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Background
Motivation

Internet of Things (IoT) is expected to play a central role in future digital society. How-
ever, to fully adopt this technology, it is crucial to guarantee its security, specially for 
public utilities whose safety is essential for the well-being of our society  [1]. Recent 
cyber-attacks that created significant damage have been widely reported, e.g. the self-
propagating malware WannaCry that caused a infamous worldwide network hack in 
May 2017 [2]. Developing technologies that can guarantee the safety of large informa-
tion networks, such as IoT, is a challenging but urgent need. As information networks 
get more closely intertwined within our daily lives, ensuring their security and thus 
safety is becoming an even more challenging issue.

As the level of security is typically determined by the weakest link, a major dilemma of 
IoT security lies in the low-complexity sensor networks that are located at the network 
edge. These sensor networks are usually composed by a large number of autonomous 
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electronic devices, which collect critical information for the control and operation of 
IoT [3, 4]. By monitoring extensive geographical areas, these networks can enable a wide 
range of services to society, becoming a key element for the well-being of future smart 
cities [5, 6]. These networks may also perform sensitive tasks, including the surveillance 
over military or secure zones, intrusion detection to private property, monitoring of 
drinkable water tanks and protection from chemical attacks [7, 8].

Although the design of secure wireless sensor networks have been widely studied (e.g. 
[9–11] and references therein), there remain many open problems of both theoretical 
and engineering nature [12]. In particular, as the number of sensors is usually very large, 
precise management of them is challenging or even infeasible. A significant portion of 
the sensors might be deployed in unprotected areas, where it is impossible to ensure 
their physical or cyber security (e.g. war zones, or regions easily accessed by adversar-
ies). Furthermore, sensor nodes are generally not tamper-proof due to cost restrictions, 
and have limited computing and networking capabilities. Therefore, they may not be 
capable of employing complex cryptographic or security protocols.

The vulnerability of sensor nodes makes them potential victims of cyber/physical 
attacks driven by intelligent adversaries. Attacks to information networks are usually 
categorized into outsider attacks and insider attacks. Outsider attacks include (distrib-
uted) denial of service (DoS) attacks, which use the broadcasting nature for wireless 
communications to disrupt the communications capabilities [10]. In contrast, in insider 
attacks the adversary “recruits” sensor nodes by malware through cyber/wireless means, 
or directly by physical substitution [13]. Following the classical Byzantine generals prob-
lem [14], these “Byzantine nodes” are authenticated, and recognized as valid members of 
the network. Byzantine nodes can hence generate false data, exhibit arbitrary behaviour, 
and collude with others to create network malfunctions. In general, insider attacks are 
considered to be more potentially harmful to information networks than outside attacks.

The effect of Byzantine nodes and data falsification over distributed sensor networks 
has been intensely studied; the impact over the network performance has been character-
ized, and various defense mechanisms has been proposed (c.f. [15] for an overview, and 
also [16–20] for some recent contributions). However, all these works focus on networks 
with star or tree topology, and rely on centralizing the decision-making in special nodes, 
called “fusion centers” (FCs), which gather all the sensed data. Therefore, a key element 
in these approaches is a strong division of labour: ordinary sensor nodes merely sense 
and forward data, while the processing is done exclusively at the FC corresponding to a 
distributed-sensing/centralized-processing approach. This literature implicitly assume that 
the FCs are capable of executing secure coding and protocols, and hence, are out of the 
reach of attackers. However, large information networks might require another kind of 
mediator devices, known as data aggregators (DAs), which have the capability to access 
the cloud through high-bandwidth communication links [21]. DAs are attractive targets 
for insider attacks, as they might also be located in unsafe locations due to the limited 
range of sensor node radios. Please note that a tampered DA can completely disable the 
sensing capabilities of all the nodes whose information has been aggregated, generating a 
single point of failure that is likely to be exploited by smart adversaries [22].

An attractive route to address this issue is to consider distributed-sensing/distributed-
processing schemes, which avoid centralized decision-making by distributing processing 
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tasks throughout the network [23]. However, the design of practical distributed-sensing/
distributed-processing schemes is a challenging task, as collective computation phenom-
ena usually exhibit highly non-trivial features  [24, 25]. In effect, even though the dis-
tributed-sensing literature is vast (for classic references c.f. [26–28], and more modern 
surveys see [3, 4, 29, 30]), the construction of optimal distributed schemes is in general 
NP-hard [31]. Moreover, although in many scenarios the optimal schemes can be charac-
terized as a set of thresholds for likelihood functions, the determination of these thresh-
olds is usually an intractable problem [26]. For example, homogeneous thresholds can be 
suboptimal even for networks with similar sensors arranged in star topology [32], being 
only asymptotically optimal in the network size [33]. Moreover, symmetric strategies are 
not suitable for more complicated network topologies, requiring heuristic methods.

Distributed decision‑making and social learning

In parallel, significant research efforts have been dedicated to analysing social learn-
ing, which refers to the decision-making processes that take place within social net-
works  [34]. In these scenarios, agents make decisions based on two elements: private 
information that represents agent’s personal knowledge, and social information derived 
from previous decisions made by the agent’s peers [35].

Social learning has been investigated in pioneering works that study sequential deci-
sion-making of Bayesian agents over simple social network structures  [36, 37]. These 
models showed how, thanks to social interactions, individuals with weak private signals 
can harvest information from the decisions of other agents [38]. Interestingly, it was also 
found that aggregation of rational decisions through information cascades could gen-
erate suboptimal collective responses, degrading the “wisdom of the crowds” into mere 
herd behaviour. After these initial findings, researchers have aimed at developing a deeper 
understanding of information cascades extending the original models by considering more 
general cost metrics [39–41], and by studying the effects of the network topology on the 
aggregated behaviour  [42–45]. Non-Bayesian learning models have also been explored, 
where agents use simple rule-of-thumb methods to exchange information [46–52].

Social learning plays a crucial role in many important social phenomena, e.g. in the 
adoption or rejection of new technology, or in the formation of political opinions [34]. 
Social learning models are particularly interesting for studying information cascades 
and herd dynamics, which arises when the social information pushes all the subse-
quent agents to ignore their own personal knowledge and adopt a homogeneous behav-
iour  [37]. Moreover, there have been a renewed interest in understanding information 
cascades in the context of e-commerce and digital society [45]. For example, information 
cascades might have tremendous consequences in online stores where customers can 
see the opinions of previous customers before deciding to buy a product, or in the emer-
gence of viral media contents based on sequential actions of “like” or “dislike”. Therefore, 
developing a deep understanding of the mechanics behind information cascades, and 
how they impact social learning, is fundamental for our modern networked society.

The main motivation behind this article is to explore the connections between social 
learning and secure sensor networks, building a bridge between the research done sepa-
rately by economists and sociologist on one side and electrical engineers and computer 
scientists on the other. A key insight for establishing this connection is to realize that 



Page 4 of 25Rosas et al. Comput Soc Netw            (2018) 5:10 

each agent’s decision corresponds to a compressed description of his/her private infor-
mation. Therefore, the fact that agents cannot access the private information of others, 
but can only observe their decisions, can be understood as a constraint on the communi-
cation resources. In this way, social learning can be regarded as an information network 
that performs distributed inference under communication constraints (see Table  1). 
Moreover, it would be natural to use social learning principles in the design of distrib-
uted-sensing/distributed-processing schemes, with the hope that this might enable addi-
tional robustness to decision-making processes in sensor networks.

Contributions

In contrast to almost all the existing research, this work considers powerful topology-
aware data falsification attacks, where the adversary knows the network topology and 
leverages this knowledge to take control of the most critical nodes of the network—
either regular nodes, DAs or FCs. This represents a worst-case scenario where the net-
work structure has been disclosed or inferred through network tomography via traffic 
analysis [53]. The reason why this adversary model has not been popular in the literature 
might be because traditional distributed-sensing schemes do not offer any resistance 
against this kind of attack.

This works presents a distributed-sensing/distributed-processing scheme for sen-
sor networks that uses social learning principles in order to deal with a topology-aware 
adversary. The scheme is a threshold-based data fusion strategy, related to those consid-
ered in  [26]. However, its relationship with social decision-making allows an intuitive 
understanding of its mechanisms. For avoiding security threats introduced by FCs, our 
scheme adopt tandem or serial decision sequencing  [27, 54–57]. It is noted that, con-
trasting with some related literature, our analysis does not focus on optimality aspects 
of data fusion, but aims to illustrate how distributed decision-making can enable net-
work resilience against powerful topology-aware data falsification attacks. We demon-
strate how network resilience hold even when a significant number of nodes have been 
compromised.

Our work exploits a positive effect of information cascades that have been overlooked 
before: information cascades make a large number of agents/nodes to hold equally 
qualified estimators, generating many locations where a network operator can collect 
aggregated data. Therefore, information cascades are crucial in our solution for avoid-
ing single points of failure. For enabling a better understanding of information cascades, 

Table 1  Table of  correspondances between  distributed detection in  sensor networks 
and social learning in social networks

Distributed detection Social learning

Sensor node Social agent

Communication range Social neighbourhood

Environmental variables State of the world

Noisy measurement Private information

Local processing Agent’s decision

Bandwidth constraints Decision sharing
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this work extends results presented in [58] providing a mathematical characterization 
of information cascades under data falsification attacks. In particular, our results clarify 
the conditions upon which local actions of individual agents can propagate across the 
network, compromising the collective performance. These results provide a first step 
towards the clarification of these non-trivial social dynamics, enriching our understand-
ing of decision-making processes in biased social networks.

This paper expands the ideas presented in [59] by developing a formalism that allows 
considering incomplete or imperfect social information. This formalism is used to over-
come the strongest limitation of the scheme presented in [59], namely the fact that each 
node was required to overhear and store all the previous transmissions in the network. 
Clearly this cannot take place in a large sensor network, due both to the storage con-
straints of the nodes, and to the large energy consumption required to transmit and 
receive across all pairs of nodes [60]. Therefore, this research presents an important step 
towards practical applications.

The rest of this article is structured as follows: “System model and problem state-
ment” section introduces the system model, describing the network controller and the 
adversary behaviour. Our social learning data fusion scheme is then described in “Social 
learning as a data aggregation scheme” section, where some basic statistical properties 
are explored, and a practical algorithm for implementing the decision rule is derived. 
“Information cascade” section analyses the mathematical properties of the decision 
process, providing a geometrical description and a characterization of information cas-
cades. All these ideas are then illustrated in a concrete scenario in “Proof of concept” 
section. Finally, “Conclusions” section summarizes our main conclusions.

Notation: uppercase letters are used to denote random variables, i.e. X, and lowercase 
letters their realizations, e.g. x. Boldface letters X and x represent random vectors and 
their realizations, respectively. Also, Pw

{

X = x|Y = y
}

= P
{

X = x|Y = y,W = w
}

 
is used as a shorthand notation. A table summarizing the symbols and notation used 
through this article can be found in Appendix D.

System model and problem statement
System model

We consider a sensor network of N nodes, each corresponding to an information-pro-
cessing device that has been deployed in an area of interest. Each node is equipped with 
sensory equipment to track variables of interest following a scheduled duty cycle. The 
measurement of the n-th sensor node is denoted by Sn, taking values over a set S ⊂ R 
that can be discrete or continuous.1 Based on these signals, the network needs to infer 
the value of an underlying binary variable W.

We consider networks where all the nodes have equal sensing capabilities, that is, the 
signals Sn are assumed to be identically distributed. Unfortunately, the general distributed 
detection problem for arbitrarily correlated signals is known to be NP-hard [31]. Hence, 

1  The generalization of our framework and results to vector-valued sensor outputs is straightforward.
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for the sake of tractability, it is assumed that the variables S1, . . . , SN are conditionally 
independent given the event {W = w}, 2 following a probability distribution denoted by 
µw . It is also assumed that both µ0 and µ1 are absolutely continuous with respect to each 
other [67], i.e. no particular signal determines W unequivocally. This property guarantees 
that the log-likelihood ratio of these two distributions is always well defined, being given 
by the logarithm of the corresponding Radon–Nikodym derivative3 �S(s) = log dµ1

dµ0
(s).

In addition to sensing hardware, each node is equipped with limited computing capa-
bility and a radio to wirelessly transit and receive data. Two nodes in the network are 
assumed to be connected if they can exchange information wirelessly. Note that, sen-
sor nodes usually have a very limited battery budget, which imposes severe restrictions 
on their communication capabilities  [68]. Therefore, it is assumed that each node for-
wards its data to others only by broadcasting a binary variable Xn. These simple signals 
do not impose an additional burden on the communication resources, as they could 
be appended to existent wireless control packages and viceversa, or could be shared by 
light, ultrasound or other alternative media.

We focus on the case in which the sensing capabilities of each sensor are limited, and 
hence, any inference about W made based only on the sensed data Sn cannot achieve a 
high accuracy. Interestingly, due to the nature of wireless broadcasting, nearby transmis-
sions can be overheard and their information can be fused with what is extracted from 
the local sensor. The information that a node can extract from overhearing transmis-
sions of other nodes is called “social information”, contrasting with the “sensorial infor-
mation” that is obtained from the sensed signal Sn.

Without loss of generality, nodes transmit their signals sequentially according to their 
indices (i.e. node 1 transmits first, then node 2, etc.).4 It is assumed that this sequence is 
randomly chosen, and can be changed by the network operator at any time and be re-
distributed through the network (c.f. “The sensor network operator and the adversary” 
section). In general the broadcasted signals X1, . . . ,Xn−1 might not be directly observ-
able by the n-th agent because of various restrictions, including range limitations of the 
node’s receiver radio [70], or the limited duty cycles imposed by battery restrictions [68]. 
Therefore, the social observations obtained by the n-th node are represented by Gn ∈ Gn, 
which can be a random scalar, vector, matrix or other mathematical object. Some cases 
of interest are as follows:

	(i)	 The k previous decisions: Gn = (Xn−k , . . . ,Xn−1).

	(ii)	 The average value of all the previous decisions: Gn = 1
n−1

∑n−1
k=1 Xk .

	(iii)	 The decisions of agents connected by an Erdös–Rényi random network with 
parameter ξ ∈ [0, 1],  i.e. Gn = (Z1, . . . ,Zn−1) ∈ {0, 1, e}n−1, where 

(1)Zk =
{

Xk with probability ξ ,
e with probability 1− ξ .

2  The conditional independence of sensor signals is satisfied when the sensor noise is due to local causes (e.g. thermal 
noise), but do not hold when there exist common noise sources (e.g. in the case of distributed acoustic sensors [61]). 
For works that consider sensor interdependence see [62–66].
3  When Sn takes a finite number of values then dµ1

dµ0
(s) = P{Sn=s|W=1}

P{Sn=s|W=0} ,  while if Sn is a continuous random variable with 

conditional p.d.f. p(Sn|W = w) then dµ1

dµ0
(s) = p(s|W=1)

p(s|W=0)
.

4  Note that the synchronization requirements of this procedure are low, so standard techniques can be used to keep the 
nodes’ local clocks within the required synchronization constraints (see e.g. [69]).
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Please note that the Erdös–Rényi model in (iii) has only been used as an illustrative 
example, and it can be easily generalized to consider the topology of any stochastic net-
work of interest.

In this work, we study the social dynamics based on the properties of the transition 
probability from state g ′ ∈ Gn−1 to g ∈ Gn, as given by the conditional probabilities

where xn−1 ∈ {0, 1}. It is also assumed that the social dynamics are causal, meaning that 
Gn is conditionally independent of Sm given W for all m ≥ n.

The sensor network operator and the adversary

The network is managed by a network operator, who is an external agent that uses the 
network as a tool to build an estimate of W. The network operator is opposed by an 
adversary, whose goal is to disrupt the inference capabilities of the network. For this aim, 
the adversary controls a group of authenticated Byzantine nodes without being noticed 
by the network operator, which have been captured by malware through cyber/wireless 
means, or by physical substitution.

The overall performance of a network of N nodes is defined by the accuracy of the 
inference of the last node in the decision sequence. As the decision sequence is gener-
ated randomly by the network operator, every node is equally likely to be at the end of 
the decision sequence. It is further assumed that the adversary has no knowledge of the 
decision sequence, as it can be chosen at run-time and changed regularly. Therefore, as 
the adversary has no reason to target any particular node in the network, hence, it is 
reasonable to assume that the adversary captures nodes randomly. Byzantine nodes are, 
hence, assumed to be uniformly distributed over the network.

For simplicity, we model the strength of the attack with a single parameter pb, which 
corresponds to the probability of a node being compromised.5 Moreover, we assume that 
the capture probability does not depend on W. Hence, the number of Byzantine nodes, 
denoted by N ∗, is a Binomial random variable with E{N ∗} = pbN . Due to the law of 
large numbers, N ∗ ≈ pbN  for a large network, and hence, pb is also the ratio of expected 
Byzantine nodes in the network, which is the traditional metric for attack strength used 
in the literature.

For enabling data processing and forwarding, the network operator defines a strategy, 
i.e. a data fusion scheme given by a collection of (possibly stochastic) functions {πn}∞n=1, 
such that πn : S × Gn → {0, 1} for all n ∈ N. On the other hand, the adversary can freely 
set the values of the binary signals transmitted by Byzantine nodes. This can be mod-
elled as a random mapping C: {0, 1} → {0, 1} that corrupts broadcasted signals. There-
fore, the signal broadcasted by the n-th node is given by

Furthermore, as broadcasted signals are binary, the corruption mapping C(·) can be char-
acterized by the conditional probabilities c0|0 and c0|1, where ci|j = P

{

C(π) = i|π = j
}

.

(2)βn
w(g|xn−1, g

′) := Pw

{

Gn = g|Xn−1 = xn−1,Gn−1 = g ′
}

,

(3)Xn =
{

C(πn(Sn,Gn)) with probability pb, and
πn(Sn,Gn) otherwise.

5  This attack model assumes implicitly that the capture of each node is an independent event. Extensions considering 
cyber-infection propagation properties are possible (c.f. [71]), being left for future studies.



Page 8 of 25Rosas et al. Comput Soc Netw            (2018) 5:10 

The rest of this work focuses on the case in which the network operator can deduce 
the corruption function and can estimate the capture risk pb. Then, the average network 
miss-detection and false alarm rates for an attack of intensity pb are defined as

respectively (note that pb implicitly affects the distribution of GN ). The case in which 
these quantities are unknown can be addressed using the current framework with a min-
max analysis, which is left for future studies.

Problem statement

Our goal is to develop a resilient strategy, in order to provide a reliable estimation of 
W even under a significant number of unidentified Byzantine nodes. Note that in most 
surveillance applications, miss-detections are more important than false alarms, being 
difficult to estimate the cost of the worst-case scenario. Therefore, the average network 
performance is evaluated following the Neyman–Pearson criteria, by setting an allowa-
ble false alarm rate α and focusing on reducing the miss-detection rate [72]. By denoting 
by P the set of all strategies, we have the following optimization problem:

Finding an optimal solution to (6) is a formidable challenge, even for the simple case of net-
works with start topology and no Byzantine attacks (see [30, 73] and references therein). 
Therefore, our aim is to develop a sub-optimal strategy that enables resilience, while being 
suitable for implementation in sensor nodes with limited computational power.

Social learning as a data aggregation scheme
This section describes our proposed data fusion scheme, and explains its function 
against topology-aware data falsification attacks. In the sequel, “Data fusion rule” sec-
tion describes and analyses the data fusion rule, then “Decision statistics” section derives 
basic properties of its statistics, and finally “An algorithm for computing the social log-
likelihood” section presents a practical algorithm for its implementation.

Data fusion rule

Let us assume that each sensor node is a rational agent that tries to maximizes the profit 
of an inference within a social network. Rational agents follow Bayesian strategies,6 which 
can be elegantly described by the following threshold-based decision rule [72, Chapt. 2]:

(4)P{MD; pb} := P1{πN (SN ,GN ) = 0}, and

(5)P
{

FA; pb
}

:= P0{πN (SN ,GN ) = 1},

(6)
minimize
{πn}∞n=1∈P

P{MD; pb}

subject to P{FP; pb} ≤ α.

(7)
P{W = 1|Sn,Gn}
P{W = 0|Sn,Gn}

πn=0

≶
πn=1

u(0, 0)− u(1, 0)

u(1, 1)− u(0, 1)
.

6  Although Bayesian models are elegant and tractable, they assume agents act always rationally [74] and make strong 
assumptions on the knowledge agents have about posterior probabilities [49]. However, Bayesian models provide an 
important benchmark, not necessarily due to their accuracy but because they give an important reference point with 
which other models can be compared [35].
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Above, u(πn,w) is a cost assigned to the decision πn when W = w, which can be engi-
neered in order to match the relevance of miss-detections and false alarms [72].

Let us find a simpler expression for the decision rule (7). Due to the causality con-
straint (c.f. “System model” section), Gn can only be influenced by S1, . . . , Sn−1; and 
therefore, it is conditionally independent of Sn given W. Using this conditional inde-
pendence condition, one can find that

where �S(Sn) is the log-likelihood ratio of Sn (c.f. “System model” section) and �Gn(Gn) 
is the log-likelihood ratio of Gn. Then, using (8) one can re-write (7) as

where τ0 = log P{W=0}
P{W=1} + log u(0,0)−u(1,0)

u(1,1)−u(0,1) . In simple words, (9) states how the n-th node 
should fuse the private and social knowledge: the evidence is provided by the corre-
sponding log-likelihood terms, which are then simply added and then compared against 
a fixed threshold.7

Further understanding of the above decision rule can be attained by studying it from 
the point of view of communication theory [58]. We first note that the decision is made 
not over the raw signal Sn but over the “decision signal” �S(Sn). Interestingly, the pro-
cessing done by the function �S(·) might serve for dimensionality reduction, as �S(Sn) 
is always a single number even though Sn may be a matrix or a high-dimensional vector. 
Due to their construction and the underlying assumptions over Sn (c.f. “System model” 
section), the variables �S(Sn) are identically distributed and conditionally independent 
given W = w. Moreover, by introducing the shorthand notation τn(Gn) = τ0 −�Gn(Gn), 
one can re-write (9) as

Therefore, the decision is made by comparing the decision signal with a decision thresh-
old τn(Gn), which can be efficiently computed using the algorithm proposed in “An 
algorithm for computing the social log-likelihood” section. Note that this represents a 
comparison between the sensed data, summarized by �S(Sn), and the social information 
carried by τn(Gn).

Decision statistics

Let us find expressions for the probabilities of the actions of the n-th agent, first focusing 
on the case n = 1. Note that

(8)
P{W = 1|Sn,Gn}
P{W = 0|Sn,Gn}

= e�S(Sn)+�Gn (Gn),

(9)�S(Sn)+�Gn(Gn)
πn=0

≶
πn=1

τ0,

(10)�S(Sn)
πn=0

≶
πn=1

τn(Gn).

(11)Pw{π1(S1) = 0} = Pw{�S(S1) < τ0} = F�
w (τ0),

7  As the prior distribution of W is usually unknown, τ0 is a free parameter of the scheme. Following the discussion in 
“Problem statement” section, the network operator shall select the lowest value of τ0 that satisfies the required false 
alarm rate specified by the Neyman–Pearson criteria.
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where F�
w (·) is the c.d.f. of �S conditioned on W = w. Then, considering the possibility 

that the first node could be a Byzantine node, one can show that

where we are introducing z0 := pbc0|1 and z1 := 1− pb(1− c0|0 + c0|1) as short-hand 
notation, which are non-negative constants that summarize the strength of the adver-
sary. In particular, when the adversary is powerless then z0 = 0 and z1 = 1, and hence 
Pw{π1(S1) = 0} = Pw{X1 = 0}.

By considering the n-th node, one can find that

The first equality is a consequence of the fact that Sn is conditionally independent of Gn 
given W = w, while the second equality is a consequence that Xn can be expressed as a 
deterministic function of Gn and Sn, and hence, becomes conditionally independent of 
W. Above, (16) shows that τn is a sufficient statistic for predicting Xn with respect to Gn. 
Note that F�

w (x) can be directly computed from the statistics of the distribution of Sn (c.f. 
Appendix A). Moreover, using (16) and following a similar derivation as in (12), one can 
conclude that

Let us now study the statistics of Gn. By using the definition of the transition coefficients 
βn
w(gn+1|xn, gn), one can find that

Note that, using the above derivations, the terms Pw

{

Xn = xn,Gn = gn
}

 can be further 
expressed as

where �(p, x) = x(1− p)+ (1− x)p. Therefore, a closed form expression can be found 
for (18) recursively over Gn.

(12)

Pw{X1 = 0} = pbPw

{

X1 = 0| Byzantine
}

+ (1− pb)Pw

{

X1 = 0|not a Byzantine
}

= pb(c0|0F
�
w (τ0)+ c0|1[1− F�

w (τ0)])+ (1− pb)F
�
w (τ0)

(13)= z0 + z1F
�
w (τ0),

(14)
Pw

{

πn(Sn,Gn) = 0|Gn = gn
}

=
∫

S

Pw

{

πn(sn, gn) = 0|Sn = s
}

µw(s)ds

=
∫

S

�
{

πn(gn, s) = 0
}

µw(s)ds

(15)= Pw

{

�S(s) < τn(gn)
}

(16)= F�
w (τn(gn)).

(17)Pw

{

Xn = 0|Gn = gn
}

= z0 + z1F
�
w (τn(gn)).

(18)Pw

{

Gn+1 = gn+1

}

=
∑

gn∈Gn

∑

xn∈{0,1}
βn
w(gn+1|xn, gn)Pw

{

Xn = xn,Gn = gn
}

.

(19)Pw

{

Xn = xn,Gn = gn
}

= Pw

{

Xn = xn|Gn = gn
}

Pw

{

Gn = gn
}

(20)= �(z0 + z1F
�
w (τn(gn)), xn)Pw

{

Gn = gn
}

,
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An algorithm for computing the social log‑likelihood

The main challenge for implementing (9) as a data processing method in a sensor node 
is to have an efficient algorithm for computing τn(gn). Leveraging the above derivations, 
we develop Algorithm 1 as an iterative procedure for computing τn.

Algorithm 1 Computation of the decision threshold
1: function Compute Tau(N,FΛ

0 (·), FΛ
1 (·), βn

w(·|·, ·), τ0, z0, z1)
2: τ1 = τ0
3: for x1 ∈ {0, 1} do
4: P0 {X1 = x1,G1 = 0} = λ(z0 + z1FΛ

0 (τ1), x1)
5: P1 {X1 = x1,G1 = 0} = λ(z0 + z1FΛ

1 (τ1), x1)
6: for n = 1, . . . , N − 1 do
7: for ∀g ∈ Gn+1 do
8: P0 {Gn+1 = g} =

∑
gn∈Gn

∑
xn∈{0,1} β

n
0 (gn+1|xn, gn)P0 {Xn = xn,Gn = gn}

9: P1 {Gn+1 = g} =
∑

gn∈Gn

∑
xn∈{0,1} β

n
1 (gn+1|xn, gn)P1 {Xn = xn,Gn = gn}

10: ΛGn (g) = log P1{Gn=g}
P0{Gn=g}

11: τn(g) = τ0 − ΛGn (g)
12: for xn+1 ∈ {0, 1} do
13: P0 {Xn+1 = xn+1,Gn+1 = g} = λ(z0 + z1FΛ

0 (τn(gn)), xn+1)P0 {Gn+1 = g}
14: P1 {Xn+1 = xn+1,Gn+1 = g} = λ(z0 + z1FΛ

1 (τn(gn)), xn+1)P1 {Gn+1 = g}
15: return τN (·)

The inputs of Algorithm  1 can be classified into two groups. First, the terms 
N , F�

0 (·), F�
1 (·),βn

w(·|·, ·) are properties of the network (position of the node within the 
decision sequence, sensor statistics and social observability, respectively) that the net-
work operator could measure. On the other hand, τ0, z0, z1 are properties of the adver-
sary profile that depend on the prior statistics of W, the rate of compromised nodes pb 
and the corruption function defined by c0|0 and c0|1 (c.f. “The sensor network operator 
and the adversary” section). In most scenarios, the knowledge of the network control-
ler about these quantities is limited, as attacks are rare and might follow unpredictable 
patterns. Limited knowledge can still be exploited using e.g. Bayesian estimation tech-
niques [75]. If no knowledge is available for the network controller, then these quantities 
can be considered free parameters of the strategy that span a range of alternative bal-
ances between miss-detections and false positives, i.e. a receiver operating characteristic 
(ROC) space.

Algorithm 1 initialises from the initial decision threshold τ0, and explores all the rel-
evant scenarios iteratively in order to build estimations of the likelihood functions that 
are required to compute τN . The computation of the terms Pw

{

Gn = g
}

 is done follow-
ing (18), while the ones involving Pw

{

Xn = xn,Gn = g
}

 follow (20). Please note that the 
algorithm’s complexity scales gracefully for many cases of interest. For the particular 
case of nodes with memory of length k (i.e. Gn = (Xn−k−1, . . . ,Xn−1) ), the complexity of 
Algorithm 1 is O(2kN ), and therefore grows linearly with the size of the network, while 
being limited in the values of k that one can consider. In general, the algorithm complex-
ity scales linearly with N as long as the cardinality of Gn are bounded, or if a significant 
portion of the terms βn

w(gn+1|xn, gn) are zero.
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Information cascade
The term “social learning” refers to the fact that πn(Sn,Gn) becomes a better predictor 
of W as n grows; and hence, larger networks tend to develop a more accurate inference. 
However, as the number of shared signals grows, the corresponding “social pressure” 
can make nodes to ignore their individual measurements to blindly follow the dominant 
choice, triggering a cascade of homogeneous behaviour. It is our interest to clarify the 
role of the social pressure in the decision-making of the agents involved in a social net-
work, as information cascades can introduce severe limitations in the asymptotic perfor-
mance of social learning [44].

Moreover, an adversary can leverage the information cascade phenomenon. In effect, 
if the number of Byzantine nodes N ∗ is large enough then a misleading information cas-
cade can be triggered almost surely, making the learning process to fail. However, if N ∗ 
is not enough then the network may undo the pool of wrong opinions and end up trig-
gering a correct cascade.

In the sequel, the effect of information cascades is first studied in individual nodes in 
“Local information cascades” section. Then, the propagation properties of cascades are 
explored in “Social information dynamics and global cascades” section.

Local information cascades

In general, the decision πn(Sn,Gn) is made based on the evidence provided by both Sn 
and Gn. A local cascade takes place in the n-th agent when the information conveyed by 
Sn is ignored in the decision-making process due to a dominant influence of Gn. We use 
the term “local” to emphasize that this event is related to the data fusion of an individual 
agent. This idea is formalized in the following definition using the notion of conditional 
mutual information [76], denoted as I(·; ·|·).

Definition 1  The social information gn ∈ Gn generates a local information cascade for 
the n-th agent if I(πn; Sn|Gn = gn) = 0.

The above condition summarizes two possibilities: either πn is a deterministic function 
of Gn, and hence there is no variability in πn once Gn has been determined; or there is 
still variability (i.e. πn is a stochastic strategy) but it is conditionally independent of Sn. 
In both cases, the above formulation highlights the fact that the decision πn contains no 
information coming from Sn. 8

Lemma 1  The variables Gn → τn → πn form a Markov Chain (i.e. τn is a sufficient sta-
tistic of Gn for predicting the decision πn)

Proof  Using (16) one can find that

Pw{πn|τn,Gn} = �(F�
w (τn),Xn) = Pw{πn|τn},

8  Recall that Sn and Gn are conditionally independent given W = w (c.f. “Data fusion rule” section), and hence there 
cannot be redundant information about W that is conveyed by Sn and also Gn . For a more detailed discussion about 
redundant information c.f. [77].
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and therefore the conditional independency of πn and Gn given τn is clear. �

Let us now introduce the notation Us = ess sups∈S�S(Sn = s) and 
Ls = ess inf s∈S�S(Sn = s) for the essential supremum and infimum of �S(Sn), being 
the signals within S that most strongly support the hypothesis {W = 1} over {W = 0} 
and vice versa.9 If one of these quantities diverge, this would imply that there are signals 
s ∈ S that provide overwhelming evidence in favour of one of the competing hypotheses. 
If both are finite then the agents are said to have bounded beliefs [44]. As sensory signals 
of electronic devices are ultimately processed digitally, the number of different signals 
that an agent can obtain are finite, and hence their supremum is always finite. Therefore, 
in the sequel we assume that both Ls and Us are finite. Using these notions, the following 
proposition provides a characterization for local information cascades.

Proposition 1  The social information gn ∈ Gn triggers a local information cascade if 
and only if the agents have bounded beliefs and τn(gn) /∈ [Ls,Us].

Proof  Let us assume that the agents have bounded beliefs. From the defini-
tion of F�

w , which is a cumulative density function, it is clear that if τn < Ls then 
F�
0 (τn) = F�

1 (τn) = 0, while if τn > Us then F�
0 (τn) = F�

1 (τn) = 1. Therefore, if 
τn(gn) /∈ [Ls,Us] then, according to (16), it determines πn almost surely, making πn and 
Sn conditionally independent.

To prove the converse by contrapositive, let us assume that Ls < τn(gn) < Us. 
Using again (16) and the definition of Us and Ls , one can conclude that this implies 
that 0 < Pw{πn = 0|Gn} < 1 for both w ∈ {0, 1}. This, in turn, implies that the sets 
S0(τ ) = {s ∈ S|�S(s) < τn(Gn} and S1(τ ) = S − S0 both have positive probability 
under µ0 and µ1, which in turn implies the existence of conditional interdependency 
between πn and Sn in this case. � �

Intuitively, Proposition  1 shows that a local information cascade happens when the 
social information goes above the most informative signal that could be sensed. Some 
consequences of this result are explored in the next section.

Social information dynamics and global cascades

It is of great interest to predict when a local information cascade could propagate across 
the network, disrupting the collective behaviour and hence affecting the network per-
formance. The following definition captures how, during a “global information cascade”, 
the broadcasted signals Xn do not convey information about the corresponding sensor 
signals anymore.

Definition 2  The social information gn ∈ Gn triggers a global information cascade if 
I(Xm; Sm|Gn = gn) = 0 holds for all m ≥ n.

9  The essential supremum is the smallest upper bound over �S(Sn) that holds almost surely, being the natural meas-
ure-theoretic extension of the notion of supremum [78].
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A global information cascade is a succession of local information cascades. As Propo-
sition 1 showed that agents are free from local cascades as long as τn ∈ [Ls,Us], one can 
guess that global cascades are related to the dynamics of τn. These dynamics are deter-
mined by the transitions of Gn, which follows the behaviour dictated by the transition 
coefficients βn

w(·|·, ·). To further study the social information dynamics, we introduce the 
following definitions.

Definition 3  The collection {Gn}∞n=1 is said to have:

1.	 Strongly consistent transitions if, for any W = w, g ∈ Gn and g ′ ∈ Gn−1, 
βn
w(g|1, g ′) > 0 implies τn(g) ≤ τn−1(g

′), while if βn
w(g|0, g ′) > 0 implies 

τn(g) ≥ τn−1(g
′).

2.	 Weakly consistent transitions if, for all g ∈ Gn and g ′ ∈ Gn−1, τn−1(g
′) ≤ Ls 

and Pw

{

Gn = g |Gn−1 = g ′
}

> 0 implies τn(g) ≤ Ls, while τn−1(g
′) ≥ Us and 

Pw

{

Gn = g|Gn−1 = g ′
}

> 0 implies τn(g) ≥ Us. 10

Intuitively, strong consistency means that the decision threshold evolves monotoni-
cally with respect to the broadcasted signals Xn. Correspondingly, weak consistency 
implies that τn cannot return to the interval [LS ,US] once it goes out of it. Moreover, 
the adjectives “strong” and “weak” reflect the fact that weak consistency only takes place 
outside the boundaries of the signal likelihood, while the strong consistency affects all 
the decision space. Moreover, strongly consistent transitions imply weakly consistent 
transitions when there are no Byzantine nodes, as shown in the next lemma.11

Lemma 2  Strongly consistent transitions satisfy the weak consistency condition if 
pb = 0.

Proof  See Appendix B.�  �

Next, it is shown that if the evolution of Gn becomes deterministic and 1–1 after leav-
ing the interval [Ls,Us] (henceforth called weakly invertible transitions), then it satisfies 
the weak consistency condition.

Lemma 3  Weakly invertible transitions imply weakly consistent transitions.

Proof  See Appendix C.�  �

Now we present the main result of this section, which is the characterization of 
information cascades for the case of social information that follows weakly consistent 
transitions.

10  Note that the condition Pw

{

Gn = g|Gn−1 = g′
}

> 0 is equivalent to either βn
w(g, |0, g′) or βn

w(g, |1, g′) being 
strictly positive.
11  It is possible to build examples where weak consistency does not follow from strong consistency when pb > 0.
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Theorem 1  If the social information have weakly consistent transitions, then every local 
information cascade triggers a global information cascade.

Proof  Let us consider g0 ∈ Gn such that it produces a local cascade in the n-th node. 
Then, due to Proposition  1, this implies that τn(g) /∈ [Ls,Us] almost surely. This, com-
bined with the weak consistency assumption, implies that τn+1(Gn+1) /∈ [Ls,Us] almost 
surely. A second application of Proposition 1 shows that Pw{π = 0|Gn+1} is equal to 0 o 
1. This, in turn, guarantees that I(πn+1 : Sn+1|Gn = g) = 0 almost surely, showing that 
the (n+ 1)-th node experiences a local information cascade because of Gn = g0.

A recursive application of the above argument allows one to prove that 
I(πn+m; Sn+m|Gn = g) = 0 for all m ≥ 0, proving the existence of a global cascade.�  �

This theorem has a number of important consequences. Firstly, it provides an intui-
tive geometrical description about the nature of global cascades for networks with weak 
consistency. One can imagine the evolution of τn(Gn) as function of n as a random walk 
within the interval [Ls,Us]. Because of the weak consistency condition, if the random 
walk step out of the interval, it will never come back. Moreover, as a consequence of this 
theorem, the stepping out of [Ls,Us] is a necessary and sufficient condition to trigger a 
global information cascade over the network.

Also, note that when Gn = Xn (i.e. each node overhears all previous decision) one can 
prove that Gn has weakly invertible transitions. Therefore, Theorem 1 is a generalization 
of Theorem 1 of [58] to the case of a network with Byzantine nodes.

Proof of concept
This section illustrates the main results obtained in “Social learning as a data aggrega-
tion scheme” and “Information cascade” sections in a simple scenario. In the following, 
the scenario is described in “Scenario description” section, and numerical simulations 
are discussed in “Discussion” section.

Scenario description

Let us consider a sensor network that has surveillance duties over a sensitive geographi-
cal area. The sensitive area could correspond to a factory, a drinkable water container or 
a warzone, whose key variables need to be supervised. The task of the sensor network is, 
through the observation of these variables, to detect the events {W = 1} and {W = 0} 
that correspond to the presence or absence of an attack to the surveilled area, respec-
tively. No knowledge about of the prior distribution of W is assumed.

We consider nodes that have been deployed randomly over the sensitive area, and 
hence their locations follow a Poisson point process (PPP). The ratio of the area of inter-
est that falls within the range of each sensor is denoted by r. If attacks occur uniformly 
over the surveilled area, then r is also the probability of an attack taking place under 
the coverage area of a particular sensor. Note that, due to the limited sensing range, the 
miss-detection rate of individual nodes is roughly equal to 1− r. As r is usually a small 
number ( 5% in our simulations), this implies that each node is extremely unreliable with-
out cooperation.
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Each node measures its environment using a digital sensor of m levels dynamical 
range (i.e. Sn ∈ {0, 1, . . . ,m− 1} ). Under the absence of an attack, the measured signal 
is assumed to be normally distributed with a particular mean value and variance. For 
simplicity of the analysis, we assume that when conditioned in {W = 0} the signal Sn is 
distributed following a binomial distribution of parameters (m, q), i.e.

which, due to the central limit theorem, approximates a Gaussian variable when m is 
relatively large. Moreover, it is assumed that the sensor dynamical range is adapted 
to match the mean value on the lower third of the sensor dynamical range, i.e. 
E{Sn|W = 0} = m/3. This naturally imposes the requirement q = 1/3.

Following standard statistical approaches, it is further assumed that the sensors 
observe the environment looking for anomalous events, i.e. when the measurement 
is larger than the mean value in more than two standard deviations. This may cor-
respond, for example, to when a specific chemical compound trespasses safe con-
centration values, or when too much movement has been detected over a given time 
window (see e.g. [79]). Using the fact that Var{Sn} = mq(1− q), this gives a threshold 
T = E{Sn} + 2

√
Var{Sn} = np+ 2

√

nq(1− q). Therefore, it is assumed that an attack is 
related to the event of Sn being uniformly distributed in [T, m]. Therefore, one finds that

where H(x) is the discrete Heaviside (step) function given by

In summary, Sn conditioned on {W = 1} is modelled as a mixture model between a 
Binomial and a truncated uniform distribution, where the relative weight between them 
is determined by r (c.f. Fig. 1, top). Finally, using (21) and (22), the log-likelihood func-
tion of the signal Sn can be determined as (see Fig. 1, bottom)

We are interested in studying how a restricted listening period affects the network 
performance. Restricted listening periods are usually mandatory for energy-limited IoT 
devices.12 For simplicity of the analysis, we focus on scenarios in which a node can over-
hear the transmissions of all the other nodes, and hence the social information gathered 

(21)P0{Sn = sn} =
(

m
sn

)

qsn(1− q)m−sn := f (sn;m, q)

(22)

P1{Sn = sn} = (1− r)P1

{

Sn = sn|attack out of range
}

+ rP1

{

Sn = sn|attack in range
}

= (1− r)f (sn;m, q)+ r
H(sn − T )

m− T
,

(23)H(x) =
{

1 if x ≥ 0
0 in other case.

(24)�Sn(sn) = log
P1{Sn = sn}
P0{Sn = sn}

= log

{

(1− r)+
rH(sn − T )

(m− T )f (sn;m, q)

}

.

12  It is well known that the wireless radios of small sensor nodes consume a similar amount of energy while transmit-
ting or receiving data, and hence reducing overhearing periods is key for attaining energy efficiency, and hence long 
network lifetime [60].
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by the n-th node is Gn = (Xn−k−1, . . . ,Xn−1) if n > k . Here k is a design parameter, 
whose impact on the network performance is studied in the next section.

Discussion

We analysed the performance of networks of N = 300 sensor nodes, each of which can 
monitor r = 5% of the target area. Using the definition given in (4) and (5), combined 
with (16), miss-detection and false alarm rates are computed as

where the terms Pw

{

Gn = g
}

 are computed using Algorithm 1 (c.f. “An algorithm for 
computing the social log-likelihood” section). In order to favour the reduction of miss-
detections over false alarms τ0 = 0 is chosen, as it is the lowest value that still allows a 

(25)P{MD} =
∑

g∈Gn

F�
1 (τn(g))P1

{

Gn = g
}

and

(26)P
{

FA
}

=
∑

g∈Gn

(1− F�
0 (τn(g)))P0

{

Gn = g
}

,
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Fig. 1  Top: probability distribution for a digital sensor of m = 16 levels, conditioned on the events {W = 0} 
and {W = 1}. Bottom: Log-likelihood of a digital signal of m = 16 levels with respect to the variable W 
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non-trivial inference process.13 We consider an upper bound of 5% over the tolerable 
false alarm rate.

Simulations demonstrate that the proposed scheme enables strong network resilience in 
this scenario, allowing the sensor network to maintain a low miss-detection rate even in 
the presence of a large number of Byzantine nodes (see Fig. 2). Please recall that if a tradi-
tional distributed detection scheme based on centralized decision is used, a topology-aware 
attacker can cause a miss-detection rate of 100% by just compromising the few nodes that 
perform data aggregation [i.e. the FC(s)]. Figure 2 shows that nodes that individually would 
have a miss-detection rate of 95% can improve up to around 10% even when 30% of the 
nodes are under the control of the attacker. Therefore, by making all the nodes to aggregate 
data, the network can overcome the influence of Byzantine nodes, generating correct infer-
ences even when a significant fraction of nodes have been compromised.

Please note that, for the case of data falsification attack illustrated by Fig.  2, the 
miss-detection rate improves until the network size reaches N = 500, achieving a per-
formance of ≈ 10−12 (not shown in the Figure). This result has two important implica-
tions. First, this confirms the prediction of Theorem 1 that, if the signal log-likelihood 
is bounded, then information cascades are eventually dominant, hence stopping the 
learning process of the network (for a more detailed discussion about this issue please 
c.f. [58]). Secondly, this result stresses a key difference of our approach with respect to 
the existent literature about information cascades: even if information cascades become 
dominant and perfect social learning cannot be achieved, the achieved performance can 
still be very high, and hence useful in a practical information-processing setup.

The network resilience provided by our scheme is influenced by the sensor dynamical 
range, m, as a higher sensor resolution is likely to provide more discriminative power. 
Our results show three sharply distinct regimes (see Fig.  3). First, if m is too small 
( m ≤ 4 ) the network performance is very poor, irrespective of the number of Byzantine 
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Fig. 2  Performance for the inference of each node for various attack intensities, given by the average ratio of 
Byzantine nodes N∗/N = pb. Agents overhear the previous k = 4 broadcasted signals, and use sensors with 
dynamical range of n = 64

13  Simulations showed that if τ < 0 then Xn = 1 for all n ∈ N independently of the value of W, triggering a premature 
information cascade.
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nodes. Secondly, if 8 ≤ m ≤ 32 the miss-detection rate without Byzantine nodes is 
approx. 10% (cf. Fig. 3) and is exponentially degraded by the presence of Byzantine nodes. 
Finally, if m ≥ 64 then the performance under no Byzantine nodes is very high, and is 
degraded super-exponentially by the presence of Byzantine nodes. Interestingly, the 
point at which the miss-detection rate of this regime goes above 10−1 is N ∗/N = 1/3, 
having some resemblance with the well-known 1/3 threshold of the Byzantine generals 
problem [14]. Also, it is intriguing that variations between 8 and 32 levels in the dynami-
cal range provide practically no performance benefits.

Our results also illustrate the effects of the memory size, k, showing that larger values 
of k provide great benefits for the network resilience (see Fig. 4). In effect, by perform-
ing an optimal Bayesian inference over 8 broadcasted signals the network miss-detection 
rate remains below 10% up to an attack intensity of 50% of Byzantine nodes. Unfortu-
nately, the computation and storage requirements of Algorithm  1 grow exponentially 
with k, and hence using memories beyond k = 10 is not practical for resource-limited 
sensor networks. Overcoming this limitation is an interesting future line of investigation.
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Fig. 3  Effect of the sensor dynamical range over the network resilience
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Fig. 4  A larger node memory, which allows incorporating more social signals into the inference process, 
greatly improves the network resilience



Page 20 of 25Rosas et al. Comput Soc Netw            (2018) 5:10 

Conclusions
Traditional approaches to data aggregation over information networks are based on a 
strong division of labour, which discriminates between sensing nodes that merely sense 
and forward data, and FC that monopolize all the processing and inference capabilities. 
This generates a single point of failure that is likely to be exploited by smart adversaries, 
whose interest is the disruption of the network capabilities.

This serious security threat can be overcome by distributing the decision-making process 
across the network using social learning principles. This approach avoids single points of fail-
ure by generating a large number of nodes from where aggregated data can be accessed. In 
this paper, a social learning data fusion scheme has been proposed, which is suitable to be 
implemented in sensor networks consisting of devices with limited computational capabilities.

We showed that if the private signals are bounded then each local information cascade 
triggers a global cascade, extending previous results to the case where an adversary controls a 
number of Byzantine nodes. This result is highly relevant for sensor networks, as digital sen-
sors are intrinsically bounded, and hence satisfy the assumptions of these results. However, 
contrasting with the literature, our approach does not focus on the conditions that guarantee 
perfect asymptotical social learning (i.e. miss-detection and false alarm rates converging to 
zero), but if their limits are small enough for practical applications. Our results show that this 
is indeed the case, even when the number of "overheard transmissions is limited.

Moreover, our results suggest that social learning principles can enable significant 
resilience of an information network against topology-aware data falsification attacks, 
which can totally disable the detection capabilities of traditional sensor networks. Fur-
thermore, our results illustrate how the network resilience can persist even when the 
attacker has compromised an important number of nodes.

It is our hope that these results can motivate further explorations on the interface 
between distributed decision-making, statistical inference and signal processing over 
technological and social networks and multi-agent systems.
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Appendix A: Properties of F�
w

For simplicity let us consider the case of real-value signals, i.e. Sn ∈ R. In this case, the 
c.d.f. of the signal likelihood is given by

(27)F�
w (y) =

∫

Sy
dµw
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where Sy = {x ∈ R|�s(x) ≤ y}. If �s is an increasing function, then 
Sy = {x ∈ R|x ≤ �−1

s (y)} = (−∞,�−1
s (y)] and hence

where Hw(s) is the cumulative density function (c.d.f.) of Sn for W = w. For the gen-
eral case where �s is an arbitrary (piece-wise continuous) function, then Sy can 
be expressed as the union of intervals. Then ∪∞

j=1[aj(y), bj(y)] = Sy (note that 
�s(aj(y)) = �s(bk(y)) = y ) and hence from (27) is clear that

Appendix B: Proof of Lemma 2

Proof  Lets assume that the process Gn has strong consistent transitions and consider 
g ′ ∈ Gn−1 such that τn−1(g

′) ≤ Ls. Note that, under these conditions F�
w (τn−1(g

′)) = 0, 
and hence

holds for any w ∈ {0, 1}. Moreover, this allows to find that

Therefore, due to the strongly consistent transition property, if 
Pw

{

Gn = g|Gn−1 = g ′
}

= βn
w(g|1, g ′) > 0 then

proving the weak consistent transition property. The proof for the case of τn−1(g
′) ≥ Us 

is analogous. � �

Appendix C: Proof of Lemma 3

Proof  Let us consider g0 ∈ Gn such that τn(g0) /∈ [Ls,Us]. Then, due to the weakly 
invertible evolution, for each x ∈ {0, 1} there exists g(x) ∈ Gn+1 such that

(28)F�
w (y) =

∫ �−1
s (y)

−∞
dµw = Hw(�

−1
s (y)),

(29)F�
w (y) =

∞
∑

j=1

∫ bj(y)

aj(y)
dµw =

∞
∑

j=1

[

Hw(bj(y))−Hw(aj(y))
]

.

(30)Pw

{

Xn−1 = 1|Gn−1 = g ′
}

= 1− z0 − z1F
�
w (τn−1(g

′)) = 1− pbc0|1 = 0

(31)
Pw{Gn = g|Gn−1 = g ′} =

∑

xn∈{0,1}
βn
w(g|xn, g

′)Pw

{

Xn−1 = xn|Gn−1 = g ′
}

= βn
w(g|1, g

′).

(32)Ls ≥ τn−1(g
′) ≥ τn(g),

(33)βn
w(g|x, g0) =

{

1 if g = g(x),
0 in other case.
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Moreover, note that while the deterministic assumption implies that the event {Gn = g0} 
could be followed by either {Gn+1 = g(0)} or {Gn+1 = g(1)}, the 1–1 assumption 
requires that g(0) = g(1). With this, note that

Above, (34) is a consequence of g(0) = g(1), while (35) is because of the 1-1 condition 
over the dynamic. Finally, to justify (36) let us first consider

Because τn(g0) /∈ [Ls,Us] then F�
w (τn(g0)) is either 0 or 1; in any case it does not depend 

on W. This, in turn means that P1

{

Xn = x|Gn = g0
}

= P0

{

Xn = x|Gn = g0
}

, which 
explains how (36) is obtained.

Please note that (36) shows that, once τn leaves [Ls,Us], it keeps a constant value. This, in turn, 
shows that weakly deterministic transitions satisfy the weakly consistency condition. � �

Appendix D: List of symbols
Table2 presents a summary of the notation and symbols used in this work.

(34)

�Gn+1(g(0)) = log
P1

{

Gn+1 = g(0)
}

P0

{

Gn+1 = g(0)
}

= log

∑

g ′ ∈ Gn

x ∈ {0, 1}
βn
w(g(x)|x, g ′)P1

{

Xn = x,Gn = g ′
}

∑

g ′ ∈ Gn

x ∈ {0, 1}
βn
w(g(x)|x, g ′)P0

{

Xn = x,Gn = g ′
}

(35)= log

∑

x∈{0,1} P1

{

Xn = x|Gn = g0
}

P1

{

Gn = g0
}

∑

x∈{0,1} P0

{

Xn = x|Gn = g0
}

P0

{

Gn = g0
}

(36)=�Gn−1(g0),

(37)Pw

{

Xn = x|Gn = g0
}

= �(z0 + z1F
�
w (τn(g0)), x).
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