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Background
Complex networks, including social, communication, and even financial networks are 
constantly increasing in prevalence. As the behaviour of these networked systems can 
have important consequences, interest in the development of methods to control them 
to either achieve a goal state or avoid undesirable states is also increasing. A significant 
amount of research has been dedicated to the structural analysis of complex networks, 
especially how structure relates to what is known as the full state controllability of a sys-
tem [1]. Much of this existing work, though, has ignored the behavioural aspect of these 
systems and has only answered questions relating to the identification of control struc-
tures. However, it has been observed that ignoring behaviour can lead to naive control 
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solutions [2]. In addition to this, the control target within these works is generally a sin-
gle point within the vector space model of the system state.

In many cases, especially scenarios involving crowding, flocking and consensus, the 
overall state and behaviour of the system is of more interest than reaching some exact 
network state specification. This work proposes distribution-based control as a method 
to control these types of systems, where we are interested in both the identification of a 
control node set (structural) and the generation of control signals (behavioural) to main-
tain some state distribution within the network. Using a distribution as a control tar-
get, we can define a more general control target within the system when compared to a 
point-based approach. For example, a normal distribution is used as a target in the work 
presented here, which could simultaneously address the problems of avoiding consensus 
and extremism of opinion within a social network. Another possible example would be 
the use of an exponential/gamma distribution of some influence measure on a social sys-
tem to limit the percentage of the population that is capable of significantly influencing a 
large portion of others, which could help to limit the rate of change of the system’s state. 
The essential requirement of distribution-based control is the ability to measure distance 
between distributions within a particular time interval.

This paper makes several contributions. First, we introduce the problem of distribu-
tion-based network control, which is an evolution of the more general network control 
problem (NCP) formalized by [3]. Second, we describe the general architecture for a dis-
tribution-based control system. Third, we present preliminary results demonstrating the 
application of distribution-based control within the real-valued voter model, which has 
been used previously in network control research. These findings demonstrate the feasi-
bility of using a basic learning technique (reinforcement learning) to develop successful 
control strategies for the distribution-based control problem. The results also bring to 
light several interesting questions related to network control in general, which are iden-
tified as areas for future work.

The remainder of this paper is outlined as follows. "Related work" discusses existing 
research within the network control domain, especially that which is related to the full 
state controllability of networked systems, and identifies particular deficiencies within 
the existing research that this work aims to address. It also briefly discusses a previously 
defined problem based on the real-valued voter model, which is related to the problem 
studied in this work. "Distribution-based control" describes the general architecture of a 
distribution-based control system and discusses the formulation of the distribution con-
trol problem that is used within this work. The experimental model that we attempt to 
control and the learning algorithm used to develop a control policy are outlined in "Experi-
mental model" and "Learning a control policy", respectively. Results demonstrating the 
efficacy of the learned control policies across three different types of theoretical networks 
are included in "Results". Finally, the paper concludes with a discussion of future work 
directions and a summary of the main conclusions in "Future work" and "Conclusions".

Related work
Network control

There is a significant amount of existing research relating to the control of complex net-
works. A large proportion of this work relates to the analysis of network controllability 
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from the perspective of full state controllability. A system, such as a complex network, 
is said to be fully state controllable if it is possible to move the system from any initial 
state x to any other possible state y in finite time [4]. The work of [1] provided an in-
depth analysis of the full state controllability of linear time-invariant systems, proposing 
algorithms for the identification of a minimal set of control nodes. Using the structural 
controllability formulation of [5], [6] built upon the work of [1] by identifying structural 
properties that require additional control inputs. The work of [1], which was limited to 
directed networks, has also been generalized by [7] to produce an algorithm to identify a 
minimal set of control nodes within networks with arbitrary structure.

One of the main criticisms of these structural control theory works is that they do not 
account for individual dynamics within the system. As indicated by [8], this means that 
applying the structural control framework to any system in which individual dynamics 
are required to satisfactorily model the system would produce spurious, naive or mis-
leading results. This problem had also been previously recognized by the work of [2], 
which found that including any individual dynamics within the system results in a net-
work being controllable with only a single control input.

Another criticism of work relating to full state controllability analysis is that, in many 
scenarios, the requirement of full state controllability is unnecessarily strong. This is 
true in many network control problems, where the goal may not be to move the system 
between any two arbitrary states, but instead to avoid the system moving into one of a 
set of undesired states. As full state controllability only requires that the system can be 
moved between two states in finite time, there are several limitations from a practical 
perspective as well. The first of these limitations is that, in some applications, the system 
may need to be moved to/from some state in a limited amount of time. In addition to 
this, full state controllability does not account for potentially negative and catastrophic 
states that may be encountered when moving between any two states, which may have 
significant impacts on the performance of a control system in practice.

Finally, much of the existing network control research focuses on the structural prob-
lem of identifying which nodes to use as controllers within the network. Significantly 
less work has been devoted to developing algorithms for the selection of the control sig-
nals that will be used as inputs to these controllers to achieve network control. Recent 
work, such as that of [9] and [3], has simultaneously considered the problem of control 
agent selection along with the generation of control signals to achieve control of com-
plex network systems. Including the behavioural aspect of control within these works 
has demonstrated that control architectures selected using algorithms proposed in pre-
vious structural analysis work do not necessarily produce the most effective controllers. 
In fact, [9] found that using controller sets generated using the maximum matching 
principle of [1] produced inferior results when compared to several other control node 
selection heuristics.

The real‑valued θ‑consensus avoidance problem

As mentioned previously, the work presented here is an extension of the more general 
NCP formalized by [3]. As such, the distribution-based problem addressed here, which 
attempts to control the state distribution of a real-valued voter model simulation (details 
in "Experimental model"), is also inspired from a similar NCP problem used in [9] called 
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the real-valued θ-consensus avoidance problem (θ-CAPRV). If the state of a node v at 
time t in the real-valued voter model simulation is represented by s(v, t), and the set of 
all nodes in the network is denoted by V, a controller for the θ-CAPRV problem attempts 
to maximize the utility function, U, in Eq. 1.

In other words, the controller attempts to avoid moving into a state where there is a dis-
proportionate amount of positive or negative values in the system. In this work, we are 
dealing with a distribution target and are attempting to maintain both an average value 
and some level of spread across the states of the nodes within the system. This average 
and spread are determined by the mean and standard deviation of the specified target 
distribution.

Distribution‑based control
Within the work discussed in "Related work", the state of the network is generally repre-
sented by some vector capturing the state of each agent within the network. For exam-
ple, within the work of [1] the goal of a control system would be to move the network 
state from one specific state vector to another (i.e. micro state control). In many sce-
narios, especially those involving flocking and crowding, we may be more interested in 
some overall property of the state of the system (i.e. macro state control). To address 
these scenarios, we propose the use of distribution-based control. The following subsec-
tion describes the components present in a general distribution-based control system. 
Following this, we formulate a general distribution control problem that is used in the 
experimental analysis presented later in this paper.

System components

There are several mandatory and optional components involved in a distribution-based 
control system. Figure 1 shows the basic components and information flow present in a 
basic distribution-based control system. A list of these components and a short descrip-
tion of each is included below:

• • Network The network connecting entities within the system.
• • Sensor nodes A set of nodes within the network which provides input regarding the 

network state to the controller.
• • Control nodes A set of control nodes within the network, the state of which can be 

set at each time step. This set of nodes represents the interface which is used by the 
control system to affect the network state.

• • Target distribution The defined ideal distribution of the system. In general, the con-
trol system attempts to keep the system’s state distribution close to this target.

• • State distribution A measure of the current distribution of the state, composed of the 
state value, s(v, t), of each sensor node within the system. Both the state and target 
distributions can be represented by either a parameterized distribution (e.g. a normal 
distribution with specific mean and variance) or discretized to form a histogram.

(1)Uθ-CAPRV (t) =

{

1, if
|∑v∈V s(v,t)|

|V | < θG

0, otherwise
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• • Rate of change analysis (optional) In the case of parameterized distributions, it is also 
possible to estimate the rate of change of the state distribution parameters over time 
(e.g. through the use of alpha–beta or Kalman filtering). This estimate can allow the 
‘velocity’ of the system to be quantified, which could improve the performance of a 
control system by producing more accurate prediction of the future state of the sys-
tem.

• • Controller The controller is responsible for taking the state information as input and 
producing as output the control signals for each of the control nodes within the net-
work. Within this work, reinforcement learning (see [10] for a thorough introduc-
tion) is used to generate a policy of signal selection based on the state distribution 
parameters.

Comparing distributions

As with control systems working with state vectors, to achieve distribution-based con-
trol, we require a method for comparing distributions. A method for distribution com-
parison is required for a number of reasons, such as determining if the controller has 
failed (i.e. in failure avoidance problems, see "Failure avoidance control problem"), deter-
mining a system’s velocity by comparing distributions at different time points, or deter-
mining how far away the system is from some other state. While there are a number of 
methods for comparing distributions, such as the Kullback–Leibler divergence and the 
total variation distance, we use the Hellinger distance here for the following reasons:

Fig. 1  General components and information flow within a distribution-based control system
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• • It can be calculated easily on both continuous and discrete distribution types.
• • It is bound between 0 and 1.
• • It fulfils the properties of a metric.

In the continuous case, the Hellinger distance between two probability measures P and 
Q can be calculated as in Eq. 2, where f and g are the probability density functions of P 
and Q, respectively.

For two discrete probability distributions P and Q defined over a common domain k, the 
Hellinger distance can be computed using Eq. 3.

Failure avoidance control problem

Distribution-based control should be applicable to any utility-based network control 
problem. As the Hellinger distance, or any other distance measure used, allows the cur-
rent state distribution to be quantitatively compared to some target, the utility of the 
system in relation to this distance can be measured at any time. Within this work, we 
focus solely on a failure avoidance type of problem, in which the control system attempts 
to keep the distance between the target state and measured state below some threshold 
value for as long as possible. A well known example of this problem from the domain of 
reinforcement learning is the pole-balancing problem, but more recently, the work of 
[9] and [3] has applied a failure avoidance approach to the problem of consensus avoid-
ance in networks. In addition to consensus avoidance, there are a number of interesting 
failure avoidance problems that could be considered within social systems. For exam-
ple, we may want to prevent the overall opinion or state in a system from changing too 
quickly1, which may lead to panic (this is also applicable in economic systems). From an 
advertising perspective, we may want to avoid having the interest in a product or idea (as 
measured by mentions per unit time, for example) drop below some threshold. We may 
also want to prevent the disparity in some state value from growing too large between 
members of a system or group to minimize resentment, jealousy, spitefulness or general 
conflict.

To formulate a failure avoidance control problem using distributions, we must spec-
ify target values for distribution parameters and select a threshold value for the Hell-
inger distance between the measured state distribution and the target distribution. The 
control system must attempt to maintain the state distribution such that this Hellinger 

(2)

H2(P,Q) =
1

2

∫

(

√

f (x)−
√

g(x)
)2

dx

H2(P,Q) = 1−
∫

√

f (x)g(x) dx

H(P,Q) =

√

1−
∫

√

f (x)g(x) dx

(3)H(P,Q) =
1
√
2

√

√

√

√

k
∑

i=1

(√
pi −

√
qi

)2

1  As we saw in 2008 during the financial crisis
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threshold is not exceeded. If the Hellinger threshold is exceeded at any point, the con-
troller is said to have failed in controlling the network. In this work, we define the target 
distribution to be N (0.0, 0.05) . These values were selected because this type of distribu-
tion could be applied to various types of social problems where we wish for values to be 
centred around some state with a specific amount of variance. For example, this type of 
distribution could represent both problems of avoiding consensus and extremism within 
a system, as the state cannot converge to a single value, cannot bifurcate to extreme val-
ues, and cannot move significantly from the original mean.

Controllability analysis

Within this work we are considering a failure avoidance problem inside a stochastic 
system. Assuming a model of this stochastic system is available, it may be possible to 
estimate the controllability of the system from a distribution-based control perspective. 
Ideally, a method similar to those developed within structural controllability research, 
which would be capable of estimating the overall controllability of a system when con-
sidering both the structural and behavioural components of a controller, is desired. By 
repeatedly simulating the model from a starting state (or many starting states) and meas-
uring the Hellinger distance between subsequent states at different time steps, we can 
produce an estimate of the distribution of Hellinger distance values between the initial 
and resulting states for a time interval. This distribution can be treated as a measure-
ment of the speed with which the system tends to change. As an example, consider 
Fig. 2, which shows the distribution of Hellinger distance values over a single time step 
within a simulation of the model used in this work when no control is applied. In this 
case, it would be unreasonable to expect to control the modelled system to a Hellinger 
threshold value of less than 0.03, as this threshold is exceeded in a single step in almost 
10% of cases. Controlling the system to a threshold of 0.1 or 0.05, however, may be pos-
sible depending on how consistently the Hellinger distance moves over multiple steps 
and how significant of an effect the control system can exert on the system’s distribution. 
Further development of this type of analysis could provide a tool for distribution-based 
control similar to those developed for full state controllability, allowing predictions to be 
made regarding the potential for effective control within a system.

Experimental model
To investigate the ability to control a system using the proposed distribution-based con-
trol approach, we formulate a problem using the real-valued voter model within the 
NCP framework described by [3]. The Network Control Problem definition requires the 
following components to be defined: a network, a diffusion model, a control system, and 
an objective function. The following subsections define each of the required components 
of the network control problem, including the objective function which uses a target dis-
tribution and the Hellinger distance measure to determine whether the system is still in 
an acceptable state.

Network

The network is represented by a graph G =  (V, E), where V is the set of nodes within 
the system and the set E represents the edges connecting nodes. The control problem 
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here is evaluated across three different theoretical network types. For each network type, 
10 randomly generated networks of 100 agents each were considered. In all networks, 
each agent also included a link to itself. In addition to this, it is also ensured that each 
network consists of a single connected component. A description of each network type, 
as well as the parameters used in the generative models are described below. In the case 
of the random and small world networks, parameter values were selected to produce an 
average degree similar to those found in the scale free networks.

Random network

Each possible link between a pair of nodes, i and j, is included within the network with a 
probability p = 0.031 to produce an Erdős–Rényi random graph.

Scale free network

Links are formed between nodes based on the preferential attachment model described 
by [11].

Small world network

The small world networks were generated using the model of [12], with an average 
degree of 4 and a β value of 0.25.

Diffusion model

The specification of the network control problem from [3] defines the diffusion model 
with two parts: the sharing strategy and the learning strategy. In this work, we use a 
real-valued voter model to form the diffusion model. The voter model is commonly used 
to model the change of opinion within a group of networked individuals and has been 

Fig. 2  Example distribution of the single-step Hellinger distance values under the real-valued voter model 
without control
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investigated in other network control research (i.e. [9]). Within this work, we consider 
a real-valued voter model in which each node’s state is represented by a single value, 
bounded between − 1.0 and 1.0. Left uncontrolled, the voter model converges toward 
a single value over time. The equations representing the two strategies which define the 
real-valued voter model are included in Eqs. 4, 5 and 6. The sharing strategy (Sh(v)) of 
a node v within this model has each agent send its current state value (s(v, t)) to all of 
its neighbours, including itself, at each time step. Each shared piece of data a node v 
receives at a time step is stored in that node’s information set I. The learning strategy 
(L(v, I)) for this model requires that, at each time step, every agent v move its state by 
an amount, step (0.01 is used as a constant here), toward one of its randomly selected 
neighbours’ shared state values from the previous time step, as determined by Eq. 6.

Control system

The configuration of the control system specifies the set of nodes that the controller can 
set the state of to affect the overall network state. The results presented here consider 
many different possible configurations across the modelled networks. One of the main 
parameters of the configuration that is varied is the number of controllers, where we use 
either 3, 5 or 10 control nodes within the network. The set of controllers is determined 
using the FAR heuristic, as described by [9] and outlined in Algorithm 1. Starting from a 
seed node that is either included as input or selected randomly, this heuristic iteratively 
selects the next node such that it is the one with the largest shortest path to the current 
controller set. This has the effect of distributing the control nodes within the network in 
a way that maximizes the ‘farness’ between them.

(4)Sh(v) = s(v, t)

(5)L(v, I) = s(v, t)+ (step× sign)

(6)sign=











−1 with probability |{s(u,t)<s(v,t)|s(u,t)∈I(v,t)}|
|I(v,t)|

1 with probability |{s(u,t)>s(v,t)|s(u,t)∈I(v,t)}|
|I(v,t)|

0 otherwise
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Algorithm 1 Selection of control nodes using FAR heuristic.
Input: D - matrix of network’s all-pairs shortest paths

Input: VU - copy of set of network’s nodes

Input: N - size of control set

Input (optional): VI - a seed node from the network

Output: VC - set of control nodes, initially empty

function FarSelect(D,VU ,VC ,VI)

if VI = null then

VI ← randomly selected seed node from VU

VC ← VC ∪ VI

VU ← VU\VC

while |VC | < N do

v←(vj :argmini(Dij)≥argmini(Dik),∀k∈VU , ∀i∈VC)

VC ← VC ∪ v

VU ← VU\v

The controller behaviour is learned using a reinforcement learning approach, as 
described in "Learning a control policy". As explained further in "Learning a control pol-
icy" to allow for more efficient execution of the learning and simulation process, a single 
signal (state value) is injected to all control nodes at each time step. By forcing the same 
signal to be used as input to each controller, the action space of the problem is made 
constant instead of growing exponentially relative to the number of controllers used. The 
value of the inserted signal is selected from a list consisting of values between − 0.5 and 
0.5 in 0.05 increments, allowing the controller to select from states within 10 standard 
deviations of the mean of the target distribution. This range was selected to ensure that 
the controller would be able to move the system in any direction that would be logically 
desirable.

Objective function

Within this work, we apply a failure avoidance approach within the distribution-based 
control problem. This requires both a target distribution and a Hellinger distance thresh-
old to be specified. The target distribution we use here is a normal distribution with a 
mean of 0.0 and a standard deviation of 0.05. As explained in "Failure avoidance control 
problem", this type of distribution could be applicable for a number of different types of 
social network control problems. With this target distribution and a specified Hellinger 
distance threshold, Hmax, the utility function of the overall network state can be defined 
using Eq. 7, where T and S represent the target and state distribution, respectively.

The goal of the controller, then, is to maximize the utility over time. In other words, 
the controller must keep the distribution of the network’s state within Hmax distance of 

(7)U(t) =
{

1, if H(T , S) < Hmax

0, otherwise
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the specified target distribution. In the results presented here, the maximum length of a 
simulation is set at 50,000 steps, at which point it is said that the controller has success-
fully controlled the system.

Learning a control policy
To learn the control signal to insert into the network at any time step, we use reinforce-
ment learning. More precisely, we use a gradient-descent SARSA [13] algorithm with 
a CMAC tiling [14] for function approximation of the real-valued distribution param-
eters. These are both commonly used solutions within the reinforcement domain. As 
was mentioned previously, the same signal is inserted into each controller to limit the 
size of the action space, which would otherwise grow exponentially with the number of 
controllers. As a comparison, using the single signal approach results in a constant sized 
action space of 21 actions, regardless of the number of control nodes, while the separate 
signal approach leads to an action space size of 9261 for three controllers and 4,084,101 
for five controllers. The action set consisted of state values in the range of − 0.5 to 0.5 
in increments of 0.05. The state space for the problem was represented by the difference 
between the state and target mean and standard deviation.

For each combination of network and controller set, up to 250 episodes were simulated 
for learning purposes, each starting from a randomly generated state within a Hellinger 
distance of 0.01 of the target distribution and ending if the distance between the state 
and target distribution exceeded the specified Hellinger threshold. Throughout train-
ing, the action policy was made progressively more greedy, which is necessary in many 
control applications due to the poor performance that can result from the selection of 
random actions. More specifically, a Boltzmann exploration policy was used with the 
temperature parameter of the Boltzmann distribution being halved after every 25 train-
ing episodes and reaching a final value of 0.0001 after 250 episodes. Based on prelimi-
nary experiments, low temperature values were necessary to ensure that the selection 
of random actions was not detrimental to the controller’s performance. If the control-
ler was capable of controlling the network for 50,000 steps in ten consecutive episodes, 
training was terminated early. Otherwise, all 250 episodes were used for learning the 
control policy.

After training was completed, the learned control policy was evaluated over a set 
of 250 episodes starting from pre-computed initial states, each of which was within a 
Hellinger distance of 0.01 of the target distribution. Each of these episodes is used to 
evaluate each network and control set combination to provide a consistent set of test 
scenarios. In all cases, the action selection policy used during this evaluation procedure 
was strictly greedy.

Results
To compare the performance of the learned control policy, we first require a baseline 
for comparison. To develop an estimate of the stability of the modelled system in the 
absence of intelligent control, we simulated the model within each network using three 
unintelligent control methods:
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• • Null No control signals are used.
• • Random A single control signal randomly selected in the range of −  0.5 to 0.5 is 

inserted to each control node at each time step.
• • Distribution A single control signal is sampled from the target distribution and 

inserted to each control node at each time step.

Table 1 shows the mean and standard deviation of the steps to failure across each of the 
three network types using these control methods. It should be noted that, for brevity, 
only the case of five control nodes and a Hellinger threshold of 0.1 is included here, as 
results were similar in other cases.

The data in this table demonstrate that in scenarios without control, or with only unin-
telligent control, the state distribution quickly moves away from the target distribution 
and the Hellinger distance threshold is exceeded. Due to the low mean steps to failure 
in Table 1, it should be no surprise that the percent of test cases that reached the 50,000 
step success point was 0.0% for all three of these control strategies.

Figures  3, 4 and 5 show the average percent of all control tests that reached 50,000 
rounds for each network type using a learned policy and 3, 5 and 10 controllers, respec-
tively. These results include each possible set of controllers that can be selected from 

Fig. 3  Average percent of tests successfully controlled for varying network and H threshold values (three 
controllers)

Table 1  Average steps to  failure over  three network types using three unintelligent 
control strategies

Method Network Mean SD

Null Scale free 6.68 1.15

Random 6.40 1.05

Small world 5.50 0.85

Random Scale free 6.36 1.15

Random 6.05 1.04

Small world 5.25 0.84

Distribution Scale free 6.69 1.29

Random 6.39 1.19

Small world 5.60 1.01
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each network instantiation using the FAR heuristic and their success in controlling each 
of the 250 test scenarios at each Hellinger threshold (resulting in a total of approximately 
4.5 million data points). These figures demonstrate that the basic learning strategy 
described in "Learning a control policy" can produce an intelligent control policy that 
greatly increases the stability of the network system.

In scenarios with three or five controllers and a Hellinger threshold of 0.1, approxi-
mately 90% or more of the test scenarios are successfully controlled to the 50,000 round 
termination point. The case of ten controls has a lower probability of success, which is 
likely caused by the lack of precision in a single signal control approach. Essentially, with 
ten controllers the system may be moved too far in one direction, causing the system 
to fail. Another interesting result from these figures is that scale free networks appear 
to be more difficult to control than random or small world networks (this is more pro-
nounced in the case of three controllers). Indeed, the summary presented for the three 
controller cases in Table 2 shows that the difference between the network classes was 

Fig. 4  Average percent of tests successfully controlled for varying network and H threshold values (five 
controllers)

Fig. 5  Average percent of tests successfully controlled for varying network and H threshold values (10 
controllers)
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statistically significant under a two-tailed T test (α =  0.05) under almost all Hellinger 
threshold and network combinations. While the data for the five and ten controller cases 
are not included here, the scale free networks generally showed a significant difference 
in all cases where some degree of control was possible.

Future work should attempt to determine whether this difference in control perfor-
mance is due to scale free networks being inherently more difficult to control, or due to 
the fact that larger variation in node properties in scale free networks requires more spe-
cific control sets to be selected (again, these results are aggregated across each possible 
set of controllers).

While the previous discussion compared the control performance across three net-
work types, the box-and-whisker plots in Figs. 6 and 7 show the variance in control per-
formance across the different scale free and random network instantiations, respectively. 
A number of interesting points can be taken from this figure. First, while the boxes in the 
plots show that most of the networks are generally clustered in a fairly tight range, the 
minimum value in the scale free plot represents an extreme outlier, which indicates that 
one of these scale free network instantiations is significantly harder to control than the 
others. While the variance is not quite as high in the random network case, there is still 
a nearly 30% difference in control success between the best and worst random network 
under a Hellinger threshold of 0.07. Secondly, in both network types, there appears to 
be a phase shift between threshold levels of 0.07 and 0.06 where the overall controlla-
bility seems to move from ‘possible to control’ to ‘nearly impossible to control’. Finally, 

Fig. 6  Average percent of tests successfully controlled for varying H threshold values on scale free networks 
with three controllers (whiskers represent minimum and maximum)

Table 2  Statistically significant difference in  average number of  successful tests 
for  network class combinations (three controllers, two-tailed T test with α  =  0.05, 
X = Significant)

Networks Hellinger threshold

Class 1 Class 2 0.1 0.09 0.08 0.07 0.06 0.05

Scale free Random X X X X X –

Scale free Small world X X X X X –

Random Small world X X – X X –



Page 15 of 17McKenney and White  ﻿Comput Soc Netw  (2018) 5:3 

the variance in controllability seems to be lowest in both the upper and lower threshold 
cases. The increase in variance among the middle threshold values further indicates the 
difference in controllability that may be observed across networks of the same class and 
could even represent a difference in the ‘phase shift’ threshold value for the different net-
work instantiations.

As networks from each class are generated using the same production algorithm, 
they should have similar structural properties, and thus similar expected controllabil-
ity. The differences in success rates in some cases, however, are shown to be more than 
40%. When the single-step H distributions (see "Controllability analysis" for a brief 
explanation of what these distributions represent) for the best/worst scale free network 
were compared, the values were found using maximum likelihood estimation to be 
N (0.0179, 0.0061) and N (0.0174, 0.0061), respectively. The percent difference between 
the means of these distributions is only 2.8%, which would not be expected to cause an 
overall difference in control success probability of greater than 40%. When this analy-
sis was extended to include 10 steps, the distribution parameter estimates changed to 
N (0.168, 0.025) and N (0.160, 0.025) , which still only represents a 4.9% difference. In 
addition to the small difference in distribution parameters, of the two networks, the one 
with the largest ‘velocity’ of state change is the one that has higher control performance. 
The cause of the difference in control success, then, should not be exclusively that the 
model behaves differently without control within these networks, but must involve a dif-
ference in how control signals move throughout the networks. Again, future work should 
attempt to determine what is different between these networks that leads to such dispar-
ity in controller success. If certain network or control set properties can be identified as 
causing this disparity, then improved network stability could be achieved through either 
improved controller selection or modifications to the network structure. These network 
and control set properties could be determined by identifying correlations between con-
trol success and various network properties that differ between the networks and control 
sets (e.g. average path lengths, shortest paths, centrality).

Fig. 7  Average percent of tests successfully controlled for varying H threshold values on random networks 
with three controllers (whiskers represent minimum and maximum)
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Future work
There are a number of different areas in which this work will be expanded in the future. 
First, as mentioned in the previous section, the current results raise some interesting 
questions relating to network controllability. The results demonstrated that some net-
works, even those created using the same generative model, seem to be easier to con-
trol than others. Comparing different properties of these networks could help determine 
what type of properties result in networks that are more or less difficult to control. 
Algorithms from previous structural control analysis research could be applied to these 
same networks to determine if they predict the same increase in control difficulty. This 
comparison could either support or refute existing criticisms of the structural control 
analysis approach. Specifically, this could provide evidence to help determine whether 
ignoring the behavioural aspect of control leads to inaccurate conclusions regarding the 
practical controllability of networks.

In addition to comparing the overall controllability of different networks, the con-
trol sets that can be selected within a network could also be compared. Data produced 
through simulation of control systems using different control sets could help determine 
what properties are present/missing in successful/unsuccessful controller sets. Analysis 
of these data could lead to improved algorithms and heuristics for the selection of con-
trol nodes within a network control system.

Finally, the controllability analysis briefly discussed in "Controllability analysis" could 
be a useful tool in theoretically analysing networks and controllers. The current state of 
this analysis work only considers the expected distance the state distribution can move 
in some specified number of steps. Including a theoretical measure representing the abil-
ity of a control system to affect this distribution, however, could allow for a probabilistic 
analysis to determine the expectation of the system’s controllability. This type of analysis 
could be used to compare possible controllers or possible network changes which could 
be implemented to form systems that are easier to control or less likely to fail.

Conclusion
This paper introduced the problem of distribution-based control as an alternative to 
existing approaches to complex network control which typically addresses the prob-
lem of full state controllability. When applying distribution-based control, we are no 
longer concerned with the exact state of the set of nodes within a system, but instead 
are attempting to maintain some distribution of state. This is important when consider-
ing many types of social network control problems, especially those involving crowding, 
opinion and influence. Within these types of problems, we are generally more concerned 
with the overall behaviour of the system or an aggregate measure (i.e. the distribution) 
of the state than an exact specification of the opinion or level of influence of each system 
participant. This paper has also continued the effort to investigate the behavioural com-
ponent of network control, which has not previously been investigated in as much depth 
as the structural component.

To investigate the use of distribution-based control, a control system was implemented 
to prevent the distribution of state values in a real-valued voter model simulation from 
straying away from a specified mean and standard deviation. The experimental results 
demonstrated that it was possible to learn a control signal selection policy to successfully 
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maintain the desired network state distribution in a large percentage of cases, espe-
cially when compared to the 100% failure rate realized without intelligent control. These 
results also identified a number of important questions that should be addressed in 
future work, which were summarized in "Future work".
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