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Background
Nowadays, more and more social activities take place in social networks (SNs for short) 
as the SNs become prevailing, such as sharing information, making friends or finishing 
some team work with others online. Human behaviours in SNs attract more attentions. 
We can conclude that different members play different roles, some members may be 
“leaders” [1], and others who seem ordinary for the moment but it may be outstanding 
in the future.

To specify who are about to be important in the future, making a standard of impor-
tance should be crucial. There are multiple disciplines to recognize an important one. 
For example, in an online community as “Sina Weibo”, we consider the one who owns 
lots of followers as important or whose posts get many retweets as important [2]. In a 
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word, different criteria make different “leaders”, the one who does not match the criteria 
would fail to be important. Usually, a single attribute does not describe the importance 
of a member accurately. Thus, it is necessary for us to formulate a multi-criteria standard 
to measure importance. The skyline operator has thus been introduced to do this in SNs. 
It is well known that the skyline operator is a good tool for multi-criteria decision mak-
ing. It can be used to query for those objects that are not worse than any other. When 
the skyline operator was first used to do promoting in SNs, Peng et al. [3] proposed the 
definition of member promotion and provided the brute-force algorithm to realize it. 
However, this algorithm was inadvisable for a waste of time and space. Thus the authors 
introduced the skyline operator and proposed the dominance-based pruning strategy to 
optimize the ways of result validation. Afterwards, they carried further research on it 
and put forward the concept of promotion boundary for limiting the promotion plans, 
thus led to the boundary-based pruning strategy [4]. At the same time, they also pro-
posed a cost-based pruning strategy, which greatly improved the efficiency of member 
promotion. Nevertheless, the final result was unsatisfactory on account of the simple 
metric of importance.

In this paper, we mainly study directed social graphs with the knowledge of graph theory 
[4], taking Influence, Activeness and ReputationRank as metrics of member’s importance. 
The attributes Influence and Activeness are easy to understand, and they are indegree and 
outdegree in a directed graph correspondingly. We consider that if a person owns lots of 
followers, s/he is influential and if a person follows lots of people, which indicates the ability 
to reach many other members, s/he is active. What is more, we learn from the idea of Goog-
le’s pagerank algorithm, a way of measuring the importance of website pages, put forward 
ReputationRank to measure the importance of a member in SNs. Our goal is to find those 
members who can be “stars” in the future accurately and efficiently. To ensure accuracy, we 
assume that if a person is followed by some important persons, s/he is important too. Fur-
ther, we assume that any two members in a specific direction can be connected only once 
and we employ edge addition as the promotion manner to simulate the process of relation-
ship established. Usually, it will take cost to add new edges between two nodes. Therefore, 
the problem of member promotion in SNs is defined to excavate the most appropriate non-
skyline member(s) which can be promoted to be skyline member(s) by adding new edges 
with the minimum cost. However, the calculation of added ReputationRank metric involves 
series of mathematical operations, it may need enormous computational cost.

To ensure efficiency and tackle the challenge of the computation cost, we mainly consider 
the changes of Influence and Activeness after adding edges, because we only need to add 
the number of directed edges involved. However, when calculating a point’s Reputation-
Rank, it involves some complicated matrix operations. We need to take the total number 
of the members as denominator. Apparently, for the great changes of the denominator (we 
assume the SN is dynamic), the subtle changes of numerator can be ignored. We conduct 
a skyline query on the dimensions of Influence, Activeness and ReputationRank to get the 
non-skyline set, then we carry out a second skyline query on the non-skyline set. We treat 
the skyline set in the second skyline query as our candidate set. It helps to reduce the num-
ber of candidates greatly. The contributions of this paper are summarized as follows.
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• • We learn from the pagerank algorithm and propose to add the ReputationRank to meas-
ure the importance of a member, which helps to improve the accuracy of the prediction.

• • We carry a second skyline query over the non-skyline set which is obtained from the sky-
line query on the three-dimensional dataset and regard the infra-skyline as our candi-
dates. It remarkably reduces the number of candidates. Then we introduce the skyline 
distance and the cost-based as well as dominance-based strategies to prune some mean-
ingless promotion plans.

• • Experiments on DBLP and WikiVote datasets are conducted to show the effectiveness 
and efficiency of our approach.

The rest of this paper is organized as follows. “Related work” section reviews related work. 
In “Preliminaries” section, we introduce several preliminary concepts. Then we bring for-
ward the problem and propose the algorithm with analysis in “Prediction of promoting 
members in SNs” section. The results of the experiments are presented to show the effec-
tiveness and efficiency of our algorithm in “Experimental analysis” section. Finally, we con-
clude our work in “Conclusions” section.

Related work
Skyline queries

The skyline operator was first introduced by Börzsöny et al. [5]. It was a tool for multi-
criteria decision making. Then some representative algorithms for skyline computation 
were proposed, such as Block-Nested-Loops (BNL) and Divide-and-Conquer (D&C) 
[5], Bitmap and Index [6], Nearest Neighbor (NN) [7], and the Branch and Bound Sky-
line (BBS) algorithm [8]. Both BNL and D&C had to traverse the entire dataset before 
returning skyline points. The bitmap-based method transformed each data points to bit 
vectors. In each dimension, the value was represented by the same number ‘1’. However, 
it could not guarantee a good initial response time and the bitmaps would be very large 
for large values. Therefore, another method which transformed multiple dimensions into 
a single one space where objects were clustered and indexed using a B+ tree was raised. 
It helped a lot to save processing time because skyline points could be determined with-
out examining the rest of the objects not accessed yet. The NN algorithm was proposed 
by Kossmann et al. [7]. It could progressively report the skyline set in an order accord-
ing to user’s preferences. However, one data point may be accessed many times until 
being dominated. To find remedy for this drawback, Papadias et al. [8] proposed BBS, 
an R-tree based algorithm, which retrieved skyline points by traversing the R-tree by 
the Best-First strategy. There are also lots of studies on skyline variations for different 
applications such as subspace skylines [9], k-dominant skylines [10], probabilistic skyline 
computation on uncertain data [11], weighted attributes skylines [12], skyline queries 
over data streams [13], skyline analysis on time series data [14], spatial skyline queries 
[15], skyline computation in partially ordered domains [16] and using skylines to mine 
user preferences, making recommendations [17] and searching star scientists [18].

Member promotion

Peng et al. [3] first proposed the concept of member promotion in SNs and provided a 
brute-force algorithm to solve it. It stated that member promotion aimed at promoting 
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the unimportant member which was most potential to be promoted and became impor-
tant one. It considered “most potential” as the minimum promotion cost, which meant 
the member could be able to be promoted at minimum cost. And the brute-force algo-
rithm tried out all the available added edges to find out the optimal promotion plans. 
However, some “meaningless” added edges would also be verified, it led to high time 
cost. Based on the characteristics of the promotion process, Peng et al. [3] proposed the 
IDP (Index-based Dynamic Pruning) algorithm, which could generate some prunable 
plans when met a failed promotion plan. Later, Peng et al. [4] conducted further research 
on the member promotion, which mainly focused on unequal SNs. They brought for-
ward promotion boundary to limit promotion plans. At the same time, they proposed 
the cost-based and dominance-based pruning strategies to reduce the searching space. 
Furthermore, the authors expanded the algorithm, proposed an InfraSky algorithm 
based on equal-weighed SNs. They optimized the cost model and put forward a new 
concept named “Infra-Skyline” to remarkably prune the candidate space [4]. However, 
all the works of Peng et al. [3, 4] are limited for only metrics such as indegree and out-
degree which could not describe a member’s importance entirely, thus the prediction 
results of member promotion were not very satisfying.

A major distinction between our approach and Peng et al.’s works is that we add Repu-
tationRank as a metric attribute, which is more suitable to describe a member’s charac-
teristic besides the two metrics. With an upgrade of the metrics, our work shows more 
efficiency.

Preliminaries
In this paper, SN is modeled as a weighted directed graph G(V, E, W). The nodes in V 
represent the members in the SN. Those elements of E are the existing directed edges 
between the members. Each w ∈ W  denotes the cost for establishing the directed 
edge between any two different members.

Definition 1  (Influence) Given a node v in an SN G(V, E, W), the Influence of v, marked 
as I(v), is the indegree of v.

Definition 2  (Activeness) Given a node v in an SN G(V,  E,  W), the Activeness of v, 
marked as A(v), is the outdegree of v.

Definition 3  (ReputationRank) Given a node v in an SN G(V, E, W), the Reputation-
Rank of v, marked as P(v), is the value of the corresponding component in the eigenvec-
tor of the normalized social relationship matrix whose eigenvalue is 1.

Example 1  Suppose that there are three nodes in an SN, let the nodes be v1 , v2 , v3 , if 
the SN’s normalized social relationship matrix has an eigenvalue 1 and its corresponding 
eigenvector is p = (p1, p2, p3) (we can obtain these values by the method introduced in 
“ReputationRank” section), then we know that v1 , v2 , v3 ’s ReputaionRank is p1 , p2 and p3 , 
respectively.
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Definition 4  (Social relationship matrix) Given an SN G(V, E, W), the social relation-
ship matrix is an adjacency matrix which expresses the links between the members in 
the SN, denoted as M.

Definition 5  (Normalization social matrix) If a social relationship matrix is M, then its 
normalization social matrix is a matrix where the sum of the elements for each column 
is 1. We denote the normalization matrix as M′.

Definition 6  (Dominance) Given an SN G(V, E, W), ∀v1, v2 ∈ V  , we say v1 dominates 
v2 if and only if v1 is not worse in Influence dimension, Activeness dimension and Reputa-
tionRank dimension, and is better in at least one dimension than v2.

Definition 7  (Dominator set) Given an SN G(V, E, W), if v1 dominates v2 , we say v1 is 
a dominator of v2 . Correspondingly, all dominators of a member v, marked as δ(v) , are 
denoted as the dominator set of v.

Definition 8  (Skyline) Given an SN G(V, E, W), the skyline of G, denoted as SG , is the 
set of members which are not dominated by any other member.

Definition 9  (Infra-skyline) Given an SN G(V, E, W), the infra-skyline of G is the sky-
line of the set of all non-skyline members of G, namely, if SG is the skyline set of G, then 
the infra-skyline of G is SG−SG.

Example 2  Given an SN consists of seven members, namely {A,B,C ,D,E, F ,G} , sup-
pose that the skyline set is {A,B,D} , what is more, E is dominated by F, then the infra-
skyline in the SN is {C , F ,G}.

Definition 10  (Promotion cost) Given an SN G(V,  E,  W), the promotion cost of a 
candidate c, is the sum of all the weights corresponding to the edges being added at c, 
denoted as cost(c, c′) =

∑

e∈Ea
γ (e) , where c′ is the point after the edges are added at 

point c, Ea is the set of added edges and γ (e) is the cost of adding edge e.

Assume I(v), A(v) and P(v) represent the Influence, Activeness and ReputationRank 
of node v in V, respectively. We consider the larger the values of I(v), A(v) and P(v) 
are, the better they are.

ReputationRank

ReputationRank is obtained by counting the number and quality of followers to a 
person to determine a rough estimate of how important the person is. The Reputa-
tionRank of a member is defined recursively and depends on the number and Repu-
tationRank metric of all followers. A member that is followed by many members with 
high ReputationRank receives a high rank itself.

From the point of mathematics, members’ ReputationRank depends on the repu-
tation of those members who follow them. The ReputationRank of the follower 
also depends on persons who follow her/him, and the subsequent process can be 
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implemented in the same manner. Thus, for solving this kind of “infinite regression”, 
we define P(vi) as the ReputationRank of member i, and we notice that the ith column 
of the social relationship matrix shows those members who follow her/him. There-
fore, we can get vi ’s ReputationRank by adding these products between the relation 
state and the ReputationRank of all other members, namely

where the coefficient xji denotes the reciprocal of outdegree of member j, g is the num-
ber of the members.

Example 3  If there are seven members in an SN, as shown in Fig. 1, the member v2 is 
followed by v1 , v3 and v4 , then the rest entries of the second column in the social relation-
ship matrix are all 0s. Furthermore, v1 ’s outdegree is 5, v3 ’s outdegree is 2 and v4 ’s outde-
gree is 4. Thus, we consider v2 ’s ReputationRank is 15pv1 +

1
2p(v3)+

1
4p(v4).

From Example 3, we know that if the members v1 , v3 and v4 have a high Reputation-
Rank, so does v2.

Therefore, we have g formulas such as Eq. (1), and we have a system of g linear 
equations. If we compute the social relationship matrix M, put the value of the Repu-
tationRank into the vector and adopt Katz’s Suppose [19] to normalize the social rela-
tionship matrix, the whole formula system could be expressed as

where P represents the vector consisting of the corresponding ReputationRank of each 
member in the limited state and MT

′

 denotes the normalized transposed social matrix.
By reorganizing these formulas, we obtain the formula (I −MT

′

)P = 0 , where I repre-
sents a g-dimensional unit matrix, and both P and 0 represent vectors with the length of 
g. The corresponding component of eigenvector P whose eigenvalue is 1 represents the 
ReputationRank of the members [12].

The property of ReputationRank

It should be noticed that a point’s ReputationRank is partially consistent with its Influ-
ence. However, this property alone cannot show the difference between the top and the 
next. Actually, the Activeness also affects the ReputationRank.

Example 4  Given seven members in the SN, as shown in Fig. 1, its corresponding social 
relationship matrix M and its normalized transposed matrix MT

′

 are as follows:

(1)P(vi) = x1iP(v1)+ x2iP(v2)+ · · · + xgiP(vg ),

(2)P = MT
′

P,
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Then we obtain the eigenvector α = (0.304, 0.166, 0141, 0.105, 0.179, 0.045, 0.061)T of 
MT

′

 when the eigenvalue is 1. We can conclude that the ReputationRank of each mem-
ber is almost consistent with their value of Influence. It is obvious that the one whose ID 
is 1 has the highest ReputationRank almost for one third of all. We think it is because that 
Member 1 gains all the reputation from Member 2 who has high ReputationRank. What 
is more, Member 1 has the highest Influence and Activeness, thus we consider Member 1 
is the most popular one in the SN. On the other hand, we find that although Member 2 
and Member 3 have the same Influence, Member 2’s ReputationRank is larger than that 
of Member 3. The reason is that Member 2 owns one second of Member 3’s Reputation-
Rank but Member 3 only owns one fourth of Member 5’ ReputationRank. Therefore, we 
conclude that the ReputationRank of a member in an SN is not only related to the Influ-
ence but also to the ReputationRank of their followers and their followers’ Activeness.

Prediction of promoting members in SNs
Problem statement

The problem we study in this paper is to locate the most “potential” member(s) for pro-
motion by means of elevating it (them) into the skyline. Suppose we have two datasets 
D1 and D2 . D1 represents some data a few years ago and the D2 represents that of the fol-
lowing years. If S1 = SKY (D1) , S′1 = SKY (D1 − S1) , S2 = SKY (D2) , where the SKY() rep-
resents the skyline set of the dataset, then S′1 is the candidate set in our algorithm. After 
promoting towards each point in S′1 , if there exist some points in S′1 appearing in S2 , the 
prediction is successful. Otherwise, it fails. Since the non-skyline members are candi-
dates for promotion, if a non-skyline member is promoted, some edges are added to the 
network and the cost of this promotion is to sum up all the costs of the added edges. In 
addition, we know that added edges may have effects on the metrics of all members in 
the SN which may need to be recalculated frequently, thus the time cost to do promo-
tion is extremely high. Therefore, finding the suitable non-skyline members promoted to 
be skyline members with minimum cost is the goal of member promotion in SNs.

The sort‑projection operation

We project all the members into a two-dimensional Cartesian coordinate system in that 
we only consider the change of Influence and Activeness, where the x-axis represents the 

Fig. 1  A social network example
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Influence and the y-axis represents the Activeness. Taking the candidate c as an example, 
suppose that c is dominated by t skyline points, it is worth noting that the candidate c 
is dominated in three dimensions (the Influence dimension, Activeness dimension and 
ReputationRank dimension). But in the process of edge addition, we just consider the 
dominance on the Influence and Activeness. Because it is obvious that if a member is 
not strictly dominated on two dimensions, s/he will not be dominated on three dimen-
sions either [10]. We simply sort the skyline points in ascending order on x-axis. What 
is more, we assume the weights to be arbitrary positive integer numbers from 1 to 10. 
Some terms mentioned above are defined as follows.

Definition 11  (Strictly dominate) Given an SN G(V, E, W), if p1 ≺ p2 and p1 is larger 
than p2 on each dimension, we say p1 strictly dominates p2 , denoted by p1 ≺≺ p2.

Definition 12  (Skyline distance) Given a set DS of points in a two-dimensional space, 
a candidate c, and a path Path(.,  .), the skyline distance of c is the minimum value of 
Path(c, c′) , where c′ is a position in the two-dimensional space such that x.c′ ≥ x.c , and 
y.c′ ≥ y.c , and c′ is not strictly dominated by any point in DS. We denote the skyline dis-
tance as SkyDist().

Suppose that c is strictly dominated by t skyline points in SKY(DS). For any position c′ 
which is not strictly dominated by any point in DS satisfies x.c′ ≥ x.c , and y.c′ ≥ y.c , the 
promotion from c to c′ can be viewed as a path from c to c′ , which always goes up along 
axes. Since we use linear cost functions cost(c, c′) as the sum of the weighted length of 
the segments on the path. We aim to find a path with the minimum value so that the end 
point c′ is not strictly dominated by any skyline point, and x.c′ ≥ x.c, y.c′ ≥ y.c.

Definition 13  (Skyline boundary) Given a set SKY of skyline points in DS, we say a 
point p is on the skyline boundary if there exists a point u ∈ SKY  such that u ≺ p and 
there does not exist a point u′ ∈ SKY  , such that u′ << p.

From the definition of skyline boundary, we conclude that the skyline distance of each 
point on the skyline boundary is 0 [20].

Given a candidate c and the t skyline points s1 , s2, . . . , st , we plot the lines x = xc , 
x = xsi , y = yc and y = ysi , respectively, as shown in Fig. 2, we find there would be some 
intersections, we use triangles to represent these intersections. We call those intersec-
tions on the skyline boundary local optimal points. In Fig.2, p1 , p2 , p3 , and p4 are the 
local optimal points.

Therefore, in the wo-dimensional space, for the candidate c and the t skyline points 
s1 , s2, . . . , st , if we have x.s1 < x.s2 < · · · < x.st . Without loss of generality, we know 
y.s1 > y.s2 > · · · > y.st . We can conclude that there are t + 1 local optimal points and 
the ith one pi is given by the following formula:

(4)Pi =







(x.c, y.s1), i = 1;
(x.si−1, y.si), 2 ≤ i ≤ t;
(x.st , y.c), i = t + 1.
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Consider a candidate c dominated by t skyline points s1 , s2, . . . , st . Let p1, . . . , pr be the 
r local optimal points determined by c and s1 , s2, . . . , st , then the skyline distance of c is 
the minimum path from c to pi.

Example 5  There is a candidate c and s1, s2, s3 are skyline points which dominate c, as 
shown in Fig. 2, we can obtain the four local optimal points p1 , p2 , p3 and p4 by Eq. (4), 
by comparing the path between c and pi , we can get the skyline distance of c. In Fig. 2, 
the path between c and p1 , p2 , p3 , and p4 is 2, 2, 2.5 and 3, respectively. Therefore, the 
skyline distance of c is 2.

Algorithm 1 gives the pseudo-codes of the sort-projection operation. Assume that the 
number of input skyline points is m, it is easy to know that the cost of the sorting step 
is O(m logm) . Then the time cost of remaining step for obtaining the skyline distance 
mainly depends on the number of local optimal points. From Eq. (4), we know that the 
time complexity of calculating the local optimal points is O(1). Assume that the num-
ber of the local optimal points is k, then it is easy to know that the time complexity of 
obtaining the minimum path from candidate c to local optimal points is O(k). Therefore, 
the time complexity of Algorithm 1 is O(m logm+ 1+ k) = O(m logm).

Algorithm 1: The sort-projection algorithm SP (c, SKY )
Input: SKY ()
Output: SkyDist(c)

1 sort points in SKY () in ascending order on x-axis;
2 P = {pi | l} where pi is given by Equation (4);
3 return min{Path(c, P ) | P}.

Pruning by cost and dominance

Definition 14  (Promotion plan) Given an SN G(V, E, W), for a candidate c ∈ candidate 
set, the promotion plan of c includes all the added edges in the process of a promotion 
attempt.

Fig. 2  A skyline distance example
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After obtaining the skyline distance of a candidate, we get the necessary condition for 
the candidate not being dominated by skyline points. Taking the candidate c as an exam-
ple, assume that c′ is the end point after promotion with the skyline distance of c, then 
there exists three different solutions towards the different values of c′:

1.	 If xc′ = xc , then xc′′ = xc′ , yc′′ = yc′ + 1;
2.	 If yc′ = yc , then xc′′ = xc′ + 1, yc′′ = yc′;
3.	 If xc′ �= xc and yc′ �= yc , then xc′′ = xc′ + 1, yc′′ = yc′ + 1.

We denote the transformed c′ as c′′ . It is obvious that c′′ could not be dominated by any 
point at all. If we call the position where a candidate will not be dominated as GoodPo-
sition(), we say c′′ ∈ GoodPosition() . Besides c′′ , all points in the skyline set will not be 
dominated either. Thus, the dominator set of c belongs to GoodPosition(c).

In view of unequal costs for establishing different edges, it probably takes differ-
ent costs to promote c by different plans. Therefore, we organize all the edges which 
can be added to the plans against each candidate c, respectively, denoted as Ec and 
sort the edges in ascending order of weights. Then we can locate the promotion plans 
which satisfy the constraints of GoodPosition(c) from the head of Ec and treat them 
as our original plans. These original plans will be put into a priority queue. When 
the plan is extracted from the priority queue to be verified, we first of all generate its 
successive plans and put the successive plans into the priority queue. The successive 
plans are generated by the Observation 1. Once the plan is verified to be successful to 
promote the candidates, the process of promotion will be ended. However, if a plan 
cannot successfully promote the candidates, we can generate some prunable plans 
based on the failed plan. The guidelines are shown in Observation 2. The idea is the 
same as the IDP algorithm [3].

Observation 1  The successive plans are generated by the following rules:

• • If the current plan does not contain the minimum-cost edge e0 , add it to the cur-
rent plan.

• • If the current plan does not contain any successive edge of ei , namely ei+1 , replace 
ei with ei+1.

Observation 2  The prunable plans are generated by the following rules:

Theorem 1  If the added edge e connecting node vi and the candidate node c still can-
not promote c to the skyline set, all the attempts of adding an edge e′ connecting the node 
vj and c with the same direction as e cannot promote c to the skyline set either, where 
vj ∈ δ(vi).

Proof  Assuming that after adding an edge e, vi(I(v),A(v)) will change to vi(I ′(v),A′(v)) , 
and c(I(c), A(c)) will change to c(I ′(c),A′(c)) . Assume there is a point p still dominates c, 
if we add an edge e′ connecting node vj and c with the same direction as e, and vj should 
belong to δ(v) , we consider there should be two situations for vj:
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1.	 vj �= p . If vj is a dominator of vi but not be p, after adding an edge from vj to c, 
(I(vj),A(vj)) will change to (I ′(vj),A′(vj)) , and (I(c), A(c)) will change to (I ′(c),A′(c)) , 
then p will still dominate c;

2.	 vj = p . If vj is a dominator of vi and dominates c when (I(c),  A(c)) changes to 
(I ′(c),A′(c)) , after adding an edge from p to c, (I(p), A(p)) will change in (I ′(p),A′(p)) , 
and (I(c), A(c)) will change to (I ′(c),A′(c)) , it is obvious that the changed p will still 
dominate c because it dominates c before one of the two values corresponding to the 
metrics increases.

In summary, all the attempts of adding an edge e′ connecting the node vj and c with the 
same direction as e cannot promote c to the skyline set either, where vj ∈ δ(vi) .�  �

Corollary 1  If a promotion plan p(e1, . . . , ew) cannot successfully promote its target can-
didate c to the skyline set, all the plans with w edges which belong to 

∏w
i=1 li can be skipped 

in the subsequent verification process against c, where for each ei connecting vi and c, li is a 
list containing all the non-existing edges each of which links one member of δ(vi) and c with 
the same direction as ei ( i = 1, 2, . . . ,w) , 

∏w
i=1 li is the Cartesian product of li.

Proof  According to Theorem  1, if each edge in li cannot successfully promote c, it 
means li cannot do it either. Thus, all the plans with w edges belonging to the Cartesian 
product of li will fail to promote the candidate.
The steps for pruning some plans are shown in Algorithm 2. Note that eic denotes the 
edge which connects from vi to c. In Algorithm  2, Lines 3–6 and 7–9 are based on 
Theorem 1 and Corollary 1, respectively. Thus, we obtain the prunable plans of a given 
candidate.
Assume that for the candidate c, the number of available edges is k. For the worst case 
that all edges belong to available edge set fail to make c successfully promoted, suppose 
that the number of nodes which dominate c is h, then the time complexity of generating 
some prunable edges against each failed point is O(hk). Furthermore, the time complex-
ity of generating the prunable plans is O(1). Thus, the total time complexity in the worst 
case is O(hk).�  �

Algorithm 2: GeneratePrunablePlans GeneratePrunP (Ec)
Input: Ec:available edge set against c
Output: prunable plans of c.

1 initialize an empty edge set PrunE = {};
2 for each edge e ∈ Ec do
3 if eic ∈ Ec fails to make c promoted then
4 S = δ(vi);
5 for each point vj ∈ S&&ejc ∈ Ec do
6 PrunE = PrunE ∪ {ejc};

7 if a plan pl(e1, e2, ..., ew) fails to make c promoted then
8 li = PrunEi;
9 PrunP =

∏w
i=1 li;

10 return PrunP.
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Verification of the result

After pruning some meaningless plans based on promotion cost and dominance, the 
remaining plans will be carried out for promotion. It is well known that the skyline set 
may change after a promotion attempt, thus the candidate may still be dominated by 
other members. Therefore, the final verification must be executed to examine the results 
of the promotions.

It is time-consuming if we recalculate the skyline set after each promotion. We notice 
that those points which do not dominate the candidate before promotion would not 
dominate it after promotion either. Thus we can ignore it in the verification process. 
Therefore, after pruning, we should just consider the following situations when verifying:

• • The points which dominate the candidate before promotion.
• • The points which are contained in the promotion plans.

The PromSky algorithm

The whole process of member promotion in an SN is presented in Algorithm  3. Line 
2 represents the generation of candidate set. Line 4 represents a preprocessing phase 
by generating the sorted available edges. The skyline distance of each candidate is cal-
culated in Line 5. Then GoodPosition() is generated in Lines 6–14. The point c′ is the 
promoted point with the skyline distance of c. Line 16 shows that the corresponding 
promotion plans are generated and put into the priority queue Q. Once the queue is not 
empty, we fetch the plan with minimum cost for further verification. Line 18 shows that 
before verifying the plan, we first generate its children plans by Observation 1 so that 
we can verify all the possible plans in ascending order of cost. Lines 21–24 represent 
that after checking based on the result verification strategy the result will be output if 
the promotion succeeds. If not, some prunable plans will be generated. The generation 
of prunable plans are showed in Line 28. Lines 25–26 represent that if the plan is in the 
prunable list, there is no need of further verification. Lines 19–20 show that after a suc-
cessful promotion, the process will halt once we encounter a plan with the higher cost.

We estimate the time complexity of our PromSky algorithm in the worst case. 
Assumed that the candidate set is M, it takes O(|M|) time to build its available edge set 
and O(|M| log |M|) time to calculate the skyline distance. For the recursion on the basis 
of each plan, the worst time complexity of generating the children plans is O(|M|). It will 
take O(log |M|) to build and search the min heap. The generation process of the prunable 
list will cost O(|m|2) . We build an index such as B+ tree for speeding up the search in the 
prunable list, whose time cost can maintain steady at around O(|M| log |M|) . The result 
checking phase will take O(|M|) at worst. Theoretically, the worst time complexity of 
Algorithm 3 is O(|M|3)(However, the algorithm usually reaches the result at early time 
in experiments).
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Algorithm 3: The promotion algorithm PromSky(G)
Input: social network G(V,E,W ).
Output: optimal members for promotion and corresponding plans.

1 initialize a priority queue Q;
2 C = SKY (V − SKY (V ));
3 for each c ∈ C do
4 E=genCandidateEdgeSet(c);
5 SkyDist(c) = Path(c, SKY );
6 if c.x == c′.x then
7 good.x = SkyDist(c.x);
8 good.y = SkyDist(c.y) + 1;

9 if c.y == c′.y then
10 good.x = SkyDist(c.x) + 1;
11 good.y = SkyDist(c.y);

12 else
13 good.x = SkyDist(c.x) + 1;
14 good.y = SkyDist(c.y) + 1;

15 GetDominator(c);
16 P=getMinCostPlan(good, GetDominator(c), E) and add P into Q;
17 while p=ExtractMin(Q) do
18 pchild = GenerateChildren(p,E) and add it into Q;
19 if psucc �= NULL && cost(c) > cost(psucc) then
20 break;

21 if c is promoted by p then
22 return c and p;
23 if psucc=∅ then
24 psucc = p;

25 if p ∈ prunableList then
26 continue;

27 else
28 genPrunableP lans(p, c).

Analysis

In the SkyBoundary algorithm, Peng et al. [4] only used the Authoritativeness(indegree) 
and Hubness(outdegree) as the metrics, and described the plan limitation for promotion 
by bringing forward a new concept called “promotion boundary”, and then proposed an 
effective boundary-based pruning strategy to prune the searching space. In this paper, 
we propose the concept of ReputationRank based on the Google’s pagerank algorithm 
and add it as a measure attribute to describe the importance of a member, which helps to 
improve the accuracy of the prediction to some degree. Then we present the definition 
of skyline distance to obtain the necessary condition for not being dominated. At the 
same time, it also helps a lot to cut down the number of promotion plans.

On the other hand, when making a comparison on the time, from the size of the candi-
date set, when experimenting on the real-world datasets, the candidate set is all the non-
skyline set in the SkyBoundary algorithm [4]. However, we carry a skyline query over the 
non-skyline set under the consideration of three dimensions and take the infra-skyline 
as the candidates so that remarkably pruning the size of the candidates and controlling 
the result set in a reliable range. On the other hand, by calculating the skyline distance of 
the candidate, we obtain the minimum path from the candidate’s position to where not 
being strictly dominated. Then after trying all the positions belong to GoodPositions(), 
we can get the promotion plans that succeed in promoting the candidate by verifying the 
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plans one by one. However, in [4], the SkyBoundary algorithm although pruned some 
meaningless plans based on the promotion boundary and got the constraint of promo-
tion plans. They merged all the possible good points with the skyline points which domi-
nate the candidate, then verified it in sequence to get the minimum cost one. Apparently, 
their method needs more time compared to our proposed algorithm.

Experimental analysis
Setup

The experiments are implemented using C++ with Visual Studio 2010 and conducted 
on an Intel Core CPU i75500U@2.4GHZ machine with 8G RAM and 1 TBytes Hard disk 
running on Windows 7. We use two datasets for the experiments.

1.	 WikiVote dataset: Wikipedia is an encyclopedia that any volunteers all over the world 
are able to write on it collaboratively. The dataset1 contains all administrator elec-
tions and vote history data from 2004 to 2008. 2794 elections with 103663 total votes 
and 7066 users participating in the elections are contained in the dataset. Users are 
those who cast votes or are voted on. Each record includes 5 parts such as E, T, U, 
N, V. They correspondingly represent whether the election is successful or not, the 
time election is closed, user id (and username) of editor that is being considered for 
promotion, user id (and username) of the nominator and each voter’s voting results. 
Nodes in the network represent users and a directed edge from node p to node q 
represents that user p votes on user q. We set all the weights to be random integers 
between 1 and 10 for simplicity.

2.	 DBLP dataset: DBLP2 is a computer science bibliography website. Each record of 
the DBLP dataset consists of authors’ names, paper title and published year. We col-
lect all the records from 1992 to 2016. For a paper that was accomplished by several 
authors, we think the first author generally makes major contributions and the others 
do minor contributions. Thus, we build a directed graph by the co-author network. 
Nodes in the graph represent the authors and the directed edges with the first author 
as the end node and the other authors, respectively, as the start nodes represent the 
relationships between authors. We set all the weights of edges to be random integers 
between 1 and 10 for simplicity.

Results

RanSky algorithm: we pick up a candidate from the candidate set, and we randomly 
choose some added edges from the available edges until this candidate being success-
fully promoted. We denote it as a RanSky algorithm which is an adaptive version of the 
random algorithm in [4].

Promotion cost comparisons

In this set of experiments, we make a comparison on promotion costs of our Prom-
Sky algorithm with the RanSky algorithm. We consider the sum of the added edges’ 

1  http://snap.stanf​ord.edu/data/wiki-Vote.html.
2  http://dblp.org/.

http://snap.stanford.edu/data/wiki-Vote.html
http://dblp.org/
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weights as the promotion cost of the Random algorithm. Then we use the PromSky 
algorithm to find out the optimal promotion plans and calculate their promotion 
costs, respectively.

Figure 3 illustrates the promotion costs of the two algorithms on WikiVote and DBLP 
datasets, respectively. The promotion costs of the two algorithms both grow with the 
increase of the network scales. It is obvious that the promotion cost of RanSky algorithm 
is much more than the PromSky algorithm, which means that our PromSky algorithm 
always provides the optimal plans. What is more, the differences between the two pro-
motion costs in both datasets basically grow along with the scale of the network. By the 
way, we think the promotion cost on the WikiVote dataset is much more than the cost 
on the DBLP dataset is due to the existing connected edges on the WikiVote are less 
than that on the DBLP dataset.

Successful rate comparisons

We make a comparison of our PromSky algorithm with the SkyBoundary algorithm and 
RanSky algorithm in various network scales. The target candidate is the one who can 
be successful promoted randomly selected from the result of our PromSky algorithm 
and its promotion cost is the optimal cost. We add e edges picked from the available 
edges against the candidate according to the PromSky and SkyBoundary algorithm, 
respectively, and add e edges randomly picked from the available edges, then we verify 
the result. We calculate the promotion successful rate by counting the number of suc-
cessful promotions in ten times promotion attempts. We conduct the experiments on 
both WikiVote and DBLP. From Fig. 4, we find that the SkyBoundary algorithm and the 
RanSky algorithm cannot guarantee the promotion’s success even though we picked 
the optimal candidate and achieved the minimal promotion cost, the RanSky algorithm 
works worse especially. On the contrary, our PromSky algorithm performs well in vari-
ous network scales. This is because we add more attributes in our PromSky algorithm for 
a member that it should increase the number of skyline set. Thus our successful promo-
tion rate is higher in various network scales.

Prediction on DBLP

In this section, we record the predicted potential stars and the skyline authors 
detected by our algorithm from 1992 to 2016. For each year’s data, we consequently 
combine the current yearly data with its previous 4 years’ data to generate a 5-year 
sub-network because publications too long ago will have little impact on the con-
tributions made by the authors of the time and only one year’s publications cannot 
accurately reflect the contributions of the authors [4]. Then we run our PromSky 
algorithm on each sub-network (from 1996 to 2016) to verify the corresponding 
yearly potential stars and those skyline authors in the following couple of years. 
The skyline authors are obtained by conducting a skyline query over the Influence 
dimension, Activeness dimension and ReputationRank dimension. The potential 
authors are the predicting results of our PromSky algorithm. We can get the success-
ful rate using the number of potential stars promoted into skyline in the next few 
years divided by the size of the whole potential star set, namely



Page 16 of 19Zheng and Zhang ﻿Comput Soc Netw             (2018) 5:7 

where “r” denotes the successful rate, and “PN” and “CS” are the number of successfully 
promoted members and the number of all the candidates, respectively.

The skyline authors and potential stars for each year are illustrated in Table  1. 
From Table 1, we can see each year’s skyline authors and potential skyline authors 
from 1996 to 2016. We think that if the potential skyline author become a skyline 
author in the next few years, the promotion is successful, otherwise, it fails. We 
obtain the number of the potential candidates is 20 by merging the duplicated poten-
tial stars and removing the potential stars of the year 2016 because it is unable to be 
verified, and the number of the potential candidates who appear in the next skyline 
authors is 13. Those names which are in italic represent the successfully promoted 
candidates. Therefore, we conclude that the successful rate is 65%. However, in the 
previous research [4], when conducting the experiments on the dataset from 1971 
to 2012, we find the successful rate is only 48%. It shows that our algorithm is more 
accurate than the previous.

Time cost comparisons

We conduct the experiments to compare the time costs of our PromSky algorithm with 
the SkyBoundary algorithm on two datasets. For the reason of intolerable time complex-
ity, we do not take the RanSky algorithm to be a compared algorithm.

Figure 5 shows the average running time under different network scales. From Fig. 5, we 
can see that as the network scale grows, the running time also increases and our PromSky 
algorithm is faster than the SkyBoundary algorithm whatever the network scale is. This is 
because the candidates in SkyBoundary algorithm are all the non-skyline set but we carry 
the skyline query over the non-skyline set and take the infra-skyline as the candidates thus 
remarkably reducing the size of the candidates and controlling the result in a reliable range 
to a great extent. Besides, by bringing forward the skyline distance, we can reduce the 
searching space of promotion plans remarkably.

(5)r = PN/CS,

 0

 40

 80

 120

 160

 200

1000 2000 3000 4000 5000 6000

P
ro

m
ot

io
n 

C
os

t(
×1

02 )

Network Scale

PromSky
RanSky

a  WikiVote

 0

 5

 10

 15

 20

1 10 100 1000

P
ro

m
ot

io
n 

C
os

t(
×1

02 )

Network Scale(×103)

PromSky
RanSky

b  DBLP
Fig. 3  Promotion cost comparison with the Random algorithm



Page 17 of 19Zheng and Zhang ﻿Comput Soc Netw             (2018) 5:7 

Conclusions
In this paper, we propose an improved member promotion algorithm in SNs, which aims at 
discovering the most potential stars which can be promoted into the skyline with the mini-
mum cost. By adding the attribute of ReputationRank, we describe members’ importance 
more precisely. Then we introduce the skyline distance to prune the data points for not 

 0

 20

 40

 60

 80

 100

 120

100 200 500 1000 2000 5000 7000

S
uc

ce
ss

fu
l R

at
e(

%
)

Network Scale

PromSky
SkyBoundary

RanSky

 0

 20

 40

 60

 80

 100

 120

50 100 200 500 1000 2000 5000 10000

S
uc

ce
ss

fu
l R

at
e(

%
)

Network Scale

PromSky
SkyBoundary

RanSky

a  WikiVote b  DBLP
Fig. 4  Successful rate comparison on various network scales

Table 1  Skyline authors and potential stars from 1996 to 2016

Year Skyline Potential skyline

1996 Robert L. Glass, David Wilczynski Robert W. Floyd

1997 Noga Alon, Jean P, Caxton Foster Peter Kron

1998 Noga Alon, Robert L. Glass, V. Kevin M Carl Hewitt, Bill Hancock

1999 Robert W. Floyd, Noga Alon, Honien Liu Paul A.D., Alan G. Merten

2000 Bill Hancock, Peter Kron Paul A.D.

2001 Bill Hancock, Nan C. Shu Pankaj K. Agarwal

2002 Bill Hancock, Charles W. Bachman, Daniel L. Weller Pankaj K. Agarwal

2003 Bill Hancock, Daniel L. Weller Elisa Bertino, Alan G. Merten

2004 Pankaj K. Agarwal, Morton M. Astrahan, David R. Warn Elisa Bertino, Mary Zosel

2005 Gary A. Kildall, Diane Crawford, Hans-Peter Seidel, Erik D.Demaine Carl Hewitt

2006 Noga Alon, Diane Crawford, Pankaj K. Agarwal Ingo H. Karlowsky, Louis Nolin

2007 Elisa Bertino, G. RuggiuW, J. Waghorn, M.H. Kay, Erik D. Demaine T. William Olle

2008 Diane Crawford, Paul A.D. B.M. Fossum

2009 Wen Gao, Xin Li, Jun Wang, P.A. Dearnley, Giampio Bracchi, Paolo 
Paolini, Ajith Abraham

H. Schenk, Gordon E. Sayre

2010 Xin Li, B.M. Fossum, J.K. Iliffe, Wen Gao, Mary Zosel, Wei Wang Paul Mies, Ingo H. Karlowsky

2011 Xin Li, Gordon E. Sayre, T. William Olle Peter Sandner

2012 H. Vincent Poor, Peter Sandner, Ulrich Licht Yan Zhang

2013 Ingo H. Karlowsky, Heidi Anlauff, Günther Zeisel Guy G. Boulaye

2014 Yan Zhang, Yu Zhang, Gordon E. Sayre, Witold Pedrycz Carl Hewitt

2015 Harold Joseph Highland, Bernard Chazelle Won Kim

2016 Won Kim, Dale E. Jordan, B.M. Fossum Nan C. Shu
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being dominated. At the same time, it also helps a lot to reduce the number of promotion 
plans. Experimental results on the DBLP and WikiVote datasets illustrate the effectiveness 
and efficiency of our approach.
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