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Abstract 

Network equivalence is a technique useful for many areas including power systems. In 
many power system analyses, generation shift factor (GSF)-based bus clustering meth-
ods have been widely used to reduce the complexity of the equivalencing problem. 
GSF captures power flow on a line when power is injected at a node using bus to bus 
electrical distance. A more appropriate measure is the one which captures what may 
be called the electrical line distance with respect to a bus termed as relative bus to line 
distance. With increase in power transactions across different regions, the use of rela-
tive bus to line distance becomes appropriate for many analyses. Inspired by the recent 
trends in network science on the study of network dynamics based on the topological 
characteristics of a network, in this paper, we present a bus clustering method based 
on average electrical distance (AED). AED is independent of changes in location of 
slack bus and is based on the concept of electrical distance introduced in the context 
of molecular chemistry and pursued later for applications in social and complex net-
works. AED represents the AED from a bus to buses of the transmission line of interest. 
We first propose an AED-based method to group the buses into clusters for power 
systems network equivalence using k-means clustering algorithm integrated with 
silhouette analysis. One limitation of this method is that despite its speed, sometimes 
it may yield clusters of inferior quality compared to the optimal solution. To overcome 
this limitation, we next present our improved clustering method which incorporates 
a seeding technique that initializes centroids probabilistically. We also incorporate a 
technique in our method to find the number of clusters, k, to be given as input to our 
clustering algorithm. The resulting algorithm called AED-based k-means++ cluster-
ing method yields a clustering that is O(logk) competitive. Our network equivalence 
technique is next described. Finally, the efficacy of our new equivalencing technique is 
demonstrated by evaluating its performance on the IEEE 300-bus system and compar-
ing that to the performance of our AED-based method (Sharma et al. in Power network 
equivalents: a network science-based k-means clustering method integrated with sil-
houette analysis. In: Complex networks and their application VI, Lyon, France. p. 78–89, 
2017) and the existing GSF-based method.
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Introduction
The past few decades have witnessed a new movement of interest and research in the 
study of complex networks, i.e., networks whose structure is irregular, complex and 
dynamically evolving in time such as power grids, communication networks, biologi-
cal networks, social networks, etc. Investigating dynamics in such complex networks 
requires an understanding of the interaction between network topology and specific 
domain constraints. For example, the study of power grids requires basic circuit laws, 
relating voltages and currents, to be incorporated along with the network topology. In 
this paper, we explore this interaction in the context of deriving simplified equivalent 
networks as representations of large power grids. In this paper, the terms power systems, 
power system network, and power network are used interchangeably. Power network 
equivalencing has been studied in the literature with different objectives. Our objective 
is to study the equivalents appropriate for electrical market analysis.

Electrical market analysis involving power exchange is becoming more and more com-
plex due to the size and degree of interconnections in modern power systems due to 
economic, political, and environmental reasons [1]. With such inherent complexities 
and information deficiency, it is difficult for participants to make operational and mar-
ket decisions at buses that are sensitive to the condition of transmission lines. For these 
reasons, it is necessary to develop an enhanced method to support decisions, particu-
larly, those sensitive to major and critical transmission lines. The analysis can be compu-
tationally challenging, especially, when a full AC implementation approach is used [2]. 
Compared to the full AC analysis, a simplified analysis of the network can be done by 
means of full network DC power flow model [3]. Although the full AC analysis would 
be the most accurate approach, the DC approach allows network operators to make 
informed dispatch decisions thereby saving time and effort required. The enormous size 
of power system networks makes full network DC analysis computationally taxing. To 
reduce the computational burden and to simplify the analysis of electricity markets, sev-
eral network equivalence models have been used [2, 4–6].

Various approaches for network equivalencing have been presented in [7–12]. These 
approaches follow the traditional method of eliminating less important elements from 
the system on the basis of geographic and electric parameters. Such elimination results 
in partitioning of the network into three clusters of buses: a cluster of internal buses, a 
cluster of external buses, and a cluster of boundary buses that divide the external buses 
from the internal buses. Due to their trivial impact on the internal system, remote gen-
erators and transmission lines connected to the boundary buses may be eliminated 
with minor impact on decisions. However, irrespective of the bus demarcation, market 
analysis of large power system networks requires retaining the desired buyer/seller pairs 
corresponding to operating zones in order to understand the impact of power flows on 
transmission lines from the buyer/seller pairs at various buses. Hence, in this study, we 
do not eliminate the external buses but rather focus on the line flows between various 
operating areas. These line flows are called tie-line flows.

In this paper, the metric developed for the study has properties similar to resistance 
distance which has been widely used since the early days of electrical circuit theory. 
There are several books on the basics of circuit analysis that deal with resistance distance 
and topological formula for resistance distance, for example [13]. However, recently this 
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concept gained increased importance in view of its applications in areas outside electri-
cal circuit theory [14–20].

In recent studies, network equivalencing has been done using generation shift factor 
(GSF)-based methods [5, 6, 21, 22]. In these methods, buses with similar impact on the 
interconnecting tie-line flows evaluated using GSFs are grouped together. In order to 
improve the efficiency and accuracy of bus clustering, [6] use is made of k-means algo-
rithm based on GSF to cluster the buses. However, GSFs are sensitive to the change in 
the location of slack generator. Network operators supervising different regions of the 
interconnection might not be aware of the slack bus change, and hence there could 
be discrepancies in decision making, which can provoke an impact on regional power 
transactions. Therefore, our main objective in this paper is to develop a new clustering 
method as well as new network equivalent that overcomes the limitation of the GSF-
based methods.

Our work in this paper includes our previous work [23] and its enhancements. The 
rest of this paper is organized as follows. “Preliminaries” section gives an introduction 
to all the basic concepts that are of interest in the development of techniques discussed 
in subsequent sections. We introduce, in “Average electrical distance” section, the con-
cept of average electrical distance (AED) and discuss a relationship between AED and 
GSF. Also, the relevance of our work in the context of social network analysis is given 
in “Implications and relevance for social network analysis” section. “k-means algo-
rithm” section gives an introduction to the k-means algorithm for clustering, followed 
by “AED-based k-means bus clustering method” section presenting our proposed AED-
based k-means clustering method, which, however, has certain limitations. In “AED-
based k-means++ bus clustering method” section, we present our improved AED-based 
k-means++ clustering method, to overcome the said limitations. The new method 
uses a seeding technique [24] for initialization of centroids. We call this augmented 
algorithm as AED-based k-means++ algorithm. We also incorporate in this method 
silhouette analysis to determine the number k of clusters to be given as input to the clus-
tering method. The resulting AED-based k-means++ method yields clustering which is 
O(logk) competitive. “Power network equivalencing based on AED-based k-means++ 
clustering method” section presents how we use clustering to develop a power network 
equivalent suitable for market analysis. To demonstrate the efficacy of our approach for 
clustering and equivalencing, the rest of “Power network equivalencing based on AED-
based k-means++ clustering method” section is concerned with experimental and com-
parative evaluations of our network equivalence method applied on the 300-bus system. 
We conclude this paper with “Conclusion” section, highlighting the main findings of this 
work, their implications, and our continuing attempt to find an efficient network equiva-
lencing technique for power systems and its implications in the context of social net-
work analysis.

Preliminaries
In this section, we introduce the basic concepts of Laplacian matrix of a graph, electrical 
distance, and generation shift factor.
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Laplacian matrix of a graph

Consider a graph G = (V ,E) with vertex set V = {0, 1, . . . , n} . Edge e ∈ E connecting 
vertices i and j is denoted by (i,  j). We assume there are no loops on any vertices and 
there are no parallel edges connecting the vertices. In this paper, the terms, vertices 
and nodes, as well as links and edges, will be used interchangeably. Let an edge (i, j) be 
assigned a weight wij , a positive real number. If there is no edge connecting i and j then 
wij = 0 . Two vertices i and j are adjacent if there is an edge (i, j). A vertex j is incident on 
vertex i if there is an edge connecting i and j. The degree of a vertex i denoted by deg(i) is 
the sum of the weights of the edges incident on i.

The Laplacian matrix, Y = [yij] of G is an (n+ 1)× (n+ 1) matrix defined as follows:

As an example, a graph G and its adjacent matrix are shown in Fig.  1a, b. Note that 
yij = yji . It can be seen that the sum of all the elements in any row and the sum of all the 
elements in any column are both equal to zero. So, Y is singular and has no inverse. To 
handle this singularity problem of Y, two different approaches are adopted, namely, the 
eigenvalue approach and the determinant approach.

In the eigenvalue approach, the pseudo-inverse Y+ of Y is used. The properties of G 
are studied in terms of the elements of Y+ . This approach is quite popular among math-
ematicians [25, 26]. In this paper, we follow the determinant approach which is popular 
in the electrical engineering community. In this approach, we first remove a row and 
the corresponding column from the Laplacian matrix, Y. Let us assume that the vertex 
labelled o called the datum node or slack node is removed. The resulting matrix denoted 
by Y(o) is called a reduced Laplacian matrix. The reduced Laplacian matrix Y(o) of Y in 
Fig. 1b is shown in Fig. 1c. It can be shown that the matrix Y(o) is non-singular and it has 
several other properties, for example, [13].

In all discussions in this paper, we will use Y = [yij] to denote the reduced Laplacian of 
the network. We wish to draw attention to Cetinay et al. [27] where the authors investi-
gate the impact of topology on power flow using spectral graph theory.

Electrical distance

Consider an electrical network N represented by the graph G. The admittance of the 
edge (i, j) in N serves as the weight wij in G. Each edge (s, t) in G is associated with two 
variables, voltage, vst and current ist , Fig. 2. Then by Ohm’s law, we get

(1)yij =

{

−wij , if i �= j
deg(i), if i = j

Fig. 1  a Graph G with weighted edges; b Laplacian Matrix of G; c reduced Laplacian Matrix, Y(o)
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In the electrical engineering literature, the reduced Laplacian matrix, Y is called the 
node-to-datum matrix of N with vertex o as the datum vertex. Datum vertex is also 
known as the slack vertex. Let Z = [Zij] be the inverse of the reduced Laplacian matrix. 
This matrix is called Z-bus (Zbus) matrix in the power engineering literature. Also, the 
ground is usually used as the slack vertex.

Suppose we now connect a current source of value is,t across nodes (s, t), Fig. 3. Let 
vs,t be the voltage across s and t. Then the electrical distance between s and t, denoted 
as rs,t is defined as

We now proceed to show how to evaluate rs,t across all pairs of nodes s and t. Note that 
definition of rs,t does not require that s and t be connected by edge (s, t) in the network 
N. Suppose we now connect a current source of value is across the vertices o and for each 
s ∈ {1, 2, . . . , n} , as shown in Fig. 4. Note that the current flows from node o to node s. 

Let vs denote the voltage from node s to node o. If we let V =







v1
...
vn






 and I =







i1
...
in






 , then 

the matrix Z represents the relation between V and I as

Therefore,

(2)
ist

vst
= wst , the admittance of (s, t).

(3)rs,t =
vs,t

is,t
.

(4)







v1
...
vn






= Z







i1
...
in







Fig. 2  Demonstration of Ohm’s law

Fig. 3  Current source across the nodes (s, t)
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Note that Zij is a complex number denoted by (Rij + jXij).
It follows from (5) that rs,o = Zss , for all s. It can be shown that for all i and j

In the power engineering literature, electrical distance rst is called Thevenin resistance/
impedance between the nodes s and t, denoted by Zth,st . Thus,

Also, in the chemistry literature, the electrical distance is referred to as resistance dis-
tance [14].

Generation shift factor

Given a power network with two or more interconnected areas, in power market analy-
sis, a simpler equivalent network is needed which preserves the flows across the lines 
(edges) connecting different areas. In this context, the concept of GSF [5] was intro-
duced and used in determining power network equivalents.

Let us consider a network N represented by graph G. Consider a line connecting two 
nodes u and v. Suppose we inject a current of unit value at node i i.e., connect a cur-
rent source of unit value between node i and the slack node o. Then the current that 
flows through the line (u, v) is called the generation shift factor of i with respect to (u, v), 
denoted as guv,i . To find a formula for guv,i consider (4). Then,

(5)Zss =
vs

is

∣

∣

∣

∣

ij=0,j �=s

(6)Zst =
vs

is

∣

∣

∣

∣

ij=0,j �=t

(7)rij = Zii + Zjj − 2Zij .

(8)Zth,st = rst = Zss + Ztt − 2Zst .

(9)vu = zu1i1 + zu2i2 + · · · + zuiii + · · · + zuuiu,

(10)vv = zv1i1 + zv2i2 + · · · + zviii + · · · + zvviv .

Fig. 4  Current source connected across (0, 1), (0, 2), . . . , (0, n)
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If ij = 0 for all j  = i and ii = 1 , then we get vu = zui and vv = zvi . Then the current flow-
ing through line (u, v) is given by

where cuv is the admittance of line (u, v). Thus, the GSF of i with respect to (u, v) is

Average electrical distance
Average electrical distance (AED) is defined as the electrical distance of a specific bus 
with respect to a transmission line or a tie-line connecting different operating zones. It 
can also be viewed as the relative electrical distance of a bus w.r.t. a line. The AED, duv,i , 
is defined as

where Zth,ui is the electrical distance between buses u and i, Fig 5. Using (8), we get

where Zui is the corresponding (u, i) element in the bus impedance matrix shown in (16).

(11)iuv =
zui − zvi

cuv
,

(12)guv,i =
zui − zvi

cuv
.

(13)duv,i =
∣

∣

∣

Zth,ui − Zth,vi

2

∣

∣

∣
,

(14)duv,i =

∣

∣

∣

∣

(Zuu − 2Zui + Zii)− (Zvv − 2Zvi + Zii)

2

∣

∣

∣

∣

,

(15)=

∣

∣

∣

∣

∣

Z̄uu − Z̄vv

2
− (Z̄ui − Z̄vi)

∣

∣

∣

∣

∣

,

(16)Z =

















Z11 · · · Z1i · · · Z1n

...
. . .

...
. . .

...
Zu1 · · · Zui · · · Zun

...
. . .

...
. . .

...
Zn1 · · · Zni · · · Znn

















.

Fig. 5  Illustration of average electrical distance
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In (16), the diagonal elements of the impedance matrix represent the Thevenin 
impedance at each corresponding bus. For real-time analysis, it is required to execute 
calculations of electrical distance at short intervals which can be achieved through sim-
plification of electrical distances. Since transmission lines usually have a high X/R ratio 
(Fig. 2), the resistances of the lines can be neglected compared to the high reactances of 
lines. Thus, the impedances in (14) can be simplified as shown in (17).

where elements in X̄ = [X̄ij] represent the approximation of elements in Z, i.e., Zij ≈ X̄ij . 
Then, AED defined in (13) can be rewritten as

In previous studies [6, 21], GSF-based bus clustering methods have been used to ana-
lyse the impact of injections from groups of buses on the power flows of different trans-
mission lines. In these GSF-based methods, buses that have similar contributions to the 
power flows on lines of interest are grouped together based on GSFs. However, GSF does 
not take into account the impact of injection on buses u and v. As shown below, AED is 
indeed a measure that captures the impact of injection at u and v. This important char-
acteristic of AED can be explained by analysing the relationship between AED and GSF. 
GSFs can be calculated using elements of X̄ as shown in (19).

Similarly, the sum of GSFs of bus u and bus v with respect to tie-line uv is given by

Comparing (18–20), we can see that duv,i enhances guv,i by adding an additional term cap-
turing the impact of injection at buses, u and v, on the power flow across the tie-line, uv.

In the rest of the paper, we discuss our improved clustering method based on AED and 
compare the results with the existing GSF-based clustering method.

Calculation of AED

Algorithm given below to determine AED for each bus in the network with respect to 
the tie-lines of interest includes the following main steps:

Algorithm 1: Calculation of AED
1.	 Creation of bus impedance matrix According to the system data, bus admittance 

matrix is first developed. Then, bus impedance matrix, shown in (16), is created by 
calculating the inverse of bus admittance matrix.

2.	 Calculation of Thevenin impedance Using the elements of bus impedance matrix 
obtained in Step 1, the Thevenin impedances for each pair of buses are calculated 
according to (17).

(17)Xth,ui = X̄uu − 2X̄ui + X̄ii,

(18)duv,i =

∣

∣

∣

∣

Xth,ui − Xth,vi

2

∣

∣

∣

∣

=

∣

∣

∣

∣

X̄uu − X̄vv

2
− (X̄ui − X̄vi)

∣

∣

∣

∣

.

(19)guv,i =
X̄ui − X̄vi

xuv
.

(20)guv,u + guv,v =

∣

∣

∣

∣

X̄uu − X̄vv

xuv

∣

∣

∣

∣

.
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3.	 Calculation of AED After calculating the Thevenin impedances, AEDs between buses 
and tie-lines of interest are calculated using (18). The results of AEDs are used to cre-
ate a matrix as shown in Fig. 6. In this matrix, each row corresponds to a tie-line and 
each column corresponds to a bus in the system. Thus, an element in the matrix cor-
responds to AED from a bus to a tie-line in the system.

� �

Implications and relevance for social network analysis

In the graphical representation of a social network, link weights are all unity. Differ-
ent types of metrics/measures are defined to determine certain properties of links or 
nodes. For example, a measure called PageRank is used to rank the nodes in terms of 
their importance [28]. As another example, the betweenness measure of a link is used to 
determine the importance of a link. A link e is considered more important than another 
link e′ , if the fraction of the total number of messages that flow through e is greater than 
that for e′ . In view of the connection between random walk and current flow in a resist-
ance network [18], this fraction is in fact equal to the current through the link when a 
unit current is injected at a node. Taking advantage of this connection in [15], a measure 
similar to GSF is used to determine the betweenness measures of links. A detailed dis-
cussion of many of these measures is given in [29].

The concept of role discovery in networks was first studied in sociology [30, 31]. In this 
context, roles considered are social roles. Thus, role discovery has become an important 
topic in social network analysis. Recently, role discovery has been studied in other set-
tings such as online social networks, technological networks, biological networks, web 
graph, etc.

In [32], a comprehensive review of literature on role discovery in network has been 
given. This paper discusses the problem of identifying clusters in a network such that all 
nodes in each cluster are equivalent in some sense. Two types of equivalence are con-
sidered: graph-based equivalence and feature-based equivalence. Several challenges 
that arise in the application of role discovery in non-static network such as dynamic and 
streaming graphs are also discussed in [32].

Our work in this paper is about clustering in a power network and its application in 
deriving a simplified approximate equivalent network that preserves flows along cer-
tain lines. The GSF and AED are measures that are defined for each node with respect 

Fig. 6  Illustration of AED matrix
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to certain lines. If we set the line weights to unity, then these measures in the context 
of social networks capture the fraction of total messages that flow through a link when 
messages arrive (or injected) at a node. Therefore, the work presented in this paper is 
relevant to social network studies. For example, a problem of interest is to determine 
clusters such that the total flow carried by inter-cluster links is optimized. Once such 
clusters are identified, we can determine simplified approximate equivalent network as 
explained in “Power network equivalencing based on AED-based k-means++ clustering 
method” section that can be used to predict the flows across the clusters. Further discus-
sion of these ideas is given in “Conclusion” section.

k‑means algorithm
k-means algorithm is one of the most popular clustering techniques in unsupervised 
learning tasks. Given a set of nodes or buses, this algorithm has been efficiently used to 
partition a network into k clusters [33]. This is based on the optimal placement of cen-
troid for the respective cluster in a network [34].

In this algorithm, initially the network is divided into k clusters with each clus-
ter defined by a reference bus (centroid). Remaining buses are then partitioned and 
assigned appropriately to the clusters based on the closeness of each bus to k reference 
buses. Then cluster adjustments are made with the calculation of new centroids. These 
centroids act as new reference points for the next partitioning of all the buses. These 
adjustments naturally produce error minimum of which corresponds to “Voronoi con-
figuration” [35] which results in reference locations at the centroid of the clusters. The 
error measure or potential function is the sum of all the variances and is given as shown 
in (21).

where k is the total number of clusters; nj is the number of buses belonging to the jth 
cluster; xij represents ith bus in the jth cluster; µj is the centroid in the jth cluster and the 
term; and |xij − µj| represents the distance between xij and µj.

The process becomes iterative in order for the clusters to reach a local minimum which 
is dependent on the initial selection of the reference buses. The k-means algorithm keeps 
on adjusting the centroids after each partition making it more dynamic to the changes. 
The k-means algorithm is explained in Algorithm 2.

Algorithm 2: k-means algorithm
1.	 Selecting initial cluster centroids Cluster formation is initialized by selecting k cen-

troids, i.e., µ1,µ2, . . . ,µk in the network. These centroids act as initial reference 
points for the buses to be assigned to an appropriate cluster.

2.	 Grouping buses into clusters For the selected k centroids, based on the Euclidean dis-
tance, a bus is assigned to a cluster which has its centroid closest to the bus.

3.	 Recalculating centroid positions After all the buses are assigned to respective clusters, 
the new centroid of each cluster is recalculated as shown in (22). 

(21)φ = min

k
∑

j=1

nj
∑

i=1

|xij − µj|
2,
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4.	 Evaluating objective function in (21) After all buses are grouped into the clusters in 
Step 2, the potential function in (21) is evaluated.

5.	 Iterations of algorithm Steps 2–4 are repeated until the centroid of each cluster ceases 
to change its position with further iterations.

� �

AED‑based k‑means bus clustering method
In this section, we discuss our AED-based improved clustering method that uses 
k-means algorithm for power system network equivalence. This method uses a simple 
iterative technique known as Lloyd’s algorithm for finding a locally minimal solution 
[34]. Further, it utilizes AED as a measure of distance between the buses in the system. 
Integration of AED makes k-means algorithm more relevant to the power system net-
work study. This is because AED gives a measure of distance of a bus with respect to a 
tie-line. This algorithm proves to be sufficiently accurate for the independent analysis 
done by various utilities on their networks.

AED‑based k‑means algorithm

With reference to the power system network equivalence, it is preferred to incorporate 
a measure that can reflect the true distance from a power system network perspective. 
AED presented in “Average electrical distance” section is one such measure. In the net-
work, while determining the clusters, we replace the actual distance term in the variance 
calculation with the AED measure. Specifically, in (21), we replace the location of the 
bus xij with d(xij) which represents the AED of the ith bus in the jth cluster with respect 
to set of tie-lines and d(µj) represents the AED-based measure of the centroid in the jth 
cluster with respect to the tie-lines. If the number of tie-lines is greater than 1, d(xij) is 
replaced with the average of AEDs considered for the given set of tie-lines. The updated 
potential function is shown in (23).

This improves the k-means algorithm when applied in power system setting compared 
to general distance used in the classical algorithm.

AED‑based k‑means++ bus clustering method
In this section, we introduce AED-based improved k-means++ algorithm which can be 
used for clustering of large power system networks.

(22)µj =
1

nj

nj
∑

i=1

xij

(23)φ = min

k
∑

j=1

nj
∑

i=1

|d(xij)− d(µj)|
2.
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k‑means++ algorithm

Although the results showed improvements compared to other methods used for clus-
tering power system networks, the AED-based improved k-means clustering method 
may deliver inconsistent results for large power system networks comprising a large 
dataset. This is due to the fact that k-means algorithm uses random centroids for initiali-
zation and thus achieves different results for each simulation. To address this problem, 
a seeding technique was proposed in [24] that selected the first centroid position at ran-
dom and then initialized the remaining centroids by sampling probabilistically, propor-
tional to the squared distance of the nearest centroid. This made an improvement in the 
k-means algorithm which helps to achieve a clustering which is O(log k) competitive. 
This is achieved by considering a potential function that satisfies the following relation 
for any set of buses:

where φ∗ is the potential function corresponding to the set of cluster centroids in the 
network. The resulting augmented k-means algorithm is called k-means++ algorithm. 
In our study, we modify our previous AED-based k-means algorithm by incorporating 
the seeding technique to obtain a much improved AED-based k-means++ algorithm for 
bus clustering.

We would like to point out that k-means++ algorithm, due to its initialization pro-
cess, produces starting centroids uniformly distributed for different iterations compared 
to k-means algorithm starting centroids. This is illustrated in [36].

AED‑based k‑means++ algorithm

Different from commonly used k-means++ algorithm, the improved AED-based algo-
rithm groups the buses in a power system into various clusters based on the closeness 
between buses and the centroid of each cluster in terms of AEDs. The objective of the 
improved AED-based k-means++ algorithm is also to minimize the same potential 
function, φ , as shown in (23).

To achieve the objective described in (23) with the initial seeding as shown in (24), 
the improved AED-based algorithm, shown in Algorithm 3, includes the following main 
steps:

Algorithm 3: AED-based k-means++ algorithm
1.	 Cluster initialization Cluster formation is initialized by selecting one centroid µ1 , 

chosen uniformly at random in the network. This centroid acts as initial reference 
point for the buses to be assigned to an appropriate cluster. Those buses that are 
closer to µ1 are later assigned to the same cluster.

2.	 Determining cluster centroids Given the centroids, µ1, . . . ,µj−1 , a new centroid, µj , is 
chosen and each bus, i, is selected with probability 

 where D(i) = min|d(uv, i)− d(uv,µr)| , where r = 1, . . . , j − 1.

(24)E[φ] ≤ 8(ln k + 2)φ∗,

D(i)2
∑n

i=1 D(i)
2
,
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3.	 Step 2 is repeated until we get all the centroids.
4.	 k-means algorithm Proceed as with the standard k-means algorithm (Algorithm 2) 

with AED used as distance measure as discussed in “AED-based k-means bus cluster-
ing method” section.

� �

Silhouette value analysis

An important problem in the application of k-means algorithm is to determine 
appropriate value of k. This problem has been extensively studied in the mathemati-
cal statistics literature [37, 38]. The authors in [39] identified certain best performing 
methods. In [37], authors determined through extensive simulation studies that all 
the best performers do quite well in selecting the appropriate number of clusters to 
be selected. In our work, we use the silhouette value analysis proposed in [40] that is 
also among the best performers.

Silhouette value analysis is a graphical partitioning technique [41] allowing an 
appreciation of the relative quality of clusters. In our study, the silhouette value 
analysis is used to enhance the quality of clusters identified by the improved AED-
based k-means++ clustering algorithm. The main steps of the silhouette value anal-
ysis, which are incorporated into the improved AED-based k-means algorithm are 
explained below:

Algorithm 4: Silhouette value analysis algorithm
Consider that in a network with k clusters, a bus i ∈ {1, 2, . . . , n} is assigned to a 

cluster j ∈ {1, 2, . . . , k} . Let nj be the number of buses in cluster j and k is the arbi-
trarily selected number of clusters. Clusters neighbouring j are represented by 
m ∈ {1, 2, . . . , k − 1} such that m  = j ; these are all the clusters other than j.

1.	 Evaluating closeness between buses in a cluster In this step, the average closeness 
between the buses in cluster j is evaluated by calculating AED measure, acij , with 
respect to the tie-lines in the network. This is shown in (25). 

2.	 Evaluating closeness between each bus and clusters In this step, the minimum of aver-
age closeness of a bus i with respect to each cluster m  = j is evaluated which is given 
by ebim . 

 where nm is the number of buses in cluster m.

(25)
acij =

1

n

nj
∑

r = 1
r �= i

|d(uv, i)− d(uv, r)|

(26)ebim =
1

nm

nm
∑

r=1

|d(uv, i)− d(uv, r)|, m = 1, . . . , k − 1; m �= j
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3.	 Calculating average silhouette coefficient of all the clusters The silhouette coefficient 
of a bus indicates whether its placement is in an appropriate cluster. Silhouette coef-
ficient (sim) of bus i can be calculated as 

 The average of silhouette coefficients, sim , of buses is evaluated as si . The average 
silhouette coefficient, si , of all the buses in the whole network is evaluated to give a 
perspective of average closeness of all the buses to their neighbouring clusters. The 
coefficient is in a range [− 1,+ 1] , where + 1 indicates that buses are far away from 
their closest neighbouring clusters; while −1 indicates that the buses are closer to 
their neighbouring clusters.

4.	 Selecting value of k based on silhouette value analysis Steps 1, 2 and 3 are repeated for 
different values of k and the one with average silhouette coefficient closest to + 1 is 
selected.

� �

Flowchart

The proposed AED-based bus clustering method integrates the improved AED-based 
k-means++ algorithm and silhouette value analysis to group buses for network 
equivalence of large power system networks. The flowchart shown in Fig. 7 describes 
this bus clustering method.

Power network equivalencing based on AED‑based k‑means++ clustering 
method
Power network equivalents based on aggregation of buses in a cluster

The given power system network is divided into various sub-networks governed by 
local utilities and connected by several tie-lines. Power system operators employ var-
ious approximation methods to quickly analyse the behaviour of power system. To 
replicate the scenario, we employ a similar methodology that divides a given sub-net-
work into smaller areas. This allows us to identify the tie-lines connecting the smaller 
areas. Further our AED-based improved clustering method is then used to identify 
appropriate clusters within each smaller area from which we obtain equivalent net-
work. The equivalent network includes each cluster represented by an equivalent bus 
with a combined generation and load for that cluster connected directly to it. This 
equivalent bus is connected to the other equivalent buses through the tie-lines. A 
sample aggregation is illustrated in Fig. 8. In Fig. 8a, a part of the network is shown 
with two identified clusters connected through a tie-line. Each cluster can be approxi-
mated by considering a single aggregated bus without any change in relevant informa-
tion. As a result, we obtain a simple approximated network with each aggregated bus 
representing its respective cluster. This is shown in Fig. 8b.

(27)sim =
ebim − acij

max(acij , ebim)
, m = 1, . . . , k − 1; m �= j
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Case studies using tie‑lines

In this section, we first demonstrate in “39-bus system (Algorithm 3 and method of 
“AED-based k-means bus clustering method)” section the efficacy of the proposed 
AED-based improved k-means++ clustering method by comparing it with our pre-
vious clustering method [23] (“AED-based k-means bus clustering method” section) 
on the IEEE 39-bus system. Then in “300-bus system” section, we use IEEE 300 bus 
system to show the superiority of the proposed method compared to the widely used 
GSF-based clustering method [5, 6, 21, 22].

39‑bus system (Algorithm 3 and method of “AED‑based k‑means bus clustering method” 

section)

The IEEE 39-bus system is a standard test system composed of 39 buses with 10 gen-
erators and 18 loads connected as shown in Fig. 9 [42, 43]. The net generation and load 
capacity are 5266.69 MW and 5222.80 MW, respectively. In our study, we consider the 
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Fig. 7  Flowchart for the proposed improved k-means++-based clustering process
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system to be divided into two areas interconnected with four tie-lines in order to analyse 
the impact of any injection change in generation/load zones on designated transmission 
line flows. In Fig. 9, area 1 comprises 24 buses, while area 2 consists of 15 buses. Bus 31 
is chosen as slack bus.

In our study, the two tie-line scenario is used to compare the proposed method with 
the method of “AED-based k-means bus clustering method” section. In this scenario, 
any two tie-lines out of four are utilized to connect the two areas in the system. Under 
this scenario, the clusters are identified using the two methods which are based on 
average AEDs of each bus with respect to the two tie-lines connected. The two clus-
tering methods follow different algorithms, and hence, the clusters obtained using 
the two methods are different as observed in Table  1. This may affect the accuracy 
of tie-line flows in equivalent networks compared to the tie-line flows in the original 
network. The comparison of accuracy of tie-line flows in the equivalent network is 
demonstrated using tie-line flow analysis. Further, we also analyse the quality of clus-
ters in the equivalent networks based on the similarity of buses in each cluster.

Tie-line flow analysis (Algorithm 3 and method of “AED-based k-means bus clustering 
method” section) The tie-line flow analysis is based on the comparison of accuracy of net 
tie-line flows in the equivalent networks with those in the original network. The equivalent 
networks are created using Algorithm 3 and method of “AED-based k-means bus cluster-
ing method” section. Different cases with combinations of two tie-lines are studied. In this 

Fig. 9  IEEE 39-bus system
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study, the tie-line flows in the original network are calculated using GSFs, and those in the 
equivalent networks are calculated using average GSFs for each cluster.

Table 2 shows the comparison of net tie-line flows under different tie-line combination 
cases. It can be observed from Table 2 that the net tie-line flows in the equivalent networks 
created using the proposed method are more accurate than those in the equivalent net-
works created using our AED-based k-means clustering method of “AED-based k-means 
bus clustering method” section. For instance, in cases 1, 4, 5 and 6, the net flows in the tie-
lines in equivalent network obtained using AED-based k-means++ method are more accu-
rate compared to the net flows in equivalent network obtained using AED-based k-means 
method. For cases 2 and 3, the net flows in the equivalent networks obtained using the two 
methods are almost similar. Next, we present a study involving the quality of clusters which 
explains the tie-line flow analysis on the basis of cluster formations and similarity of buses 
in each cluster.

Cluster quality analysis We analyse the quality of clusters identified using Algorithm 3 
and method of “AED-based k-means bus clustering method” section. In this study, the 

Table 1  Comparison of clusters identified by two different AED-based clustering methods

Tie-line 25–26 and Tie-line 17–18

Clusters identified by AED-based k-means algorithm 
(“AED-based k-means bus clustering method” section)

Clusters identified by proposed AED-
based improved k-means++ algorithm 
(Algorithm 3)

Clusters Buses Clusters Buses

SA 11 26, 28, 29, 38 SA 11 26, 28, 29, 38

SA 12 27 SA 12 27

SA 13 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 32, 
33, 34, 35, 36

SA 13 10, 11, 12, 13, 14, 15, 16, 17, 
19, 20, 32, 33, 34, 35, 36

SA 21 25, 37 SA 21 25, 37

SA 22 1, 2, 30, 39 SA 22 1, 2, 30

SA 23 18 SA 23 39

SA 24 3, 4, 5, 6, 7, 8, 9, 31 SA 24 3, 18

SA 25 4, 5, 6, 7, 8, 9, 31

Table 2  Comparison of  net tie-line power flows in  the  original network and  AED-based 
equivalent networks for 39 bus system

Case no. Tie-line combination Original network AED-based equivalent networks

Flow (MW) AED-based k-means 
algorithm (“AED-based 
k-means bus clustering 
method” section)

AED-based k-means++ 
algorithm (Algorithm 3)

Flow (MW) % deviation Flow (MW) % deviation

Case 1 TL25–26/TL17–18 41.30 41.50 0.48 41.34 0.10

Case 2 TL25–26/TL4–14 35.78 35.81 0.09 35.75 0.09

Case 3 TL25–26/TL6–11 41.50 40.50 2.40 40.49 2.43

Case 4 TL17–18/TL4–14 10.67 19.73 84.90 18.85 76.66

Case 5 TL17–18/TL6–11 23.58 40.52 71.82 32.76 38.93

Case 6 TL4–14/TL6–11 32.81 32.67 0.43 32.77 0.12
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cluster quality analysis is carried out in terms of the similarity of buses in clusters. The simi-
larity is measured by the average of standard deviation of the AEDs in each of the clusters 
identified by the algorithm in [23] and the k-means++ algorithm of this paper. The stand-
ard deviation of the buses in a cluster can be defined as

where σj represents the standard deviation of AEDs in jth cluster; dij indicates the AED 
of ith bus in jth cluster; and µj indicates the mean of AEDs in jth cluster. In (28), a 
smaller value of standard deviation indicates that the AEDs of the buses tend to be closer 
to the mean of the cluster, i.e., the buses are closer to each other.

We analyse the cluster quality based on (28), the results of which are shown in 
Fig. 10. The figure compares the average of standard deviation of the clusters identified 
by the AED-based improved k-means++ clustering method to those identified with 
our previous method. In Fig. 10, for each case of combinations of tie-lines, grey bars 
indicate the average of standard deviations of AEDs for the clusters obtained using 
AED-based improved k-means++ algorithm; black bars correspond to the average 
of standard deviations of AEDs for the clusters obtained using previous AED-based 
algorithm.

It can be observed from Fig.  10 that for each set of two tie-lines, the similarity 
of buses in clusters created using proposed AED-based k-means++ algorithm is 
clearly more compared to the buses in clusters created using previous AED-based 
method. Based on similarity of buses in the clusters, the created equivalent network 
has net tie-line flows very similar to the original network which can be observed 
from Table  2. Thus, modifying the clustering method by replacing our method of 
“AED-based k-means bus clustering method” section with the proposed AED-based 
improved k-means++ algorithm provides much accurate results for network cluster-
ing schemes.

300‑bus system

The IEEE 300-bus system is a test system developed by the IEEE Test Systems Task Force 
in 1993 [44]. It is composed of 300 buses with 69 generators and 195 loads connected 
through 409 transmission lines as shown in Fig. 11. Similar to IEEE 39-bus system, in 
order to analyse the impact on designated transmission line flows, the system is divided 
into two major areas interconnected using four tie-lines. In Fig. 11, area 1 comprises of 
111 buses with total load of 11824.31 MW; area 2 consists of 189 buses and total load of 
11,701.54 MW. Bus 7049 is chosen as slack bus.

To demonstrate the efficacy of our Algorithm 3, we compare it with the widely used 
GSF-based clustering method. We use different two tie-line scenarios in the 300-bus 
system and the two methods, based on average AEDs and average GSFs respectively, 
are used to identify clusters to obtain equivalent networks using k-means++ algo-
rithm. Further, to validate the use of k-means++ algorithm, we compare Algorithm 3 
with the AED-based method of “AED-based k-means bus clustering method” section 
that uses k-means algorithm. In this study, we use different two tie-line scenarios in 

(28)σj =

√

√

√

√

1

nj

nj
∑

i=1

(dij − µj)
2,
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the 300-bus system for clustering. These methods yield different clusters for the same 
network and in order to compare the two clustering methods, we analyse the accu-
racy of tie-line flows in the equivalent networks. We also analyse the quality of clus-
ters in these equivalent networks in terms of similarity of buses in each cluster.

Tie-line flow analysis (Algorithm 3, method of “AED-based k-means bus clustering 
method” section and GSF-based clustering method) In this section, we compare the 
net tie-line flows in the equivalent networks with those in the original 300-bus net-
work. In order to study the flows, we consider the cases in which different combi-
nations of two tie-lines connect the areas in the network. The results are shown in 
Tables 3 and 4 with different combinations of two tie-lines. The net tie-line flows in 
the equivalent networks in Table 3 are obtained using average GSFs for cluster iden-
tification. It can be observed that for each of the cases, the net tie-line flow in the 
equivalent network created using our proposed method is more accurate as compared 
to the tie-line flow in equivalent network created using the GSF-based method that 
uses k-means++ algorithm. Also, from Table  4, it can be observed that the tie-line 
flows in the AED-based equivalent network using k-means++ algorithm are better 
as compared to the equivalent network that uses k-means algorithm. Further, cluster 
quality analysis is done in order to compare the methods based on the similarity of 
buses in each of the cluster obtained in equivalent networks.

Cluster quality analysis (Algorithm 3 and GSF-based clustering method) In this sec-
tion, we analyse the quality of clusters identified using the proposed method (Algo-
rithm 3) and GSF-based method in terms of similarity of buses. Here, the similarity of 
buses refers to the degree of change in AEDs or GSFs in a cluster with respect to a set 
of tie-lines. The similarity of buses in a cluster is decided using the standard deviation 
of buses given by (28). Based on (28), we obtain results as shown in Fig. 12. In this fig-
ure, for each combination of two tie-lines, grey bars indicate the average of standard 
deviations of AEDs for the clusters obtained using AED-based improved k-means++ 
algorithm; black bars correspond to the average of standard deviations of GSFs for the 
clusters obtained using widely used GSF-based clustering method.

Fig. 10  Comparison of averages of standard deviations of AEDs in clusters for different methods for 39-bus 
system
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Fig. 11  IEEE 300-bus system
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It can be observed from Fig. 12 that for each set of two tie-lines, buses in clusters cre-
ated based on AEDs are more similar than those in clusters created based on GSFs since 
the average of standard deviations of AEDs in clusters for each set of two tie-lines is 
smaller than the average of standard deviations of corresponding GSFs. Based on the 

Table 3  Comparison of net tie-line power flows in the original network and those in GSF 
and AED-based equivalent networks obtained using Algorithm 3 for 300 bus system

Case no. Tie-line combination Original network GSF-based equivalent 
network

AED-based equivalent 
network (Algorithm 3)

Flow (MW) Flow (MW) % deviation Flow (MW) % deviation

Case 1 TL19–87/TL8–14 448.09 375.31 16.24 392.85 12.33

Case 2 TL19–87/TL4–16 1051.79 1019.24 3.09 1032.31 1.85

Case 3 TL19–87/TL62–144 55.34 156.84 183.41 57.93 4.68

Case 4 TL8–14/TL62–144 450.86 391.79 13.10 487.01 8.02

Case 5 TL4–16/TL62–144 994.46 490.70 50.66 973.19 2.14

Table 4  Comparison of net tie-line power flows in the original network and the AED-based 
equivalent networks obtained using the Algorithm 3 and method of “AED-based k-means 
bus clustering method” section

Case no. Tie-line combination Original network AED-based equivalent networks

Flow (MW) AED-based k-means 
algorithm (“AED-based 
k-means bus clustering 
method” section)

AED-based k-means++ 
algorithm (Algorithm 3)

Flow (MW) % deviation Flow (MW) % deviation

Case 1 TL19–87/TL8–14 448.09 292.39 28.08 392.85 12.33

Case 2 TL19–87/TL4–16 1051.79 978.73 6.95 1032.31 1.85

Case 3 TL19–87/TL62–144 55.34 89.87 62.39 57.93 4.68

Case 4 TL8–14/TL62–144 450.86 324.26 28.08 487.01 8.02

Case 5 TL4–16/TL62–144 994.46 922.42 7.24 973.19 2.14

Fig. 12  Comparison of averages of standard deviations of AEDs and GSFs in clusters for 300-bus system
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similarity and closeness of buses in the clusters, the created equivalent network has 
net tie-line flows very similar to that of the original network. It can be observed from 
Table  3, that the net tie-line flows in the equivalent network of 300-bus system cre-
ated by bus clustering method using AED-based improved k-means++ algorithm are 
more accurate than those in the equivalent network created by GSF-based bus cluster-
ing method. Similar results comparing AED-based k-means algorithm [23] and the pro-
posed k-means++ algorithm are shown in Table 4.

Conclusion
In this paper, we have presented an AED-based improved bus clustering method for 
network equivalence of large interconnected power systems. The method utilizes AED-
based improved k-means++ algorithm for grouping similar buses together to form clus-
ters on the basis of their respective AEDs. The new algorithm is obtained by augmenting 
the AED-based k-means algorithm to probabilistically initialize the centroids of clusters 
thereby, as in [26], improving the accuracy of the algorithm. The use of silhouette analy-
sis along with improved k-means++ algorithm has resulted in further maximizing the 
accuracy of the clusters. The proposed method has been compared with our previous 
method [23] on the IEEE 39-bus system. It has been shown that when compared to the 
full network, the net tie-line flows in the equivalent networks created using the proposed 
method are more accurate than those in the equivalent networks created using our pre-
vious method. Also, the proposed method yields a better cluster quality which shows 
that the buses in clusters formed using the proposed method are more closely connected 
than those in the clusters formed using our previous AED-based method.

Moreover, the proposed method has been compared with the widely used GSF-
based clustering method [6] on the IEEE 300-bus system. It has been shown that 
the net tie-line flows in the network with different combinations of tie-lines are 
more accurate for the equivalent network obtained using the proposed AED-based 
improved k-means++ clustering method than the one obtained using GSF-based 
clustering method as well as the one obtained with the AED-based k-means algo-
rithm. Further, the results of the cluster quality analysis show that the buses in the 
clusters obtained using proposed method are more closely connected. Thus, the 
reduced network obtained using the proposed method gives a better representation 
of the original network compared to the widely used GSF-based clustering method.

In “Implications and relevance for social network analysis” section, we discussed 
the relevance and implications of our work in the context of social network analysis. 
We conclude this paper by pointing to an application to what is called the community 
detection problem in social networks. A community in a social network is a collection 
of closely related nodes with respect to a closeness measure. A detailed discussion 
of the community detection problem is given previously [29]. Electrical distance is a 
measure of closeness of two nodes when the links are assigned weights that capture 
the characteristics of interest. The Kirchhoff index [45–47] of a cluster is the sum of 
electrical distances between all pairs of nodes in the cluster. The smaller the Kirch-
hoff index of a cluster, the closer are the nodes in the cluster. On the other hand, the 
sum of the AEDs of all the nodes in a cluster is a measure of the total flow across 
inter-cluster links. Let us call this as inter-cluster Kirchhoff index. Then the smaller 
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the inter-cluster Kirchhoff index of two clusters, the less closely connected are the 
nodes in the two clusters. A problem of interest is designing a clustering algorithm 
that determines clusters such that the Kirchhoff index of each cluster and inter-clus-
ter Kirchhoff index of each pair of clusters are within pre-specified limits. The clus-
ters so determined will provide a solution to the community detection problem in 
social networks. This is a fairly complex problem involving the solution of a bi-criteria 
optimization problem, Kirchhoff indices of clusters and inter-cluster indices of pairs 
of clusters, optimization problem. We are currently studying design of approximation 
heuristics of this community detection problem. This problem is also related to the 
problem of partitioning power networks with the aim of containing the impact of cas-
cades due to failures in the network.
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