. Department of Health and Human Services: 

key substance use and mental health indicators in the United States: results from the 2016 National Survey on 
Drug Use and Health. 2018. http://dataf​iles.samhs​a.gov. Accessed 20 May 2019.

	3.	 Substance Abuse and Mental Health Services Administration, U.S. Department of Health and Human Services: 
key substance use and mental health indicators in the United States: results from the 2015 National Survey on 
Drug Use and Health. 2018. http://dataf​iles.samhs​a.gov. Accessed 20 May 2019.

	4.	 National Institute on Drug Abuse, U.S. National Institutes of Health: overdose death rates. 2018.
	5.	 The Gun Violence Archive: 2015 Gun Violence Archive. 2018. http://www.gunvi​olenc​earch​ive.org/past-tolls​. 

Accessed 20 May 2019.
	6.	 Aslam S. Twitter by the numbers. 2018. http://www.omnic​oreag​ency.com/twitt​er-stati​stics​/. Accessed 20 May 

2019.
	7.	 Signorini A, Segre AM, Polgreen PM. The use of twitter to track levels of disease activity and public concern in 

the us during the influenza a H1N1 pandemic. PLoS ONE. 2011;6(5):19467.
	8.	 Aphinyanaphongs Y, Lulejian A, Brown DP, Bonneau R, Krebs P. Text classification for automatic detection of 

e-cigarette use and use for smoking cessation from twitter: a feasibility pilot. In: Biocomputing 2016: proceed-
ings of the Pacific symposium. 2016. p. 480–91.

	9.	 Bosley JC, Zhao NW, Hill S, Shofer FS, Asch DA, Becker LB, Merchant RM. Decoding twitter: surveillance and 
trends for cardiac arrest and resuscitation communication. Resuscitation. 2013;84(2):206–12.

	10.	 Chary M, Genes N, McKenzie A, Manini AF. Leveraging social networks for toxicovigilance. J Med Toxicol. 
2013;9(2):184–91.

	11.	 Hossain N, Hu T, Feizi R, White AM, Luo J, Kautz H. Precise localization of homes and activities: detecting 
drinking-while-tweeting patterns in communities. In: Tenth international AAAI conference on web and social 
media. 2016.

	12.	 Myslín M, Zhu S-H, Chapman W, Conway M. Using twitter to examine smoking behavior and perceptions of 
emerging tobacco products. J Medical Internet Res. 2013;15(8):e174.

	13.	 Sarker A, et al. Social media mining for toxicovigilance: automatic monitoring of prescription medication abuse 
from twitter. Drug Saf. 2016;39(3):231–40.

	14.	 Hanson CL, Cannon B, Burton S, Giraud-Carrier C. An exploration of social circles and prescription drug abuse 
through twitter. J Med Internet Res. 2013;15(9):e189.

	15.	 Hanson CL, Burton SH, Giraud-Carrier C, West JH, Barnes MD, Hansen B. Tweaking and tweeting: exploring 
twitter for nonmedical use of a psychostimulant drug (adderall) among college students. J Med Internet Res. 
2013;15(4):e62.

	16.	 McNaughton EC, Black RA, Zulueta MG, Budman SH, Butler SF. Measuring online endorsement of prescription 
opioids abuse: an integrative methodology. Pharmacoepidemiol Drug Saf. 2012;21(10):1081–92.

	17.	 Shutler L, Nelson LS, Portelli I, Blachford C, Perrone J. Drug use in the twittersphere: a qualitative contextual 
analysis of tweets about prescription drugs. J Addict Dis. 2015;34(4):303–10.

	18.	 Hu H, Phan N, Geller J, Vo H, Manasi B, Huang X, Di Lorio S, Dinh T, Chun SA. Deep self-taught learning for detect-
ing drug abuse risk behavior in tweets. In: International conference on computational social networks. 2018. p. 
330–42.

	19.	 LeCun Y, Bottou L, Bengio Y, Haffner P, et al. Gradient-based learning applied to document recognition. Proc IEEE. 
1998;86(11):2278–324.

	20.	 Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.
	21.	 Johnston L, National Institute on Drug Abuse. Monitoring the future: National survey results on drug use, 

1975–2004, vol. 1. 2005.
	22.	 Brookoff D, Campbell EA, Shaw LM. The underreporting of cocaine-related trauma: drug abuse warning network 

reports vs hospital toxicology tests. Am J Public Health. 1993;83(3):369–71.
	23.	 Kessler DA, Natanblut S, Kennedy D, Lazar E, Rheinstein P, Anello C, Barash D, Bernstein I, Bolger R, Cook K, et al. 

Introducing medwatch: a new approach to reporting medication and device adverse effects and product prob-
lems. JAMA. 1993;269(21):2765–8.

	24.	 Meng H-W, Kath S, Li D, Nguyen QC. National substance use patterns on twitter. PLoS ONE. 2017;12(11):1–15. 
https​://doi.org/10.1371/journ​al.pone.01876​91.

	25.	 Ding T, Bickel WK, Pan S. Social media-based substance use prediction. arXiv preprint arXiv​:1705.05633​. 2017.
	26.	 Simpson SS, Adams N, Brugman CM, Conners TJ. Detecting novel and emerging drug terms using natural lan-

guage processing: a social media corpus study. JMIR Public Health Surveill. 2018;4(1):2.
	27.	 Phan NH, Chun SA, Bhole M, Geller J. Enabling real-time drug abuse detection in tweets. In: 2017 IEEE Int. Conf. 

Data Eng. (ICDE). 2017. p. 1510–4.

http://datafiles.samhsa.gov
http://datafiles.samhsa.gov
http://www.gunviolencearchive.org/past-tolls
http://www.omnicoreagency.com/twitter-statistics/
https://doi.org/10.1371/journal.pone.0187691
http://arxiv.org/abs/1705.05633


Page 19 of 19Hu et al. Comput Soc Netw            (2019) 6:10 

	28.	 Coloma PM, Becker B, Sturkenboom MC, van Mulligen EM, Kors JA. Evaluating social media networks in medi-
cines safety surveillance: two case studies. Drug Saf. 2015;38(10):921–30.

	29.	 Hu H, Moturu P, Dharan K, Geller J, Iorio S, Phan H, Vo H, Chun S. Deep learning model for classifying drug abuse 
risk behavior in tweets. In: 2018 IEEE international conference on healthcare informatics (ICHI). IEEE; 2018. p. 
386–7.

	30.	 Kong C, Liu J, Li H, Liu Y, Zhu H, Liu T. Drug abuse detection via broad learning. In: International conference on 
web information systems and applications. Berlin: Springer; 2019. p. 499–505.

	31.	 Weissenbacher D, Sarker A, Klein A, O’Connor K, Magge A, Gonzalez-Hernandez G. Deep neural networks 
ensemble for detecting medication mentions in tweets. J Am Med Inform Assoc. 2019;. https​://doi.org/10.1093/
jamia​/ocz15​6.

	32.	 Mahata D, Friedrichs J, Shah RR, Jiang J. Detecting personal intake of medicine from twitter. IEEE Intell Syst. 
2018;33(4):87–95.

	33.	 Zhang Y, Fan Y, Ye Y, Li X, Winstanley EL. Utilizing social media to combat opioid addiction epidemic: automatic 
detection of opioid users from twitter. In: Workshops at the thirty-second AAAI conference on artificial intel-
ligence. 2018.

	34.	 Li J, Xu Q, Shah N, Mackey TK. A machine learning approach for the detection and characterization of illicit drug 
dealers on instagram: model evaluation study. J Med Internet Res. 2019;21(6):13803.

	35.	 Raina R, Battle A, Lee H, Packer B, Ng AY. Self-taught learning: transfer learning from unlabeled data. In: Proceed-
ings of the 24th international conference on machine learning. 2007. p. 759–66.

	36.	 Bengio Y, et al. Learning deep architectures for AI, foundations and trends. Mach Learn. 2009;2(1):1–127.
	37.	 Weston J, Ratle F, Collobert R. Deep learning via semi-supervised embedding. In: Proceedings of the 25th inter-

national conference on machine learning. 2008. p. 1168–75.
	38.	 Bettge A, Roscher R, Wenzel S. Deep self-taught learning for remote sensing image classification. 2017. arXiv 

preprint arXiv​:1710.07096​.
	39.	 Dong X, Meng D, Ma F, Yang Y. A dual-network progressive approach to weakly supervised object detection. In: 

Proceedings of the 25th ACM international conference on multimedia. 2017. p. 279–87.
	40.	 Gan J, Li L, Zhai Y, Liu Y. Deep self-taught learning for facial beauty prediction. Neurocomputing. 

2014;144:295–303.
	41.	 Yuan Y, Liang X, Wang X, Yeung D-Y, Gupta A. Temporal dynamic graph lstm for action-driven video object 

detection. In: Proceedings of the IEEE international conference on computer vision. 2017. p. 1801–10.
	42.	 U.S. National Institute on drug abuse: commonly abused drugs. 2018.
	43.	 Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their 

compositionality. In: Proc. 26th NIPS, vol. 2. 2013. p. 3111–9.
	44.	 Jeni LA, Cohn JF, De La Torre F. Facing imbalanced data–recommendations for the use of performance metrics. In: 

2013 Humaine association conference on affective computing and intelligent interaction. 2013. p. 245–51.
	45.	 Hallgren KA. Computing inter-rater reliability for observational data: an overview and tutorial. Tutor Quant Methods 

Psychol. 2012;8(1):23.
	46.	 U.S. Department of Drug Enforcement Administration: National Drug Threat Assessment. 2018.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/jamia/ocz156
https://doi.org/10.1093/jamia/ocz156
http://arxiv.org/abs/1710.07096

	An insight analysis and detection of drug-abuse risk behavior on Twitter with self-taught deep learning
	Abstract 
	Introduction
	Background and related work
	Deep self-taught learning system for drug-abuse risk behavior detection
	Problem definition
	Collecting and labeling tweets
	Tweet vectorization

	Deep self-taught learning approach

	Experimental results
	Experiment settings
	Dataset
	Baseline methods
	Measures
	Experiment questions

	Experimental results
	Experiment on seed dataset with baseline models
	Experiment on self-taught learning models
	Experiment on vectorization settings


	An insight analysis of drug-abuse risk behavior on Twitter
	Word and phase distributions
	Temporal analysis
	Spatial analysis
	Discussion and limitations
	Future research

	Conclusion
	Acknowledgements
	References




