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Background
Community detection is a key task in the study of large networks, which has recently 
become a very important area of research [1–3]. Although there are no generally 
accepted definitions of network communities, it is usually agreed that a community is 
defined as a group of nodes that have more intraconnections than interconnections. 
This high-level description defines community from a linkage point of view. In reality, a 
functional community in a network is usually based on some common affiliation, attrib-
ute, etc., which may not be directly related to linkage information. However, it has been 
shown that linkage-based communities usually have strong correlation with functional 
communities [4]. The purpose of community detection is to identify linkage-based com-
munities or functional communities in a network.
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Earlier work in this area mainly focused on finding linkage-based communities on 
small networks. Various measures have been defined and optimized for the difference 
between intraconnections and interconnections among network nodes, such as normal-
ized cut, conductance, and others, using a variety of methods [4]. Manual examinations 
(such as visualization) of the results have typically been used in those studies, which may 
provide some valuable information and insights. Community detection on large net-
works is more challenging due to the following reasons: (1) many algorithms suitable for 
small networks are often not scalable; (2) there is a dearth of ground-truth communi-
ties defined for large networks and even for the datasets with ground truth, where the 
quality of the ground truth is often questionable; and (3) examining the results is nearly 
impossible. It has not been until recently [4] that ground-truth communities have been 
defined and studied in several real-world large-scale networks.

This paper introduces a scalable algorithm based on rank-2 symmetric nonnegative 
matrix factorization (rank-2 SymNMF) for large-scale hierarchical community detec-
tion. After summarizing some related works, we discuss the problem domain for our 
new results and our solutions for particular problems within that domain. Then, some 
highlights and speedup in our implementations are discussed, after which we present 
comprehensive experimental results to evaluate our new algorithm.

Related work
The study of network community detection dates back to the well-known Kernighan–
Lin algorithm from the early 1970s [5]. At that time, the network community detection 
problem was often formulated as a graph-partitioning problem, which aims at “divid-
ing the vertices” into a predefined number of nonoverlapping “groups of predefined size, 
such that the number of edges lying between the groups is minimal” [6]. Many methods 
that produce good-quality solutions were proposed, but they were based on combinato-
rial optimization algorithms and were not scalable. Later, when it was discovered that 
graph partitioning is an important problem for balanced distribution of work loads in 
parallel computing, computer scientists developed many algorithms, such as METIS [7], 
SCOTCH [8], and Chaco [9], for graph partitioning of parallel communication prob-
lems. These algorithms usually follow a multilevel strategy, where a large graph is first 
coarsened to a smaller graph by recursively contracting multiple vertices into one vertex, 
and then the small graph is partitioned applying a method like the Kernighan–Lin algo-
rithm, and finally the partition is mapped back to the original graph with some refine-
ment. Most of these algorithms (e.g., all three we mentioned above) scale well to very 
large networks containing millions of nodes.

A spectral clustering method that minimizes normalized cut was proposed as an 
image-segmentation algorithm [10], and it soon became popular in the area of graph 
clustering. However, due to the time-consuming eigenvector/singular vector compu-
tation in this algorithm, it is not scalable to the case when the number of communi-
ties is large. The Graclus algorithm [11] by Dhillon, Guan, and Kulis solved this issue 
by utilizing the mathematical equivalence between general cut or association objectives 
(including normalized cut and ratio association) and the weighted kernel k-means objec-
tive [12] and applying a multilevel framework. Kuang, Ding, and Park discovered that 
the SymNMF (symmetric nonnegative matrix factorization) objective function is also 
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equivalent to normalized cut and ratio association objective functions with a relaxation 
different from that in spectral clustering [13, 14]. This algorithm has better interpretabil-
ity like many other NMF-based methods.

Girvan and Newman [15] produced pioneering work developing graph-partitioning/
clustering methods from a community detection viewpoint, which finds “groups of verti-
ces which probably share common properties and/or play similar roles within the graph” 
[6]. Around that time period, many new algorithms were invented. Later, Newman and 
Girvan [16] proposed the modularity measurement for community detection, on which 
the biggest family of community detection algorithms is based [17]. A scalable example 
in this family of algorithms is the Louvain algorithm [18]. Several algorithms such as 
Walktrap [19] and Infomap [20] are based on random walk on graphs, with the idea that 
in a random walk, the probability of staying inside a community is higher than going to 
another community. The paper [6] provides a comprehensive review of the algorithms 
that appeared up to 2010.

The early overlapping community detection algorithms [21, 22] were not effective on 
large graphs. Lancichinetti et al. [23] proposed a scalable overlapping community detec-
tion algorithm—order statistics local optimization method (OSLOM), which was based 
on a measurement similar to modularity but was able to handle overlapping communi-
ties. Yang and Leskovec studied the properties of large-scale overlapping communities 
[4] and proposed the BigClam algorithm [1]. They provided some large-scale datasets 
with ground-truth communities available to researchers, which have become standard 
test datasets. The BigClam algorithm seeks to fit a probabilistic generative model that 
satisfies certain community properties discovered in their studies [1, 24]. Whang et al. 
[2] proposed another overlapping community detection algorithm called NISE, based 
on seed set expansion, which starts with a seed set generated by Graclus or other meth-
ods and uses random walk to obtain overlapping communities. These algorithms that are 
dedicated to community detection have demonstrated better performance in terms of 
discovering ground-truth communities compared with the traditional graph-partition-
ing algorithms.

Recently, [17] proposed a new nonoverlapping community detection algorithm, scal-
able community detection (SCD). Network communities of good quality should have 
stronger intraconnections than interconnections. Previous algorithms measure such 
strength of connectivity only through the number of edges. The uniqueness of SCD is 
that it is based on a triangular structure of edges. The goal is to identify communities 
where each node forms more triangles with nodes inside the community than those 
formed with nodes outside the community.

On the other hand, nonnegative matrix factorization (NMF)-based methods exhibit 
superior interpretability in many application areas such as text mining [25, 26] and image 
analysis [27, 28]. In this paper, we will show that our NMF-based algorithm has competi-
tive performance and scalability for community detection. Although our algorithm cur-
rently only handles nonoverlapping community detection, it has achieved comparable 
or even better-quality than the state-of-the-art overlapping community detection algo-
rithms (such as BigClam) in our extensive tests. Our algorithm is inspired by SymNMF 
[13, 14] for graph clustering and HierNMF2 [25] for fast document clustering.
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Problem definition
As mentioned above, there is no universally accepted definition for network commu-
nities. Rather than defining community detection as optimizing some specific meas-
urement criteria, we believe it would be more effective and flexible to understand the 
problem by clearly defining what makes a community detection result good.

In this paper, we focus on link-based community detection, and use functional com-
munities (if known) as ground truth. In general, to evaluate link-based community 
detection results, we may ask several questions. The first is whether the result is coher-
ent from the point of view of network links (Q1). There are many measurement scores 
defined based on the presumption that a community should have more intraconnections 
than interconnections. These measures include normalized cut, ratio cut, conductance, 
etc. The second question is whether the result agrees with prior knowledge, especially 
the ground truth if it is known (Q2). There have been largely two approaches. One is 
to manually analyze the results with some known meta-information (such as the entity 
each node represents), which is not scalable to large networks. Another approach is to 
compare the community detection result using some measures such as F1 score, which 
assumes the existence of ground truth. Finally, we would like to know whether the result 
reveals some new and useful information about the network (Q3). This is mostly rel-
evant for the study of small networks [15]. For large networks, it is almost impossible to 
manually check all communities discovered. However, the answers to Q2 may guide our 
focus to more interesting parts of the network.

Ground‑truth communities

Ground-truth communities of large networks were not available to researchers until 
Yang and Leskovec [1] defined ground-truth communities (as found in SNAP1) for sev-
eral real-world large networks, including several social networks, paper coauthorship 
networks, and product copurchase networks. In their work, the ground-truth communi-
ties are defined using functional communities already present in the data. For example, 
in social networks, user groups can be treated as communities; in paper coauthorship 
networks, two authors publishing in the same venue can be seen to be in the same com-
munity; in product copurchase networks, product category can be naturally used as 
communities. These functional communities are not necessarily directly related to net-
work structures. For example, the product category is an inherent property of a product, 
which can never be affected by copurchasing activities. Therefore, it is not reasonable to 
expect that link-based community detection algorithms can fully recover functional 
communities. On the other hand, many studies show that there are close relations 
between link-based communities and functional communities. The paper [4] shows that 
many linkage-based measurements (such as normalized cut, conductance, etc.) also have 
good performance on functional communities. Also, the results of link-based commu-
nity detection algorithms can sometimes recover functional communities.

Based on the above observations, we conclude that link-based community detection 
algorithms have the ability to partially recover functional communities, but such ability 

1  https://snap.stanford.edu/data/.

https://snap.stanford.edu/data/
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is inherently limited by the essential differences between functional communities and 
link-based communities. This should be kept in mind when comparing link-based com-
munity detection results against ground-truth communities.

Overlapping vs nonoverlapping communities

Real-world network communities are usually overlapping. For example, it is common 
that one user joins a variety of groups in a social network. However, our current focus 
is on nonoverlapping community detection, since nonoverlapping community detection 
is also very useful for revealing the network structure, and our algorithm is designed to 
detect nonoverlapping communities efficiently. The results of a good-quality nonover-
lapping community detection algorithm can be used as an effective starting point for 
overlapping community detection [2, 3].

Hierarchical rank‑2 symmetric NMF
We present an algorithm called HierSymNMF2 for hierarchical community detection. 
HierSymNMF2 uses a fast SymNMF algorithm [14] with rank 2 (SymNMF2) for binary 
community detection and recursively apply SymNMF2 to further binary split one of the 
communities into two communities in each step. This process is repeated until a pre-
set number of communities is discovered, or there are no more communities that are 
worthy of any further binary split. Our approach starts with a low rank approximation 
(LRA) of the data based on the nonnegative matrix factorization (NMF), which reduces 
the dimension of the data while keeping key information. In addition, the results of 
NMF-based methods directly provide information regarding the assignment of data to 
clusters/communities.

Given the vast amounts of nonnegative data available for extracting critical informa-
tion, the NMF has found a wealth of applications in such domains as image, text, and 
chemical data processing. It can be shown that applying algorithms to such data without 
constraining the solution can result in uninterpretable results such as negative chemi-
cal concentrations and possibly false negative and/or false positive detections, which 
could lead to meaningless results [29]. For text analytics, a corpus of text documents can 
be represented by a nonnegative term-document matrix. Likewise, for graph analytics, 
the nonnegative adjacency matrix is used as an input to NMF algorithms. NMF seeks 
an approximation of such nonnegative matrices with a product of two nonnegative low 
rank matrices. With various constraints and regularization terms on the NMF objective 
function, there are many variants of NMF, which are appropriate for a large variety of 
problem domains. A common formulation of NMF is the following:

where X ∈ R
m×n
+ , W ∈ R

m×k
+ , H ∈ R

k×n
+  (R+ is the set of all real nonnegative numbers), 

and k ≪ min(m, n). In this formulation, each data item is represented by a column of 
the matrix X, and each column in the matrix H can be seen as a low rank representation 
of the data item. Nonnegativity constraints allow such a low rank representation to be 
more interpretable than other low rank approximations such as SVD. This formulation 
can be applied to areas such as document clustering [26] and can be solved efficiently 

(1)min
W≥0,H≥0

�X −WH�F
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for very large m and n [30]. However, when k reaches a value on the order of thousands, 
NMF algorithms become slow. To solve this issue, [25] developed a divide-and-conquer 
method that relies on rank-2 NMF, where k = 2, which exhibits significant speedups. 
The framework of this divide-and-conquer method is shown in Algorithm  1. In this 
divide-and-conquer framework, the task of splitting one cluster into two clusters is per-
formed by rank-2 NMF, which reduces the superlinear time complexity with respect to k 
to linear [25].

A variant of NMF, SymNMF [13, 14], which is the symmetric version of NMF, can be 
used for graph clustering. The formulation of SymNMF is

where S ∈ R
n×n is a symmetric similarity matrix of graph nodes: H ∈ R

n×k
+  and k ≪ n . 

Some choices of the input matrix S for SymNMF are adjacency matrix SG and normal-
ized adjacency matrix D−1/2SGD−1/2, where D = diag(d1, . . . , dn), and di =

∑n
j=1 S

G

ij  is 
the degree of node i. When S is the adjacency matrix, (2) is a relaxation of maximizing 
the ratio association; when S is the normalized adjacency matrix, (2) is a relaxation of 
minimizing the normalized cut [13] (see Appendices A, B for a complete proof). Sym-
NMF is an effective algorithm for graph clustering, but for large k, improvements in 
computational efficiency are necessary.

The algorithm we introduce in this paper uses the framework shown in Algorithm 1, 
where a cluster is a community, and the task of splitting a community is performed by 
our rank-2 version of SymNMF. The decision to choose the next node to split is based 
on a criterion discussed in the next section. In the following sections, we denote S as the 
similarity matrix representing a graph G, and Sc as the matrix representation of a com-
munity, i.e., a subgraph of G (the corresponding submatrix of S).

Splitting a community using rank‑2 SymNMF

Splitting a community is achieved by rank-2 SymNMF of Sc ≈ HHT where H ∈ R
n×2
+ . 

The result H naturally induces a binary split of the community: suppose H = (hij), then

where ci is the community assignment of the ith graph node.
A formal formulation of rank-2 SymNMF is the following optimization problem:

where H ∈ R
n×2
+ . This is a special case of SymNMF when k = 2, which can be solved 

by a general SymNMF algorithm [13, 14]. However, by combining the alternating 

(2)min
H≥0

�S −HHT�F

ci =
{
1, hi1 > hi2;
0, otherwise.

(3)min
H≥0

�S −HHT�2F
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nonnegative least squares (ANLS) algorithm for SymNMF from [14] and the fast algo-
rithm for rank-2 NMF from [25], we can obtain a fast algorithm for rank-2 SymNMF.

First, we rewrite (3) into asymmetric form plus a penalty term [31] as follows:

where W and H ∈ R
n×2
+ , and α > 0 is a scalar parameter for the tradeoff between the 

approximation error and the difference between W and H. Formulation (4) can be solved 
using a two-block coordinate descent framework, alternating between the optimizations 
for W and H. When we solve for W, (4) can be reformulated as

where I2 is the 2× 2 identity matrix. Similarly, when we solve for H, (4) can be reformu-
lated as

We note that both (5) and (6) are in the following form:

where F ∈ R
m×2
+ , G ∈ R

m×n
+ . This formulation can be efficiently solved by an improved 

active-set-type algorithm described in [25], which we call rank2nnls-fast. The idea 
behind rank2nnls-fast can be summarized as follows: the optimization problem (7) 
can be decomposed into n independent subproblems in the following form:

where y and g ∈ R
2
+, where Y = [y1, . . . , yn], and G = [g1, . . . , gn]. To solve (8) efficiently, 

we note that when g �= 0, there will be only three possible cases for y = [y1, y2], where 
only one of y1 and y2 is 0 or both are positive. These three cases can easily be solved by 
the usual least-squares algorithms, e.g., normal equations. Details can be found in Algo-
rithm 2 in [25].

Choosing a node to split based on normalized cut

The “best” community to split further is chosen by computing and comparing splitting 
scores for all current communities corresponding to the leaf nodes in the hierarchy. The 
proposed splitting scores are based on normalized cut. We make this choice because (1) 
normalized cut determines whether a split is structurally effective since it measures the 
difference between intraconnections and interconnections among network nodes; and 
(2) for SymNMF, when S is the normalized adjacency matrix, the SymNMF objective 

(4)min
W ,H≥0

�S −WHT�2F + α�W −H�2F ,

(5)min
W≥0

∥
∥
∥
∥

[
H√
αI2

]

WT −
[

S√
αHT

]∥
∥
∥
∥

2

F

(6)min
H≥0

∥
∥
∥
∥

[
W√
αI2

]

HT −
[

S√
αWT

]∥
∥
∥
∥

2

F

.

(7)min
Y≥0

�FY − G�2F ,

(8)min
y≥0

�Fy − g�22
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function is equivalent to (a relaxation of ) minimizing the normalized cut, which is the 
preferred choice in graph clustering [14].

Suppose we have a graph G = (V ,E), where the weight of an edge (u, v) is w(u, v). Note 
that for an unweighted graph, w(u, v) = 1 if edge (u, v) ∈ E; otherwise, w(u, v) = 0. Let 
A1, . . . ,Ak be k pairwise disjoint subsets of V, where 

⋃k
i=1 Ai = V ; then, the normalized 

cut of the partition (A1, . . . ,Ak) is defined as

where

which measures the number of edges inside the subgraph induced by Ai (intraconnec-
tion); and

measures the number of edges between Ai and the remaining nodes in the graph 
(interconnection). Note that in the definition of within(Ai) (10), each edge within Ai is 
counted twice. In the special case, k = 2, we have

From Eq. (9), it is evident that when each community has many more intraconnections 
than interconnections, there is a small normalized cut.

For example, the graph shown in Fig. 1 originally has three communities A1, A2 and 
A3 , and the corresponding normalized cut is

The community A3 is now split into two smaller communities B1 and B2 and normalized 
cut can be used to measure the goodness of this split. We consider three possibilities: (1) 
isolate A3 and compute normalized cut of the split as

where the subscript A3 means only consider the edges inside A3. We denote the above 
criterion by ncut_local. (2) A more global criterion is to also consider the edges that 
go across A3:

(9)ncut(A1, . . . ,Ak) =
k∑

i=1

out(Ai)

within(Ai)+ out(Ai)

(10)within(Ai) =
∑

u,v∈Ai

w(u, v)

(11)out(Ai) =
∑

u∈Ai ,v∈V \Ai

w(u, v)

(12)out(A1) =
∑

u∈A1,v∈A2

w(u, v) = out(A2)
def= cut(A1,A2)

ncut(A1,A2,A3) =
out(A1)

within(A1)+ out(A1)
+

out(A2)

within(A2)+ out(A2)

+
out(A3)

within(A3)+ out(A3)

ncut|A3(B1,B2) =
out|A3(B1)

within(B1)+ out|A3(B1)
+

out|A3(B2)

within(B2)+ out|A3(B2)

ncut(B1,B2) =
out(B1)

within(B1)+ out(B1)
+

out(B2)

within(B2)+ out(B2)
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This criterion is denoted by ncut_global. (3) Minimize the global normalized cut 
using a greedy strategy. Specifically, choose the split that results in the minimal increase 
in the global normalized cut:

We denote this criterion by ncut_global_diff and will compare the performance of 
these three criteria in later sections.

Implementation
In the previous work on rank-2 NMF [32] that takes a term-document matrix as input 
in the context of text clustering, sparse–dense matrix multiplication (SpMM) was the 
main computational bottleneck for computing the solution. However, this is not the case 
with rank-2 SymNMF or HierSymNMF2 for community detection problems on typical 
large-scale networks. Suppose we have an n× n adjacency matrix with z nonzeros as an 
input to rank-2 SymNMF. In Algorithm 2, i.e., Nonnegative Least Squares (NLS) with 
two unknowns, SpMM costs 2z floating-point operations (flops), while searching for the 
optimal active set (abbreviated as opt-act) costs 12n flops. Of the 12n flops for opt-
act, 8n flops are required for solving n linear systems each of size 2× 2 corresponding 
to line 1 in Algorithm 2, and the remaining 4n flops are incurred by lines 4–5. Note that 
comparison operations and the memory I/O required by opt-act are ignored.

ncut(A1,A2,B1,B2)− ncut(A1,A2,A3)

=
out(B1)

within(B1)+ out(B1)
+

out(B2)

within(B2)+ out(B2)
−

out(A3)

within(A3)+ out(A3)

A1

A2

A3

B2

B1

Fig. 1  A graph for illustrating normalized cut and our splitting criteria. The structure of the graph is inspired 
by Figure 1 from [15]
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The above rough estimation of computational complexity reveals that if z ≤ 6n, or 
equivalently, if each row of the input adjacency matrix contains no more than 6 nonze-
ros on average, then SpMM will not be the major bottleneck of the rank-2 SymNMF 
algorithm. In other words, when the input adjacency matrix is extremely sparse, which is 
the typical case we have seen on various datasets (Table 1), then further acceleration of 
the algorithmic steps in opt-act will achieve higher efficiency.

Figure  2 (upper) shows the proportions of runtime corresponding to SpMM, opt-
act, and other algorithmic steps implemented in Matlab, which demonstrate that both 
SpMM and opt-act are the targets for performance optimization.

Multithreaded SpMM

SpMM is a required routine in lines 1, 4, and 5 of Algorithm 2. The problem can be writ-
ten as

where A ∈ R
n×n is a sparse matrix and X ,Y ∈ R

n×k are dense matrices.2

Most open-source and commercial software packages for sparse matrix manipulation 
have a single-threaded implementation for SpMM, for example, Matlab3, Eigen4, and 
Armadillo5 (the same is also true for SpMV, sparse matrix–vector multiplication). For 
the Intel Math Kernel Library6, while we are not able to view the source, our simple tests 
have shown that it can exploit only one CPU core for computing SpMM. Part of the rea-
son for the lack of parallel implementation of SpMM in generic software packages is that 
the best implementation for computing SpMM for a particular matrix A depends on the 
sparsity pattern of A.

In this paper, we present a simple yet effective implementation to compute SpMM for 
a matrix A that represents an undirected network. We exploit two important facts in 
order to reach high performance:

• • Since the nodes of the network are arranged in an arbitrary order, the matrix A is not 
assumed to have any special sparsity pattern. Thus, we can store the matrix A in the 
commonly used generic storage, the compressed sparse column (CSC) format, as is 

(13)Y ← A · X ,

2  The more general form of SpMM is Y ← Y + A · X . Our algorithm only requires the more simplistic form Y ← A · X , 
and thus, for this case, we wrote a specific routine saving n operations for addition.
3  https://www.mathworks.com/.
4  http://eigen.tuxfamily.org.
5  http://arma.sourceforge.net/.
6  https://software.intel.com/en-us/intel-mkl.

https://www.mathworks.com/
http://eigen.tuxfamily.org
http://arma.sourceforge.net/
https://software.intel.com/en-us/intel-mkl
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practiced in the built-in sparse matrix type in Matlab. As a result, nonzeros of A are 
stored column-by-column.

• • The matrix A is symmetric. This property enables us to build an SpMM routine for 
ATX to compute AX.

The second fact above is particularly important: When A is stored in the CSC format, 
computing AX with multiple threads would incur atomic operations or mutex locks to 
avoid race conditions between different threads. Implementing multithreaded ATX is 
much easier, since AT can be viewed as a matrix with nonzeros stored row-by-row, and 
we can divide the rows of AT into several chunks and compute the product of each row 
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Fig. 2  Runtime for SpMM, opt-act, and other algorithmic steps (indicated as “misc”) in the HierSymNMF2 
algorithm. The experiments were performed on the DBLP06 dataset. The plots show the runtime for generat-
ing various numbers of leaf nodes. Upper timing results for the Matlab program; lower timing results for the C/
Matlab hybrid program

Table 1  Some statistics for ground-truth communities from SNAP

The last few columns show the number of nodes that do not belong to any communities and the number of nodes that 
belong to only one community. The “Rel %” is the number of nodes that belong to one community divided by the number 
of nodes that belong to at least one community

Dataset #Nodes #Edges Nodes that belong to Nodes that belong to

0 Community 1 Community

Count % Count % Rel %

DBLP06 317,080 1,049,866 56,082 17.69 150,192 47.37 57.55

Youtube 1,134,890 2,987,624 1,082,215 95.36 32,613 2.87 61.91

Amazon 334,863 925,872 14,915 4.45 10,604 3.17 3.31

LiveJournal 3,997,962 34,681,189 2,850,014 71.29 394,234 9.86 34.34

Friendster 65,608,366 1,806,067,135 57,663,417 87.89 3,546,017 5.40 44.63

Orkut 3,072,441 117,185,083 750,142 24.42 128,094 4.17 5.52
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chunk with X on one thread. Our customized SpMM implementation is described in 
Algorithm 3.

In addition, the original adjacency matrix often has the value “1” as every nonzero 
entry, that is, all the edges in the network carry the same weight. Thus, multiplication 
operations are no longer needed in SpMM with such a sparse matrix. Therefore, we have 
developed a specialized routine for the case where the original adjacency matrix is pro-
vided as input to HierSymNMF2.

C/Matlab hybrid implementation of opt‑act

The search for the optimal active set, opt-act, is the most time-consuming step in the 
algorithm for NLS with two columns (Fig. 2 (lower)) when the input matrix is extremely 
sparse. Our overall program was written in Matlab, and the performance of the opt-
act portion was optimized with native C code. The optimization exploits multiple 
CPU cores using OpenMP, and the software vectorization is enabled by calling AVX 
(advanced vector extensions) intrinsics.

It turns out that a C/Matlab hybrid implementation is the preferred choice for achiev-
ing high performance with native C code. Intel CPUs are equipped with AVX vector 
registers, since the Sandy Bridge architecture and these vector registers are essential for 
applying the same instructions to multiple data entries (known as instruction-level par-
allelism or SIMD). For example, a 256-bit AVX register can process four double-preci-
sion floating point numbers (64-bit each) in one CPU cycle, which amounts to four times 
speed-up over a sequential program. AVX intrinsics are external libraries for exploit-
ing AVX vector registers in native C code. These libraries are not part of the ANSI C 
standard but retain mostly the same interface on various operating systems (Windows, 
Linux, etc). However, to obtain the best performance from vector registers, functions in 
the AVX libraries often require the operands having aligned memory addresses (32-byte 
aligned for double precision numbers). The function calls for aligned memory alloca-
tion, which is completely platform dependent for native C code, means that our software 
would not be easily portable across various platforms if aligned memory allocation were 
managed in the C code. Therefore, in order to strike the right balance between com-
putational efficiency and software portability, our strategy is to allocate memory within 
Matlab for the vectors involved in opt-act, since Matlab arrays are memory aligned in 
a cross-platform fashion.
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Finally, note that the opt-act step in lines 1, 4, and 5 of Algorithm 2 contains sev-
eral division operations, which cost more than 20 CPU cycles each and are much more 
expensive than multiplication operations (1 CPU cycle). This large discrepancy in time 
cost would be substantial for vector–scalar operations. Therefore, we replace vector–
scalar division, in the form of x/α where x is a vector and α is a scalar, by vector–scalar 
multiplication, in the form of x · (1/α).

Experiments
Methods for comparison

We compare our algorithm with some recent algorithms mentioned in the “Related 
work” section. We use eight threads for all methods that support multithreading. For 
NISE, we are only able to use one thread because its parallel version exits with errors in 
our experiments. For all the algorithms, default parameters are used if not specified. To 
better communicate the results, below are the labels that denote each algorithm, which 
will be used in the following tables:

• • h2-n(g)(d)-a(x): These labels represent several versions of our algorithm. Here 
h2 stands for HierSymNMF2, n for the ncut_local criterion, ng for the ncut_
global criterion, and ngd for the ncut_global_diff criterion (see previous 
sections for the definitions of these criteria); ‘a’ means that we compute the real nor-
malized cut using the original adjacency matrix; and ‘x’ indicates that an approxi-
mated normalized cut is computed using the normalized adjacency matrix, which 
usually results in faster computations. We stop our algorithm after k − 1 binary splits 
where k is the number of communities to find. Theoretically, this will generate k 
communities. However, we remove fully disconnected communities, as outliers since 
they are often far from being significant because of their unusually small size and 
they correspond to all-zero submatrices in the graph adjacency matrix, which does 
not have a meaningful rank-2 representation. Therefore, the final number of com-
munities are usually slightly smaller than k, as will be shown in “Experiment results” 
section.

• • SCD: SCD algorithm [17].
• • BigClam: BigClam algorithm [1].
• • Graclus: Graclus algorithm [11].
• • NISE: An improved version of NISE that is published in 2016 [3].

Evaluation measures

Internal measures: average normalized cut/conductance

Normalized cut (9) is a measurement of the extent that communities have more intra-
connections than interconnections and is shown to be an effective score [4]. Since our 
algorithm implicitly minimizes the normalized cut, it is natural to use normalized cut as 
an internal measure of community/clustering quality. One drawback of normalized cut is 
that it tends to increase when the number of communities increases. In Appendix B, we 
prove that the normalized cut strictly increases when one community is split into two. 
In practice, we observed that the normalized cut increases almost linearly with respect 
to the number of communities. Some community detection algorithms automatically 
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determine the number of communities; hence, it is not fair to compare normalized cut 
for such algorithms against others that detect a preassigned number of communities. 
Therefore, it makes more sense to use the average normalized cut, i.e., the normalized 
cut divided by the number of communities. In addition, since the average normalized 
cut can be treated as a per-community property, it also applies to overlapping communi-
ties. Given k communities A1, . . . ,Ak (which may be overlapping), we define the average 
normalized cut as

Conductance [33], which is shown to be an effective measure [4], is defined for a com-
munity as Conductance(Ai) = out(Ai)

within(Ai)+out(Ai)
. Hence the average normalized cut is 

actually equal to the average conductance (per community).

External measures: precision, recall, and F‑score

Alternatively, we can measure the qualities of detected communities by comparing them 
with ground truth. Suppose k communities A1, . . . ,Ak were detected, and the ground 
truth has k ′ communities B1, . . . ,Bk ′. We compute the confusion matrix C = (cij)k×k ′, 
where cij = |Ai ∩ Bj|. Then, pairwise scores can be defined as

Although a global best match (i.e., finding a one-to-one mapping) between detected 
communities and ground-truth communities would be ideal, finding such a match is 
time consuming. We used per-community best match as a heuristic alternative. Specifi-
cally, we define the average F1 score [1] as

The average precision and average recall can be defined in a similar way. When compar-
ing detected communities against ground truth, we remove nodes without ground-truth 
labels from the detected communities to achieve meaningful comparisons.

Datasets

The data used for the experimental results of this paper are mostly from SNAP datasets 
[4, 34]. In our study, we found that the ground-truth information in SNAP is incomplete; 
for example, a large percentage of nodes do not belong to any ground-truth community. 

(14)AvgNcut(A1, . . . ,Ak) =
1

k
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within(Ai)+ out(Ai)
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Table 1 shows some statistics regarding the number of communities to which each node 
belongs.

Although all of these datasets can be conveniently accessed on the SNAP website as a 
graph with ground-truth communities, DBLP06 is the only dataset with a complete raw 
dataset openly available to the public. The other five datasets (Youtube, Amazon, Live-
Journal, Friendster, and Orkut) were obtained by crawling the web, and they are far from 
being complete. Crawling large complex graphs is challenging by itself that may need 
extensive and specialized research efforts. We do not aim to solve this issue in this paper. 
The Orkut and Youtube datasets can be acquired from [35]. Detailed descriptions are 
available explaining the crawling procedure and analysis of the completeness. It has been 
concluded that the Orkut and Youtube datasets are not complete. Such incompleteness 
in crawled datasets is expected due to intrinsic restrictions of web crawling such as rate 
limit and privacy protection. The Friendster data were crawled by the ArchiveTeam, and 
the LiveJournal data come from [36]. The Amazon data were crawled by the SNAP group 
[37]. However, information on how the data were collected and processed and the infor-
mation on analysis of data completeness are not available.

Possible reasons that many nodes in these datasets do not belong to any communi-
ties are (1) SNAP removed communities with less than three nodes, which caused some 
nodes to “lose” their memberships; (2) the well-known incompleteness of crawled data-
sets; (3) for social networks (Youtube, LiveJournal, Friendster, and Orkut), it is common 
that a user does not join any user groups; (4) SNAP used the dataset from [36] to gener-
ate the DBLP06 dataset, which was published in 2006. At that time, the DBLP database 
was not as mature and complete as it is today. Another issue of the above datasets is that 
all nodes are anonymized, which ensures protection of user privacy, but limits our ability 
to interpret community detection results.

The DBLP data are openly accessible, and are provided using a highly structured for-
mat—XML. We reconstructed the coauthorship network and ground-truth communi-
ties from a recent DBLP snapshot to obtain a more recent and complete DBLP dataset 
with all of the meta-information preserved (see the following subsection). Although the 
other datasets which we currently cannot improve are also valuable, our goal is to obtain 
new information from comparison of community detection results and ground-truth 
communities, rather than simply recovering the ground-truth communities.

Constructing the DBLP15 dataset

DBLP is an online reference for bibliographic information on major computer science 
publications [38]. As of June 17, 2015, DBLP has indexed 4316 conferences, 1417 jour-
nals, and 1,573,969 authors [39]. The whole DBLP dataset is provided in a well-format-
ted XML file. The snapshot/release version of the data we use can be accessed at http://
dblp.dagstuhl.de/xml/release/dblp-2015-06-02.xml.gz. The structure of this XML file is 
illustrated in Fig. 3. The root element is the dblp element. We call the children of the 
root elements Level 1 elements and the children of Level 1 elements Level 2 elements, 
and so on. Level 1 elements represent the individual data records [40], such as article 
and book, etc. Since publication–venue relation makes more sense for the journal and 
conference papers, and these two types of publications occupy most of DBLP, we con-
sider only article and inproceedings elements when constructing our dataset. 

http://dblp.dagstuhl.de/xml/release/dblp-2015-06-02.xml.gz
http://dblp.dagstuhl.de/xml/release/dblp-2015-06-02.xml.gz
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Level  2 elements contain the meta-information about the publications, such as title, 
authors, journal/proceeding names, etc.

Our goal is to obtain a coauthorship network and ground-truth information (venue–
author relation) from the XML file. Although the XML file is highly structured, such 
a task is still not straightforward due to the ambiguity of entities, such as conflicts or 
changes of author names, various abbreviations, or even journal name change. DBLP 
resolves the author ambiguity issue by means of a unique number for each author. How-
ever, the venue ambiguity is still an issue in DBLP: there are no unique identifiers for 
venues. Fortunately, each record in DBLP has a unique key, and most paper keys contain 
the venue information as follows:

However, there are still a few exceptions. To examine the validity of venue identifiers 
efficiently, we manually examine the identifiers not listed in the journal and confer-
ence index provided by the DBLP website, since such indices seem to be maintained by 
humans and assumed to be reliable. Using this process, we found 5240 unique venues 
(journals or conferences).

Now unique identifiers for both authors and venues make extracting the network 
and community information very reasonable. The next step is to create a node for each 
author, and create a link between two authors if they have ever coauthored in the same 
publication. For community information, each venue is a community, and an author 
belongs to a community if he/she has published in the corresponding venue.

A few authors do not have any coauthor in the DBLP database, and become isolated 
nodes in the generated network. Thus, we remove these authors. However, after remov-
ing those authors, some venues/communities become empty because all of their authors 
are removed. Hence, we remove those empty communities. After this cleaning, we 
obtained 1,509,944 authors in 5147 communities (venues).

This cleaned network has 51,328 (weakly) connected components, where the larg-
est connected component contains 1,357,781 nodes, which makes 89.9% of all nodes. 
The remaining 51,327 connected components are all small, the largest of which has 
only 37 nodes. We take the largest connected component as the network to study. By 

journals
︸ ︷︷ ︸

venue
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/siamsc
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venue
identifier

/

publication
identifier
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book ...

author title journal ...
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Level 1: 
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Fig. 3  Structure of dblp.xml
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extracting the largest connected component, we obtain a network with 1,357,781 nodes, 
6,369,212 edges and 5146 ground-truth communities. The ground-truth communities 
were divided into connected components, obtaining 93,824 communities. The divided 
ground-truth communities were used for comparison with detected communities.

The new DBLP15 dataset is available at https://github.com/smallk/smallk_data/tree/
master/dblp_ground_truth.

Experiment results

We run our experiments on a server with two Intel E5-2620 processors, each having six 
cores, and 377-GB memory. The results are listed in Tables 2, 3, 4, 5, 6, 7, 8, and 9.

In the “internal measures” table, “coverage” measures the percentage of nodes which 
are assigned to at least one community; “algorithm time” and “total time” provide the 
runtime information. We list two measures of runtime since our algorithm (and also 
NISE) implemented in MATLAB directly uses a processed matrix in memory as its 
input. Other algorithms must first read the graph stored as an edge list or an adjacency 
list and convert the graph to the appropriate internal representation. Therefore, we use 
“algorithm time” to measure the algorithm runtime without the time needed for reading 
and converting the graph, which is reported by the algorithms themselves. The “total 
time” is the wall clock time for running the algorithm, including the time for reading 

Table 2  DBLP06: internal measures

Algorithm Number of clusters Coverage (%) Algorithm time (s) Total time (s) Average Ncut

h2-n-a 4982 98.57 612.99 614.12 0.2089

h2-n-x 4981 98.55 587.98 589.10 0.2174

h2-ng-a 4984 98.48 921.99 923.14 0.1922

h2-ng-x 4982 98.50 872.48 873.64 0.1921

h2-ngd-a 4986 98.64 882.27 883.41 0.1767

h2-ngd-x 4984 98.66 908.31 909.46 0.1774

SCD 139,986 100.00 1.89 4.52 0.8091

BigClam 5000 90.57 N/A 230.59 0.6083

Graclus 5000 100.00 161.70 162.01 0.2228

NISE 5463 99.33 501.38 501.53 0.2026

Table 3  DBLP06: external measures

Algorithm Number of clusters F1 Precision Recall Reverse precision Reverse recall

h2-n-a 3312 0.4355 0.8804 0.5242 0.9005 0.4030

h2-n-x 3298 0.4236 0.8855 0.5071 0.9007 0.3937

h2-ng-a 3211 0.4417 0.8708 0.5492 0.8490 0.3996

h2-ng-x 3118 0.4374 0.8742 0.5497 0.8574 0.3898

h2-ngd-a 3192 0.4577 0.8575 0.5800 0.8719 0.4091

h2-ngd-x 3138 0.4534 0.8541 0.5808 0.8768 0.4008

SCD 34,705 0.4644 0.9817 0.1268 0.7053 0.9755

BigClam 4952 0.3778 0.4857 0.6807 0.9269 0.3121

Graclus 4633 0.4765 0.6915 0.6006 0.8852 0.4517

NISE 4903 0.4118 0.5735 0.7942 0.9518 0.3552

https://github.com/smallk/smallk%5fdata/tree/master/dblp%5fground%5ftruth
https://github.com/smallk/smallk%5fdata/tree/master/dblp%5fground%5ftruth
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and converting the graph, which is measured with an external timer. BigClam reports 
its algorithm time as the sum of time used in each core, and therefore, the results are 
not comparable. For completeness, we added the data-loading and data-preprocessing 
times, which are measured separately, to obtain a “total time” for the MATLAB algo-
rithms (our algorithm and NISE).

Table 4  Amazon: internal measures

Algorithm Number of clusters Coverage (%) Algorithm time (s) Total time (s) Average Ncut

h2-n-a 4989 98.84 466.99 468.09 0.1657

h2-n-x 4988 98.80 452.05 453.13 0.1711

h2-ng-a 4990 98.73 537.82 538.91 0.1617

h2-ng-x 4988 98.66 514.71 515.81 0.1709

h2-ngd-a 4990 98.82 573.64 574.73 0.1491

h2-ngd-x 4990 98.79 560.86 561.96 0.1545

SCD 141,405 100.00 1.86 4.37 0.8418

BigClam 5000 97.31 N/A 169.51 0.3198

Graclus 5000 100.00 119.25 119.45 0.1450

NISE 5182 99.63 990.84 990.86 0.1118

Table 5  Amazon: external measures

Algorithm Number of clusters F1 Precision Recall Reverse precision Reverse recall

h2-n-a 1069 0.7883 0.9747 0.8179 0.9057 0.7593

h2-n-x 1038 0.7717 0.9787 0.8109 0.9070 0.7311

h2-ng-a 1209 0.7422 0.9657 0.7247 0.8748 0.7622

h2-ng-x 1185 0.7268 0.9655 0.7152 0.8743 0.7372

h2-ngd-a 1181 0.7813 0.9698 0.7741 0.8867 0.7922

h2-ngd-x 1168 0.7725 0.9702 0.7681 0.8869 0.7792

SCD 3841 0.6202 0.9998 0.3166 0.8186 0.9948

BigClam 1447 0.8389 0.9718 0.7824 0.9574 0.8744

Graclus 991 0.8555 0.9356 0.9471 0.9892 0.7525

NISE 2612 0.6673 0.6666 0.9733 0.9807 0.5390

Table 6  Youtube: internal measures

Algorithm Number of clusters Coverage (%) Algorithm time (s) Total time (s) Average Ncut

h2-n-a 3782 98.10 1182.39 1185.94 0.1681

h2-n-x 3780 98.01 1189.09 1192.66 0.1634

h2-ng-a 3798 98.00 1885.15 1888.71 0.1520

h2-ng-x 3851 98.14 1816.98 1820.45 0.1491

h2-ngd-a 3886 98.27 1613.13 1616.57 0.1395

h2-ngd-x 3874 98.22 1621.04 1624.50 0.1428

SCD 998,722 100.00 12.03 20.39 0.9882

BigClam 5000 41.51 N/A 2379.84 0.7398

Graclus 5000 100.00 2160.11 2168.36 0.4919

NISE 5162 99.96 2598.25 2598.66 0.4313
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The “number of clusters” in the “internal measures” table are different across different 
methods due to the following reasons. The SCD algorithm does not provide an interface 
for specifying the number of communities to detect, and instead detects the number of 
communities automatically. For other algorithms, we specify the number of communi-
ties to detect as 5000. The actual number of communities generated by HierSymNMF2 

Table 7  Youtube: external measures

Algorithm Number of clusters F1 Precision Recall Reverse precision Reverse recall

h2-n-a 189 0.2907 0.9639 0.5247 0.9810 0.0403

h2-n-x 193 0.2972 0.9645 0.5411 0.9790 0.0412

h2-ng-a 241 0.2935 0.8684 0.5969 0.9315 0.0516

h2-ng-x 259 0.3027 0.8932 0.5915 0.9467 0.0551

h2-ngd-a 227 0.3030 0.9299 0.5694 0.9594 0.0484

h2-ngd-x 238 0.2978 0.9394 0.5476 0.9633 0.0507

SCD 27,864 0.3652 0.9709 0.1330 0.4453 0.9841

BigClam 3850 0.2354 0.3755 0.5187 0.4743 0.2370

Graclus 3802 0.3827 0.5761 0.5348 0.6532 0.4148

NISE 3778 0.2720 0.4762 0.7180 0.9912 0.2580

Table 8  DBLP15: internal measures

Algorithm Number of clusters Coverage (%) Algorithm time (s) Total time (s) Average Ncut

h2-n-a 4982 99.66 1648.73 1654.71 0.1702

h2-n-x 4982 99.67 1666.13 1672.01 0.1743

h2-ng-a 4984 99.62 3262.76 3268.63 0.1606

h2-ng-x 4984 99.64 3220.70 3226.57 0.1568

h2-ngd-a 4987 99.69 2558.80 2564.60 0.1457

h2-ngd-x 4987 99.70 2503.58 2509.38 0.1463

SCD 565,235 100.00 16.89 33.22 0.8357

BigClam 5000 65.07 N/A 1352.57 0.6761

Graclus 5000 100.00 1980.38 1987.97 0.2732

NISE 5101 86.77 945.15 945.90 0.3482

Table 9  DBLP15: external measures

Algorithm Number of clusters F1 Precision Recall Reverse precision Reverse recall

h2-n-a 4982 0.3028 0.7282 0.7000 0.9830 0.0445

h2-n-x 4982 0.2994 0.7229 0.6986 0.9833 0.0442

h2-ng-a 4984 0.3025 0.7188 0.7164 0.9066 0.0440

h2-ng-x 4984 0.2992 0.6978 0.7275 0.9095 0.0439

h2-ngd-a 4987 0.3036 0.6963 0.7455 0.9640 0.0446

h2-ngd-x 4987 0.3016 0.6839 0.7512 0.9658 0.0446

SCD 565,235 0.3477 0.8684 0.1050 0.5803 0.8218

BigClam 5000 0.0784 0.2357 0.9875 0.6806 0.0192

Graclus 5000 0.0861 0.2411 0.9874 0.7576 0.0275

NISE 5101 0.0955 0.3606 0.8307 0.7066 0.0253
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is usually less than 5000, as discussed in “Methods for comparison” section. Also, the 
number of communities generated by NISE are usually a little larger than 5000, which is 
also an expected behavior [3].

In the “external measures” table, the “reverse precision” and “reverse recall” refer to 
the scores computed as if the ground-truth communities are treated as detected com-
munities and the detected communities are treated as the ground truth, respectively. 
Note that the number of clusters in “external measures” is less than the one in “internal 
measures” due to the removal of nodes that do not appear in the ground truth.

We have the following observations from the experimental results: (1) Our HierSym-
NMF2 algorithm has significant advantages over other methods in average normalized 
cut on most datasets except the Amazon dataset. On the Amazon dataset, HierSym-
NMF2 achieves much lower average normalized cut than SCD and BigClam, and the 
variant h2-ngd-a obtained comparable average normalized cut (0.1491) versus Gra-
clus (0.1450), which is not as good as NISE (0.1118). (2) HierSymNMF2 runs slower 
than most other algorithms on DBLP06 and DBLP15. On the Youtube dataset, HierSym-
NMF2 runs faster than BigClam, Graclus and NISE. On the Amazon dataset, Hier-
SymNMF2 runs faster than NISE, but slower than other methods. (3) HierSymNMF2 
achieves better F1 score than BigClam and NISE on all the datasets we used. Graclus 
has better F1 score than HierSymNMF2 on DBLP06, Amazon, and Youtube datasets 
but obtained an unusually low F1 score on the DBLP15 dataset. SCD achieves higher F1 
scores than HierSymNMF2. However, SCD often discovers a significantly larger num-
ber of (nonoverlapping) communities than expected and has very unbalanced precision 
and recall scores compared with other algorithms. The SCD algorithm finds the number 
of communities as it finds the communities and the number of communities cannot be 
given to SCD as an input. The SCD algorithm starts by assigning an initial partitioning of 
the graph heuristically. In short, in the initial partitioning, each node and all its neigh-
bors form a community, and special care is taken to ensure that no node belongs to more 
than one community. As a result, this initial step often creates many more communities 
than the optimal number, although later refining procedures may reduce the number of 
communities. As can be seen from the experimental results, when compared with Big-
Clam, Graclus, NISE, and our proposed algorithms that take the number of commu-
nities as an input, a much larger number of communities that the SCD generates does 
not necessarily translate to a better overall community detection result in terms of either 
normalized cut or F1 scores.

Conclusions and discussion
Overall, HierSymNMF2 is an effective community detection method that optimizes the 
average normalized cut very well, although it is not the fastest method.

To address the quality issue of the ground-truth networks, we constructed a more 
complete and recent version of the DBLP dataset, where most nodes have at least one 
community membership and also the size of the data is significantly larger.

We partially answered the three questions we raised in “Problem definition” section. 
For Q1 and Q2, we used measurements that are commonly used in the current literature. 
One has to be careful when choosing community detection methods based on external 
measures such as F1 score because of the incompleteness of ground-truth communities 
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and the difference between linkage-based communities (as detected) and functional 
communities (as in the ground truth). Therefore, it is important to use an internal meas-
ure such as the average normalized cut to evaluate an algorithm. In addition, we believe 
the current evaluation methods for large-scale community detection have certain limita-
tions. These methods are mainly based on some quality scores, e.g., the F1 score. Such 
quality scores can be used to compare various algorithms. However, they do not provide 
much more information regarding the quality of results than the average performance. 
We assert that to better understand a community detection result, it is necessary to 
develop more comprehensive evaluation methods.

For Q3, we think that the large scale of the network and the large number of commu-
nities make the community detection results hard to interpret. One way to understand 
the community structure better would be to develop better methods for community 
visualization.

As a result of the growing popularity and utility of social media communications and 
other channels of communications between people and groups of people, there are vast 
amounts of data that contain latent community information. The amount of information 
is overwhelming and very  demanding of  our current technological capabilities, which 
may adversley impact the ability of stakeholders to make critical and timely decisions 
that are important in many domains such as natural disasters, local conflicts, healthcare, 
and law enforcement, to name a few. These domains typically involve groups of individu-
als with often hidden links. Thus, it is incumbent on the research community to develop 
fast and effective methods to first discover the communities formed by these links and 
then formulate useful summaries of the information provided by the algorithms and 
measures in order for decision makers to initiate appropriate actions as required.
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Appendix A: Relations between SymNMF, ratio association and normalized cut
We mentioned that the SymNMF formulation

is a relaxation of optimization problems related to graph partitioning. Specifically, let 
SG be the adjacency matrix of graph G. When S = SG, Eq.  (2) is a relaxation of maxi-
mizing the ratio association. When S = D−1/2SGD−1/2, where D = diag(d1, . . . , dn) and 
di =

∑n
j=1 S

G

ij  is the degree of node i, Eq. (2) is a relaxation of minimizing the normalized 
cut.

We defined normalized cut of a graph partition (A1, . . . ,Ak) as ncut(A1, . . . ,Ak) 
(Eq. (9)) using the concept of within(Ai) (Eq. (10)), and out(Ai) (Eq. (11)). With the same 
notations, the ratio association of a graph partition is defined as

where |Ai| is the number of nodes in partition Ai.
In the following sections, we will use the convenient Iverson bracket [41]:

where P is any statement. Also, G = (V ,E) is the graph under study, where 
V = {v1, . . . , vn}. The matrix S = (wij) is the adjacency matrix of graph G, where 
wij = w(vi, vj) is the weight of edge (vi, vj). The tuple (A1, . . . ,Aj) is a partition of graph G.

Relation between SymNMF and ratio association

We rewrite Eq. (15) as

Let H = (hij)n×k where n is the number of nodes in the graph, k is the number of parti-
tions, and

 Then, we have

min
H≥0

�S −HHT�2F (2 revisited)

(15)rassoc(A1, . . . ,Ak) =
k∑

i=1

within(Ai)

|Ai|

(16)[P] =
{
1 if P is true;
0 otherwise.

(17)rassoc(A1, . . . ,Ak) =
k∑

i=1

1

|Ai|
∑

u,v∈Ai

w(u, v)

(18)hij =
1

√
|Aj|

[vi ∈ Aj].
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and

which means HTH = I. Therefore [42],

If the restriction (18) is relaxed using H ≥ 0 , i.e., nonnegative H, we will arrive at our 
SymNMF formulation.

Relation between SymNMF and normalized cut

Let D = diag(d1, . . . , dn) , where di =
∑n

j=1 wij is the degree of node i and let 
H = (hij)n×k, where

Then, we have

tr(HTSH) =
∑

1 ≤ i ≤ k
1 ≤ j, l ≤ n

hjiwjlhli

=
∑

1 ≤ i ≤ k
1 ≤ j, l ≤ n

wjl

|Ai|
[vj ∈ Ai][vl ∈ Ai]

=
k∑

i=1

1

|Ai|
∑

u,v∈Ai

w(u, v)

= rassoc(A1, . . . ,Ak)

(HTH)ij =
∑

k

hkihkj

=
∑

k

1
√

|Ai||Aj|
[vk ∈ Ai][vk ∈ Aj]

=
[i = j]
|Ai|

∑

k

[vk ∈ Ai]

= [i = j]

(19)

max rassoc(A1, . . . ,Ak) ⇔ max tr(HTSH)

⇔ min{tr(STS)− 2tr(HTSH)+ tr(I)}

⇔ min tr
(

(S −HHT)T(S −HHT)

)

⇔ min �S −HHT�2F

(20)hij =
√
di

√
within(Aj)+ out(Aj)

[vi ∈ Aj].
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and

which means HTH = I. Similar to (19), we have

When the restriction (20) is relaxed to H ≥ 0, our SymNMF formulation is obtained.

Appendix B: Normalized cut increases when a community is split into two 
communities
In Fig. 1, the community A3 was split into B1 and B2, and the associated increase of nor-
malized cut is

Denote i1 = within(B1), i2 = within(B2), i3 = within(A3), o1 = out(B1), o2 = out(B2), 
i3 = out(A3), and c = cut(B1,B2), and note that o3 = o1 + o2 − 2c and i3 = i1 + i2 + 2c . 
Then, we have

tr(HTD−1/2SD−1/2H) =
∑

1 ≤ i ≤ k
1 ≤ j, l ≤ n

hjiwjlhli
√
djdl

=
∑

1 ≤ i ≤ k
1 ≤ j, l ≤ n

wjl

within(Ai)+ out(Ai)
[vj ∈ Ai][vl ∈ Ai]

=
k∑

i=1

within(Ai)

within(Ai)+ out(Ai)

= k − ncut(A1, . . . ,Ak)

(HTH)ij

=
∑

k

hkihkj

=
∑

k

dk√
within(Ai)+ out(Ai)

√
within(Aj)+ out(Aj)

[vk ∈ Ai ∩ Aj]

=
[i = j]

within(Ai)+ out(Ai)

∑

k

dk [vk ∈ Ai]

= [i = j]

(21)

min ncut(A1, . . . ,Ak) ⇔ min{k − tr(HTD−1/2SD−1/2H)}
⇔ max tr(HTD−1/2SD−1/2H)

⇔ min �D−1/2SD−1/2 −HHT�2F

.

�ncut =
out(B1)

within(B1)+ out(B1)
+

out(B2)

within(B2)+ out(B2)

−
out(A3)

within(A3)+ out(A3)

.

�ncut =
2c(i1 + o1)(i2 + o2)+ o2(i1 + o1)

2 + o1(i2 + o2)
2

(i1 + o1)(i2 + o2)(i1 + i2 + o1 + o2)
> 0
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Note that this proof does not say that more communities always correspond to larger 
normalized cut in general (i.e., when the communities are not obtained through recur-
sive splitting).
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