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Background
Highly dynamic networks are networks where connectivity changes in time and connection 
patterns display possibly complex dynamics. Such networks are more and more pervasive 
in everyday life and the study of their properties is the object of extensive investigation in a 
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changes in time, are becoming more and more pervasive. Knowledge mobilization, 
which refers to the use of knowledge toward the achievement of goals, is one of the 
many examples of dynamic social networks. Despite the wide use and extensive study 
of dynamic networks, their temporal component  is often neglected in social network 
analysis, and statistical measures are usually performed on static network representa-
tions. As a result, measures of importance (like betweenness centrality) typically do 
not reveal the temporal role of the entities involved. Our goal is to contribute to fill 
this limitation by proposing a form of temporal betweenness measure (foremost 
betweenness).

Methods:  Our method is analytical as well as experimental: we design an algorithm to 
compute foremost betweenness, and we apply it to a case study to analyze a knowl-
edge mobilization network.

Results:  We propose a form of temporal betweenness measure (foremost between-
ness) to analyze a knowledge mobilization network and we introduce, for the first time, 
an algorithm to compute exact foremost betweenness. We then show that this meas-
ure, which explicitly takes time into account, allows us to detect centrality roles that 
were completely hidden in the classical statistical analysis. In particular, we uncover 
nodes whose static centrality was  negligible, but whose temporal role might instead 
be important to accelerate mobilization flow in the network. We also observe the 
reverse behavior by detecting nodes with high static centrality, whose role as temporal 
bridges is instead very low.

Conclusion:  In this paper, we focus on a form of temporal betweenness designed to 
detect accelerators in dynamic networks. By revealing potentially important temporal 
roles, this study is a first step toward a better understanding of the impact of time in 
social networks and opens the road to further investigation.
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wide range of very different contexts. Some of these contexts are typically studied in com-
puter science, such as wireless, ad hoc networks, transportation, vehicular networks, satel-
lites, military, and robotic networks (e.g., see [1–6]), while others belong to totally different 
disciplines. This is the case, for example, of the nervous system, livestock trade, epidemi-
ological networks, and multiple forms of social networks (e.g., see [7–12]). Clearly, while 
being different in many ways, these domains display common features; a time-varying graph 
(TVG) is a model that formalizes highly dynamic networks encompassing the above con-
texts into a unique framework and emphasizes their temporal nature [13].

Knowledge mobilization (KM) refers to the use of knowledge toward the achievement of 
goals [14]. Scientists, for example, use published papers to produce new knowledge in fur-
ther publications to reach professional goals. In contrast, patient groups can use scientific 
knowledge to help foster change in patient practices, and corporations can use scientific 
knowledge to reach financial goals. Recently, researchers have started to analyze knowl-
edge mobilization networks (KMN) using a social network analysis (SNA) approach (e.g., 
see [15–20]). In particular, [19] proposed a novel approach where a heterogeneous network 
composed of a main class of actors subdivided into three subtypes (individual human and 
non-human actors, organizational actors, and non-human mobilization actors) associated 
according to one relation, knowledge mobilization (a mobilization-network approach). Data 
covered a 7-year period with static networks for each year. The mobilization network was 
analyzed using classical SNA measures (e.g., node centrality measures, path length, density) 
to produce understanding for KM using insights from network structure and actor roles [19].

The KM SNA studies mentioned above, however, lack a fundamental component: in fact, 
their analysis is based on a static representation of KM networks, incapable of sufficiently 
accounting for the time of appearance and disappearance of relations between actors beyond 
static longitudinal analysis. Indeed, incorporating the temporal component into analysis is a 
challenging task, but it is undoubtedly a critical one, because time is an essential feature of 
these networks. Temporal analysis of dynamic graphs is in fact an important and extensively 
studied area of research (e.g., see [21–27]), but there is still much to be discovered. In par-
ticular, most temporal studies simply consider network dynamics in successive static snap-
shots, thus capturing only a partial temporal component by observing how static parameters 
evolve in time while the network changes. Moreover, very little work has been dedicated to 
empirically evaluating the usefulness of metrics in time (e.g., see [28, 29]).

In this paper, we represent KMN by TVGs and we propose to analyze them in a truly tem-
poral setting. We design a deterministic algorithm to compute a form of temporal between-
ness in time-varying graphs (foremost betweenness) that measures centrality of nodes in 
terms of how often they lie within temporal paths with the earliest arrival. We then pro-
vide, for the first time on a real data set, an empirical indication for the effectiveness of fore-
most betweenness. In particular, we focus on data extracted from [19], here referred to as 
Knowledge-Net. We first consider static snapshots of Knowledge-Net corresponding to the 
7 years of its existence, and by studying the classical centrality measures in those time inter-
vals, we provide rudimentary indications of the networks’ temporal behavior. To gain a finer 
temporal understanding, we then concentrate on temporal betweenness following a totally 
different approach. Instead of simply observing the static network over consecutive time 
intervals, we focus on the TVG that represent Knowledge-Net and we compute foremost 
betweenness, explicitly and globally taking time into account. We compare the temporal 
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results that we obtain with classical static betweenness measures to gain insights into the 
impact that time has on the network structure and actor roles. We notice that, while many 
actors maintain the same role in static and dynamic analysis, some display striking differ-
ences. In particular, we observe the emergence of important actors that remained invisible 
in static analysis, and we advance explanations for these. Results show that the form of tem-
poral betweenness we apply is effective at highlighting the role of nodes whose importance 
has a temporal nature (e.g., nodes that contribute to mobilization acceleration).

A limitation of our algorithm is its applicability to small networks. In fact, any determinis-
tic solution to the computation of foremost betweenness is inevitably very costly and, when 
faced with large networks, it is feasible to apply it only on small components. This research 
opens the road to the design of approximate variations of the algorithm so to make it applica-
ble to larger scenarios, as well as to the study of other temporal measures designed for TVGs.

Time‑varying graphs
Definition

Time-varying graphs are graphs whose structure varies over time. Following [13], a 
time-varying graph (TVG) is defined as a quintuple G = (V ,E, T , ρ, ζ ), where V is a 
finite set of nodes and E ⊆ V × V  is a finite set edges. The graph is considered within 
a finite time span T ⊆ T, called lifetime of the system. ρ:E × T → {0, 1} is the edge 
presence function, which indicates whether a given edge is available at a given time; 
ζ :E × T → T is the latency function, which indicates the time it takes to cross a 
given edge if starting at a given date. The model may, of course, be extended by defin-
ing the vertex presence function (ψ :V × T → {0, 1}), and vertex latency function 
(φ:V × T → {0, 1}). The footprint of G is a static graph composed by the union of all 
nodes and edges ever appearing during the lifetime T.

Journeys

A journey route R in a TVG G is a walk in G defined as a sequence of edges {e1, e2, . . . , ek} . 
A journey J , then, is a temporal walk in G comprising the sequence of ordered pairs 
{(e1, t1), (e2, t2), . . . , (ek , tk)} if and only if ρ(ei, ti) = 1 and ti+1 ≥ ti + ζ(ei, ti) for all i < k . 
Every journey has a departure (J ) and an arrival (J ) that refer to journey’s starting time 
t1 and its finish time tk + ζ(ek , tk), respectively. Journeys are divided into three classes 
based on their variations based on the temporal and topological distance [30]. Journeys 
that have the earliest arrival times are called foremost journeys, journeys with the smallest 
topological distance are referred to as the shortest journeys, while the journey that takes 
the smallest amount of time is called the fastest. Moreover, we call foremost increasing 
journeys the ones whose route {e1, e2, . . . , ek} is such that birth-date(ei) ≤ birth-date(ei+1).

Temporal betweenness

Betweenness is a classic measure of centrality extensively investigated in the context of 
social network analysis. The betweenness of a node v ∈ V  in a static graph G = (V ,E) is 
defined as follows:

(1)B(v) =
∑

u�=w �=v∈V

|P(u,w, v)|

|P(u,w)|
,
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where |P(u, w)| is the number of shortest paths from u to w in G, and |P(u, w, v)| is the 
number of those passing through v. Even if static betweenness is “atemporal,” we denote 
here by B(v)T  the static betweenness of a node v in a system whose lifetime is T . Typi-
cally, vertices with high betweenness centrality direct a greater flow and, thus, have a 
high load placed on them, which is considered as an indicator for their importance as 
potential gatekeepers in the network.

While betweenness in static graphs is based on the notion of the shortest path, its 
temporal version can be extended into three different measures to consider the shortest, 
foremost, and fastest journeys for a given lifetime T  [25].

In this paper, we consider foremost betweenness. Nodes with a high foremost between-
ness values do not simply act as gatekeepers of flow, like their static counterparts. In fact, 
they direct the flow that conveys a message in an earliest transmission fashion. In other 
words, if the message transmission takes the path from foremost between nodes, such 
nodes provide a means to transmit the message in a more timely manner to all other 
nodes in the graph compared to the nodes that have lower foremost centrality. Thus, 
intuitively, they provide some form of “acceleration” in the flow of information.

Foremost betweenness TBT
F
(v) for node v with lifetime T  is here defined as follows:

where |FT (u,w)| is the number of foremost journey routes between u and w during time 
frame T  and |FT (u,w, v)| is the number of the ones passing through v in the same time 
frame; n is the total number of nodes, and n(v) is the number of nodes in the connected 
component to which v belongs. The factor n(v)n  is an adjustment coefficient to take into 
account possible network disconnections. In fact, it makes the betweenness of a node 
depend on the actual size of the connected component to which the node belongs, thus 
avoiding anomalous situations where a node in a very small component could be other-
wise perceived as globally central. This would be the case, for example, of the center v of 
a small component in the shape of a star, where v would have maximum global between-
ness while its central role is applied only to a very small portion of the overall network.

Computing foremost betweenness 
The computation of betweenness centrality in static graphs can be done quite efficiently. 
Several approaches exist in the literature (e.g., see [31–35]) proposing either polynomial 
deterministic solutions or approximate ones for a variety of different graphs. Computing 
shortest-path betweenness in TVG can also be done in polynomial time, for example by 
adapting the algorithms described in [26, 30]. The situation is rather different in the case of 
foremost betweenness, for which no algorithm has been proposed so far. In fact, it is easy to 
see that there exist TVGs where counting all foremost journeys or journey routes between 
two vertices is #P-complete, which means that no polynomial-time algorithm is known.

Consider, for example, TVGs where edges always exist (note that a static graph is a par-
ticular TVG) and latency is zero. In such a case, any journey between any pair of nodes is 
a foremost journey. Counting all of them is then equivalent to counting all paths between 

(2)TBT

F
(v) =

n(v)

n

∑

u�=w �=v∈V

|FT (u,w, v)|

|FT (u,w)|
,
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them, which is a #P-complete problem (see [36]). In general, it is then unavoidable to have 
worst-case exponential algorithms to compute foremost betweenness in an arbitrary TVG.

In this section, we first focus on foremost betweenness based on journey routes in the gen-
eral setting (Algorithm 1). We then focus on foremost betweenness for special TVGs with zero 
latency and instant edges (Algorithm 2), which correspond to the characteristics of the knowl-
edge mobilization network that we analyze in "Knowledge-Net". Note that each solution has 
the same worst-case time complexity, linear in the number of nodes in all the journey routes in 
the TVG, which can clearly be exponential. The advantages of the algorithm designed for the 
special temporal condition of instant edges and zero latency are mainly practical. In fact, the 
worst-case complexities are the same, but the execution time is better for our particular dataset.

A general algorithm

In this section, we describe an algorithm for counting all journey routes from a given 
node to all the other nodes in the TVG, passing through any possible intermediate node. 
This module is at the basis of the computation of foremost betweenness.

1 Algorithm CountFormemostJRoutes.
input : (G, s) : a TVG G = (V,E), s ∈ V
output: Counts[x, y], ∀x, y ∈ V : number of foremost journey routes

from s to y ∈ V , passing through x ∈ V
2 begin
3 Path.push(s, 0), Counts[., .] ← 0
4 for all w ∈ Adj(s) do
5 S.push(s, w, arriv(s, w, 0)) (* push edge (s, w) with its arrival time *)
6 end
7 while S �= ∅ do
8 (x, y, t) ← S.pop() (* next candidate edge to visit*)
9 while x �= Path.top() do

10 Path.pop() (* reflecting possible backtrack *)
11 end
12 Let π be the journey route stored in Path
13 Let tx,y be the latest possible traversing time of edge (x, y)
14 if tx,y ≥ arriv(π) then
15 if y �∈ Path or y ∈ Path at time t′ < t then
16 Path.push(y, arriv(x, y, t)) (* visit y *)
17 for each (y, w) such that ty,w ≥ arriv(π) and either

w �∈ Path or w ∈ Path at time t′ < arriv(y, w, t) do
18 S.push(y, w, arriv(y, w, t)) (* update S *)
19 end
20 if arriv(π) = foremost(s, y) then
21 Update Counts[z, y] for all z ∈ Path
22 (* Path contains a foremost journey. Counters are updated*)

23 end
24 end
25 end
26 end
27 end
Algorithm 1: Algorithm to count all journey routes from s to all the other
nodes.
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We start by introducing some notations and functions used in the algorithm. Given 
an edge (x, y), let function arriv(x, y, t) return the arrival time to y, leaving x at time t. 
Given a time-stamped journey π, with an abuse of notation, let us indicate by arriv(π) 
the arrival time at the last node of π. The foremost arrival time in G to any node v from a 
given source s can be computed using the Algorithm from [30]. Let foremost(s, v) denote 
such a time.

We are now ready to describe the algorithm. The input of Algorithm CountFormem-
ostJRoutes is a pair (G,  s), where G = (V ,E) is a TVG and s is a starting node. The 
algorithm returns a matrix Counts[x, y], for all x, y ∈ V  containing the number of fore-
most journeys from s to y passing through x (note that Counts[x, x] denotes the number 
of foremost journeys from s to x).

The counting algorithm is simple and it is based on multiple Depth-First Search 
(DFS) traversals. It consists of visiting every journey route of G starting from s, 
incrementing the appropriate counters every time a newly encountered journey is 
foremost. We remind that a node can reappear more than once in a journey route, 
with various occurrences corresponding to different times. This means that we need 
to store the time when a node is visited in the journey route so that, if it is visited 
again, we can determine whether the subsequent visit corresponds to a later time 
and thus the node has to be considered again. Note that this is the main difference 
with respect to a DFS in a static graph, where instead every node is visited exactly 
once.

To perform the traversal managing multiple visits (corresponding to different traversal 
times), we use two stacks: Path and S, where Path contains the nodes corresponding to 
the journey currently under visit and S contains the edges to be visited. In both Path 
and S, we store also time-stamps, to register the time of the first visit of nodes in Path 
and the time for the future visits of edges in S. If a node happens to be revisited at a later 
time, in fact, it is treated as a new node.

The traversal starts as a typical DFS, pushing the incident edges of the source s onto 
stack S with their arrival times in these journeys (lines 4–6). The nodes corresponding 
to the current journey under visit are kept in the second stack Path (these nodes are 
implicitly marked visited), initially containing only the source. When considering the 
next candidate edge (x, y) to visit (line 8), we may be continuing the current journey (if 
the top of stack Path contains x) or we may have backtracked to some previous nodes 
(if the top is different from x). In this last case, the content of Path is updated to reflect 
the backtracking (lines 9–11). After visiting a node y (line 16), the DFS continues push-
ing on S the edges incident to y that are feasible with the current journey under visit 
(i.e., the edges whose target is not already in Path, and whose latest traversal time is 
greater than or equal to the earliest arrival time at y) (lines 17–19). The if clause at line 
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20 checks whether the discovered journey is foremost and updates the corresponding 
counters.

In other words, as soon as a journey π = [(x0, x1), (x1, x2), . . . , (xk−1, xk)] is encoun-
tered in the traversal, Count[xi, xk ], i ≤ k is updated only if π is a foremost journey, and, 
regardless of it being foremost, the traversal continues pushing on the stack the edges 
incident to xk that are temporally feasible with π. Whenever backtracking is performed, 
however, the already visited nodes on the backtracking path are popped from Path (thus 
implicitly remarked unvisited) in such a way that they can be revisited as part of different 
journey routes, not explored yet.

Observations on complexity

The running time of Algorithm CountFormemostJRoutes is linear in the number of 
nodes belonging to different foremost journeys, because it traverses each one of them. 
However, depending on the structure of the TVG, such a number could be exponential, 
thus an overall exponential worst-case complexity.

More precisely, let µs be the number of foremost journeys from a source node s 
to all the other nodes in G, n(µs) be the number of nodes belonging to those jour-
neys, and n the number of nodes of G. Moreover, let µ and n(µ) be, respectively, the 
overall number of foremost journeys in G and the overall number of nodes in those 
journeys. The algorithm to count all foremost journeys from s to all the other nodes 
traverses every foremost journey from the source to any other node, and it performs 
an update for every visited node in each foremost journey that it encounters. Thus, 
its time complexity is O(n(µs)). To compute foremost betweenness, the algorithm 
has to be repeated for every possible source, thus traversing every possible foremost 
journey in G for a total time complexity of O(n(µ)). Since n(µ) could be exponential 
in n, we have a worst-case exponential complexity in the size of the network. Note 
that the high cost is inevitable for any deterministic algorithm to compute foremost 
betweenness.

Algorithm for KnowledgeNet

Algorithm 1 is applicable to a general TVG. We now consider a very special type of TVG 
with specific temporal restrictions that correspond to the type of network that we ana-
lyze in this paper. One such peculiarity is given by instant edges (edges that appear only 
during a unique time interval). Another characteristic is zero latency (i.e., edges that can 
be traversed instantaneously). Finally, in this setting, we base betweenness computation 
on increasing journey routes.
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1 Algorithm CountAllZeroLatency
input : A TVG Gi, starting node s ∈ V , and snapshot interval I
output: Counts[v, u] that records the number of the journeys from

s ∈ VG to all u ∈ VG passing through v ∈ VG during interval I
2 begin
3 Initialize Counts[., .] ← 0
4 Path.push(s)
5 for all w ∈ Adj(s) do
6 S.push(s, w)
7 end
8 while S �= ∅ do
9 (x, y) ← S.pop()

10 while x �= Path.top() do
11 Path.pop()
12 end
13 if y /∈ Path then
14 Path.push(y)
15 if y falls in snapshot interval I then
16 for each (y, w) such that w /∈ Path do
17 S.push(y, w)
18 end
19 if path is foremost then
20 Counts[z, y] = increment Counts[z, y] for all z ∈ Path
21 end
22 end
23 else
24 Counts[z, y] = Special Count(Counts[z, x],

Counts[z, y]) for all z ∈ Path

25 end
26 end
27 end
28 end
Algorithm 2: Counting all foremost journeys in TVGs with zero latency
and instant edges.

We then describe a variation of the general algorithm specifically designed for those 
conditions (instant edges with zero latency), and we compute foremost betweenness 
applying the foremost betweenness formula restricted to foremost increasing journeys.

Given a TVG G = (V ,E), since we assume the presence of instant edges, we can divide 
time in consecutive intervals I1, I2, . . . , Ik corresponding to k snapshots G1,G2, . . .Gk 
(Gi = (Vi,Ei)), in such a way that (x, y) ∈ Ei implies that (x, y) �∈ Ej for j �= i. Further-
more, we know by ζ = 0 that an edge can be traversed in zero time.

The key idea that can be applied to this very special structure is based on the observa-
tion that, given a foremost route πx,y from x to y with edges in time intervals Ij, provided 
that j > i and j appears immediately after i, and given any journey route π ′

s,x from s to x 
with edges only in Ii, the concatenation of π ′

s,x and πx,y is a foremost route from s to y, 
passing through x.
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This observation leads to the design of an algorithm that starts by counting the fore-
most routes belonging to the last snapshot Gk only, and proceeds backwards using the 
information already computed. More precisely, when considering snapshot Gi from a 
source s, the goal is to count all foremost routes involving only edges in ∪j≥iEj (i.e., with 
time intervals in ∪j≥iIj), and when doing so, all the foremost routes involving only edges 
strictly in the “future” (i.e., time intervals ∪j>iIj) have been already calculated for any pair 
of nodes. The already computed information is used when processing snapshot Gi in a 
dynamic programming fashion.

As for Algorithm  1, the input of Algorithm  2 is a pair: a snapshot Gi and a starting 
node s. The algorithm returns an array, Counts[u, v], where Counts[u, v] for all u, v ∈ V  
contains the number of foremost journeys from s to u passing through v counted so far 
(i.e., considering only edges in ∪j≥iEj).

The actual counting algorithm on snapshot Gi is a modified version of Algorithm 1, 
still based on Depth-First Search (DFS) traversal. Lines 2–11 are exactly the same as 
in Algorithm 1, except that here we do not need to keep track of the arrival time for 
each edge, as we run Algorithm  2 in a single snapshot and the latency for edges is 
zero.

In line 13, we examine whether the target of the current edge y has already been vis-
ited or not. If it has not been visited already, it either falls in the current snapshot, or it 
flows into the next snapshot.

In the case where y stays in the current snapshot (lines 15–22), we push its adjacent 
nodes into the stack S and determine whether the route ending at y is foremost. If a 
foremost route is discovered at y, we update Counts[z, v] by incrementing its value for all 
z ∈ Path (z being the node that falls on the journey route from s to y).

If instead it is not a foremost route in the current interval (lines 23–25), meaning that y 
is a node that existed in the “future,” a special update is performed using the data already 
calculated for the “future snapshots.”

More precisely, when a journey route (in this case a foremost journey route) from 
s to x (s � x) is a prefix of a journey route x � y at a later time snapshot, we per-
form a procedure called SpecialCount (Algorithm 3). The special count procedure 
involves aggregating the values of Counts[v, x] with Countx[v′, y], for all nodes (resp. 
v, v′) occurring in the journey routes between s and x and between x and y (see Algo-
rithm 3). Algorithm 3 simply calculates the product of the number of foremost jour-
neys between two routes s � x, and x � y, if they do not share any vertex (lines 
4–9). If instead they share some vertex v, the calculation is slightly more compli-
cated: let a be the number of foremost journeys from s to y where v is visited at least 
once on the route between x and y; let b be the number of foremost journeys from s 
to y where v is visited at least once on the route between s and x; and let c be the sum 
of a and b. c represents the number of all foremost journeys from s to y that pass 
through v. However, c counts the journey route passing through v multiple times if v 
happened to exist in both Counts[v, x] and Countx[v, y], and we need to remove such 
multiple counting of journeys, which is done along with the update to Counts[v, y] in 
line 13.
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1 Procedure SpecialCount.
input : Counts[., x], in Gi, and Countx[., y] in ∪j>iGj

output: Counts[v, y], ∀v ∈ V : number of foremost journey routes from
s to y ∈ V , passing through v ∈ V

2 begin
3 for each v ∈ U ∪W where U = all nodes in x � y and

W = all nodes in s � x do
4 if v ∈ s � x and v /∈ x � y then
5 Counts[v, y]+ = Counts[v, x]× Countx[y, y]
6 end
7 else if v /∈ s � x and v ∈ x � y then
8 Counts[v, y]+ = Counts[x, x]× Countx[v, y]
9 end

10 else if v ∈ s � x and v ∈ x � y then
11 a = Counts[x, x]× Countx[v, y]
12 b = Counts[v, x]× Countx[y, y]
13 Counts[v, y]+ = a+ b− Counts[v, x]× Countx[v, y]
14 end
15 end
16 end

Algorithm 3: The SpecialCount module.

Observations on Complexity

The worst-case time complexity of Algorithm 2, CountAllZeroLatency, is the same 
as the one of the general algorithm, CountFormemostJRoutes. In our network, how-
ever, it performed better than Algorithm 1. We try to explain below the reasons for this.

Algorithm 2 has to be executed in anti-chronological order of the different snapshots, 
starting from the last one, since it uses the previously calculated results in the computa-
tion of the new results. This approach is amenable to concurrent computations. In fact, 
since the graph is divided into independent snapshots, the number of all journeys can be 
computed separately for each snapshot, and the result of the calculation can be aggre-
gated at the end. This has the advantage of eliminating all the special updates from the 
first part of the algorithm (while detecting all the journey routes), and deferring them to 
the second part (when aggregating all the information for the final update). Thus, instead 
of performing the special count at each level, we can postpone it to the last step of the 
algorithm, and loop once through all the collected counts with hard-coded intervals in 
the loop.

While not being advantageous in worst-case scenarios, this strategy results in a more 
efficient solution from a practical point of view. Still, the algorithm is very costly, even in 
such a small network (KnowledgeNet has 366 vertices and 750 edges) and it did run in 
almost a month when implemented in C++ with a machine with 40 cores and 1TB RAM.

Knowledge‑Net
Knowledge-Net is a heterogeneous network where nodes represent human and non-
human actors (researchers, projects, conference venues, papers, presentations, labora-
tories) and edges represent knowledge mobilization between two actors. The network 
was collected for a period of 7 years [19]. Once an entity or a connection is created, it 
remains in the system for the entire period of the analysis.
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Table 1 provides a description of the Knowledge-Net dataset. The dataset consists of 
366 vertices and 750 edges in 2011. The numbers of entities and connections vary over 
time starting from only 10 vertices and 14 edges in 2005 and accumulating to the final 
network year in 2011. Knowledge-Net is mainly composed of non-human actors, 272 in 
total (non-human mobilization actors, NHMA, non-human individual actors, NHIA, 
and organizational actors, OA), in relation with 94 human actors (HA). Human actors 
include principle investigators (PI), highly qualified personnel (HQP), and collaborators 
(CO). It is through mobilization actors (NHMA) that individual, organizational actors 
and mobilization actors associate and mobilize knowledge to reach goals. For exam-
ple, scientists mobilize knowledge through articles where not all contributing authors 
might be in relation with all other authors, yet all relate with the publication [19]. These 
non-human mobilization actors make up the bulk of the network including conference 
venues, presentations (invited oral, non-invited oral, and poster), articles, journals, labo-
ratories, research projects, websites, and theses.

According to an interpretation of the the Actor-Network Theory [37], the nature/ type/
characteristics of the mobilizer nodes have no interference with their role as a mobi-
lizer. Following this interpretation, we consider that knowledge mobilization is beyond 
the role and nature of the nodes and we treat KnowledgeNet as a homogeneous network 
of knowledge mobilizers. All nodes of this network have the same function as knowledge 
mobilizer despite the fact that they might be quite different from each other from the 
view point of nature, type, and/or characteristics.

Classical statistical parameters have been calculated for Knowledge-Net, representing 
it as a static graph where the time of appearance of nodes and edges did not hold any 
particular meaning. In doing so, several interesting observations were made regarding 
the centrality of certain nodes as knowledge mobilizers and the presence of communities 
[19]. In particular, all actor types increased in number over the 7 years indicating a rise 
in new mobilization relations over time. Although non-human individual actor absolute 
numbers remained small (ranging from 3 in 2006 to 15 in 2011), these actors were criti-
cal to making visible tacit (non-codified) knowledge mobilization from around the world 
(mostly laboratory material sharing, including from organizations and universities in the 
USA, from Norway, and from Canadian universities). Finally, embedded in human indi-
vidual actor counts were individuals that the laboratory acknowledged in peer-reviewed 
papers, thus making further tacit and explicit knowledge mobilization visible.

Table 1  Knowledge-Net data set with  characteristics of  actors and  their roles at  different 
times

Start Duration #Nodes #Edges Granularity

2005 7 Years 366 750 1 Year

Actor type 2005 2006 2007 2008 2009 2010 2011

HIA 3 22 27 46 51 76 94

NHIA 0 3 6 9 9 9 15

NHMA 7 25 43 87 132 194 248

OA 0 5 5 9 9 9 2

Total 10 55 81 151 201 288 366
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When representing Knowledge-Net as a TVG, we notice that the latency ζ is always 
zero, as an edge represents a relationship and its creation does not involve any delay; 
moreover, edges and nodes exist from their creation (their birth-date) to the end of the 
system lifetime. Let birth-date(e) denote the year when edge e is created. An example of 
a small portion of Knowledge-Net represented as a TVG is shown in Fig. 1.

We also notice that, due to zero latency, edges spanning only one interval, and to the 
fact that edges never disappear once created, any shortest journey route in G is equiva-
lent to a shortest path on the static graph corresponding to its footprint; moreover, the 
notion of fastest journey does not have much meaning in this context, because on any 
route corresponding to a journey, there would be a fastest one. On the other hand, the 
notion of foremost journey, and in particular of foremost increasing journey, is extremely 
relevant as it describes timely mobilization flow, i.e., flow that arrives at a node as early 
as possible.

Note that in this setting the computation of foremost betweenness can be performed 
using Algorithm 2 introduced in the previous section.

Study of KnowledgeNet
Analysis on consecutive snapshots

To provide more clear statistics on the Knowledge-Net dataset and a ground for better 
understanding of temporal metrics, we first calculated classical statistical measures (e.g., 
node centrality measures, path length, density) on the seven static graphs, correspond-
ing to the 7 years of study. The average for each value for the graphs is calculated to rep-
resent a benchmark on how the rank for each node is compared to others.
The statistical data presented in Table 2 provide valuable information about the graph. 
The steady decrease in the centrality values (normalized in the [0,1] range) confirms that 
the network growth is not symmetric, so the centrality values have long tails. Accord-
ing to Hanneman and Riddle [38], we should expect a high value of betweenness in 

Fig. 1  A small portion of Knowledge-Net represented as a TVG
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dense graphs due to the fact that it is highly possible that a path crosses every node. 
Meanwhile, when the betweenness values are normalized, they become low if all of the 
betweenness values are close to each other. Thus, the high value of betweenness (in the 
range of hundreds), and the low value of its normalized counterpart (close to zero) in 
Knowledge-Net, indicates that the graph is either dense or is coupled in a way that there 
is a large number of shortest paths between any two arbitrary vertices. The graph is not 
dense as it is confirmed by the highest density metric of six. Therefore, the high number 
of shortest paths in the graphs caused the betweenness for most vertices to be similar 
and quite low when compared to the ones of nodes with the highest betweenness. Low 
average path length (highest being 3.50) is a sign that the network presents small-world 
characteristics and the knowledge mobilization to the whole network is expected to be 
conducted only in a few hops. Meanwhile, the decreasing graph density (from 0.3 to 0.1) 
along with the increasing average degree (from 1.4 to 2.04) represents the slow growth 
in the number of edges compared to the number of nodes. Escalation in the number of 
communities (by 8 communities) with an increase in graph modularity metrics (from 
0.17 to 0.54) shows that the knowledge mobilization actors tend to form communities as 
time progresses. As the normalized average betweenness decreases steadily, it might be 
concluded that a few vertices in each community play the role of mediators and create 
the link between communities.

Apart from these general observations, a static analysis of consecutive snapshots does 
not provide temporal understanding. For example, it does not reflect which entities 
engage in knowledge mobilization in a timely fashion, e.g., by facilitating fast mobiliza-
tion, or slowing mobilization flow.

To tackle some of these questions, we represent Knowledge-Net as a TVG and we pro-
pose to study it by employing a form of temporal betweenness that makes use of time in 
an explicit manner.

Foremost betweenness of Knowledge‑Net

In this section, we focus on Knowledge-Net, and we study TBT
F
(v) for all v. Nodes are 

ranked according to their betweenness values and their ranks are compared with the 

Table 2  Some static statistical parameters calculated for successive snapshots

2005 2006 2007 2008 2009 2010 2011

Ave. degree 1.40 1.32 1.63 1.84 1.98 2.02 2.04

Diameter 4 5 5 6 6 6 6

Density 0.31 0.04 0.04 0.02 0.02 0.01 0.01

#Communities 4 3 6 8 8 15 12

Modularity 0.17 0.52 0.46 0.47 0.46 0.54 0.54

Ave. clustering coefficient 0.41 0.06 0.21 0.22 0.20 0.24 0.23

Ave. path length 2.04 3.04 3.06 3.26 3.34 3.46 3.50

Ave. normalized closeness 0.51 0.33 0.33 0.31 0.30 0.29 0.29

Ave. eccentricity 3.10 4.41 4.40 4.70 4.80 4.83 4.83

Ave. betweenness 4.70 58.36 83.53 169.70 234.89 354.23 456.18

Ave. normalized betweenness 0.13 0.03 0.02 0.01 0.01 ≈ 0 ≈ 0

Ave. page rank 0.10 0.01 0.01 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Ave. eigenvector 0.52 0.19 0.15 0.10 0.09 0.07 0.05
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ones obtained calculating their static betweenness BT (v) in the same time frame. Given 
the different meaning of those two measures, we expect to see the emergence of different 
behaviors, and, in particular, we hope to be able to detect nodes with important tempo-
ral roles that were left undetected in the static analysis.

Foremost Betweenness during the lifetime of the system

Table 3 shows the temporally ranked actors accompanied by their static ranks, and the 
high-ranked static actors with their temporal ranks, both with lifetime T = [2005–2011]. 
In our naming convention, an actor named Xi(yy) is of type X, birth-date yy, and it is 
indexed by i; types are abbreviated as follows: H (human), L (Lab), A (article), C (confer-
ence), J (journal), P (project), C (paper citing a publication), I (invited oral presentation), 
and O (oral presentation). Note that only the nodes whose betweenness has a significant 
value are considered, in fact betweenness values tend to lose their importance, especially 
when the differences in the values of two consecutive ranks are very small [34].

Interestingly, the four highest ranked nodes are the same under both measures; in 
particular, the highest ranked node (L1(05)) corresponds to the main laboratory where 
the data are collected and it is clearly the most important actor in the network whether 
considered in a temporal or in a static way. On the other hand, the table reveals several 
differences worth exploring. From a first look, we see that, while the vertices highest 
ranked statically appear also among the highest ranked temporal ones, there are some 

Table 3  List of the highest ranked actors according to temporal (resp. static) betweenness, 
accompanied by the corresponding static (resp. temporal) rank in lifetime [2005–2011]

Temporal to static Static to temporal

Actor Temporal rank Static rank Actor Static rank Temporal rank

L1(05) 1 1 L1(05) 1 1

H1(05) 2 2 H1(05) 2 2

A1(06) 3 3 A1(06) 3 3

A2(08) 4 4 A2(08) 4 4

P1(06) 5 8 A5(08) 5 12

A3(07) 6 9 A4(09) 6 7

A4(09) 7 6 P2(08) 7 9

S1(10) 8 115 P1(06) 8 5

P2(08) 9 7 A3(07) 9 6

J1(06) 10 160 P3(10) 10 17

C1(07) 11 223 A6(11) 11 18

A5(08) 12 5 A8(09) 12 36

I1(09) 13 28 P4(10) 13 22

O1(05) 14 45 P5(11) 14 27

S2(05) 15 46 H2(05) 15 44

I2(05) 16 47 A7(09) 16 21

P3(10) 17 10 A9(10) 17 31

A6(11) 18 11 P5(11) 18 69

C2(10) 19 133 P6(10) 19 23

J2(09) 20 182

A7(09) 21 16



Page 15 of 22Afrasiabi Rad et al. Comput Soc Netw  (2017) 4:5 

nodes with insignificant static betweenness, whose temporal betweenness is extremely 
high. This is the case, for example, of nodes S1(10) and J1(06).

The case of node S1(10)   To provide some interpretation for this behavior, we observe 
vertex S1(10) in more detail. This vertex corresponds to a poster presentation at a confer-
ence in 2010. We explore two insights. First, although S1(10) has a relatively low degree, it 
has a great variety of temporal connections. Only three out of ten incident edges of S1(10) 
are connected to actors that are born on and after 2010, and the rest of the neighbors 
appear in different times, accounting for at least one neighbor appearing each year for 
which the data are collected. This helps the node to operate as a temporal bridge between 
different time instances and to perhaps act as a knowledge mobilization accelerator.

Second, S1(10) is close to the center of the only static community present in [2010–
2011] and it is connected to the two most important vertices in the network. The exist-
ence of a single dense community, and the proximity to two most productive vertices 
can explain its negligible static centrality value: while still connecting various vertices 
S1(10) is not the shortest connector, and its betweenness value is thus low. However, 
a closer temporal look reveals that it plays an important role as an interaction bridge 
between all the actors that appear in 2010 and later, and the ones that appear earlier than 
2010. This role remained invisible in static analysis and only emerges when we pay atten-
tion to the time of appearance of vertices and edges. On the basis of these observations, 
we can interpret S1(10)’s high temporal betweenness value as providing a fast bridge 
from vertices created earlier and those appearing later in time. This might indicate rea-
sons for further study of the importance of poster presentations that can blend tacit and 
explicit knowledge mobilization in human–poster presentation–human relations during 
conferences, and continue into future mobilization with new non-human actors as was 
the case for S1(10).

The case of node J1(06)  J1(06), the Journal of Neurochemistry, behaves similarly to S1(10) 
with its high temporal and low static rank. As opposed to S1(10), this node is introduced 
very early in the network (2006); however, it is only active (i.e., has new incident edges) in 
2006 and 2007. It has only three neighbors, A1(06), A3(07), and C1(07), all highly ranked 
vertices statically (A1(06), A3(07)), or temporally (C1(07)). Since its neighboring vertices 
are directly connected to each other or in close proximity of two hops, J1(06) fails to act 
as a static short bridge among graph entities. However, its early introduction and proxim-
ity to the most prominent knowledge mobilizers helps it become an important temporal 
player in the network. This is because temporal journeys overlook geodesic distances and 
are instead concerned with temporal distances for vertices. These observations might 
explain the high temporal rank of J1(06) in the knowledge mobilization network.

A finer look at foremost betweenness

A key question is whether the birth-date of a node is an important factor influ-
encing its temporal betweenness. To gain insights, we conducted a finer tempo-
ral analysis by considering TBT

F
 for all possible birth-dates, i.e., for T = [x, 2011]

∀x ∈ {2005, 2006, 2007, 2008, 2009, 2010, 2011}. This allowed us to observe how tempo-
ral betweenness varies depending on the considered birth-date.
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Before concentrating on selected vertices (statically or temporally important with at 
least one interval), and analyzing them in more detail, we briefly describe a temporal 
community detection mechanism that we employ in analysis.

Detection of temporal communities  According to Tantipathananandh et al. [27], accu-
rately detecting communities in TVGs is an NP-hard and APX-hard task. Tantipatha-
nanandh et al. [27] used a heuristic to approximate the community detection for a more 
efficient algorithm. However, when the number of nodes in a dense graph exceeds dou-
ble digits, the algorithm becomes computationally unfeasible to run. To the best of our 
knowledge, the only other work that attacked the community detection problem in TVGs 
is [39], where the problem is tackled by transforming the TVG into a series of static snap-
shot graphs with no repeated nodes in snapshots, and by incrementally detecting and 
adding to communities. While the complexity of the algorithm is not provided, it imme-
diately proves inapplicable to our problem as it (a) works only on series of snapshots with 
no repetition and (b) includes aging factor in calculations. Thus, we take an approach 
similar to the one proposed in [27], by only focusing on approximating the communi-
ties for the purpose of this research. To do that, we first transform our TVG into a static 
weighted directed graph (the journey graph), which gives a rough indication of the fore-
most journeys of the actual TVG. We then use the journey graph as input to an existing 
community detection algorithm, designed for weighted graphs [40]. More precisely, given 
a TVG G = (V ,E), we construct the journey graph of G, J (G) = (V ,E′) as follows: the 
nodes of J(G) correspond to the original nodes of G and (x, y) ∈ E′ if there exists at least a 
foremost journey between x and y in G. The weight associated to edge (x, y) ∈ E′ is equal 
to the number of foremost journeys between x and y in G. An example of this construc-
tion is shown in Fig. 2.

Note that Knowledge-Net, over time, creates only one connected component, but the 
community analysis of the Knowledge-Net graph results in 14 communities. The largest 

Fig. 2  Transformation of a TVG into a journey graph
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community consists of almost 39% of nodes and is centered around L1(05). Given the 
large number of the nodes belonging to communities and the low number of detected 
communities, it is clear that some of the central nodes share communities with each 
other.

The case of node P1(06)  This is a research project led by the principle investigator at 
L1(05). The project was launched in 2006 and its official institutional and funded ele-
ments wrapped up in 2011. Data in Table 3 support that P1(06) has similar temporal and 
static ranks with regard to its betweenness in lifetime [2005–2011]. One could conclude 
that the temporal element does not provide additional information on its importance 
and that the edges that are incident to P(06)-1 convey the same temporal and static flow. 
However, there is still an unanswered question on whether or not edges act similarly if we 
start observing the system at different times. Will a vertex keep its importance through-
out the system’s lifetime?

The result of such analysis is provided in Fig. 3, where TBT
F
(P1(06)) is calculated for 

each birth-date (indicated in the horizontal axis), with all intervals ending in 2011.
While both equally important during the entire lifetime [2005–2011] of the study, this 

project seems to assume a rather more relevant temporal role when observing the sys-
tem in a lifetime starting in year 2007 (i.e., T = [2007–2011]), when its static between-
ness is instead negligible. This seems to indicate that the temporal flow of edges incident 
to P1(06) appearing from 2007 on is more significant than the flow of the edges that 
appeared previously.

With further analysis of P1(06)’s neighborhood in [2007–2011], we can formulate 
technical explanations for this behavior. First, its direct neighbors also have better tem-
poral betweenness than static betweenness. Moreover, its neighbors belong to various 
communities, both temporally and statically. However, looking at the graph statically, 
we see several additional shortest paths that do not pass through P1(06) (thus making 
it less important in connecting those communities). In contrast, looking at the graph 
temporally P1(06) acts as a mediator and accelerator between communities. More spe-
cifically, we observe that the connections P1(06) creates in 2006 contribute to the merge 
of different communities that appear only in 2007 and later. When observing within 

Fig. 3  Comparison between different values for vertex P1(06). Ranks of the vertex in the last interval are not 
provided as both betweenness values are zero
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interval [2006–2011], we then see that P1(06) is quite central from a static point of view, 
because the appearance of time of edges does not matter, but, when observing it in life-
time [2007–2011], node P1(06) loses this role and becomes statically peripheral because 
the newer connections relay information in an efficient temporal manner.

In other words, it seems that P1(06) has an important role for knowledge accelera-
tion in the period [2007–2011], a role that was hidden in the static analysis and that 
does not emerge even from an analysis of consecutive static snapshots. For research 
funders, revealing a research project’s potentially invisible mobilization capacity is rel-
evant. Research projects can thus be understood beyond mobilization outputs and more 
in terms of networked temporal bridges to broader impact.

The case of  node A3(07)  Comparison between different values for vertex A3(07) are 
shown in Fig. 4, where ranks of the vertex in the last interval are not provided as both 
betweenness values are zero. The conditions for this node, a paper published in 2007, 
illustrate a different temporal phenomenon. Node A3(07) has several incident edges 
in 2007 (similarly to node P1(06)) when both betweenness measures are high. Peering 
deeper into the temporal communities formed around A3(07) is revealing: up to 2007, 
this vertex is two steps from vertices that connect two diffrent communities in the static 
graph. The situation radically changes, however, with the arrival of edges in 2008 that 
modify the structure of those communities, and push A3(07) to the periphery. The shift is 
dramatic from a temporal perspective because A3(07) loses its accelerator role where its 
temporal betweenness becomes negligible, while statically there is only a slight decrease 
in betweenness. The reason for a dampened decrease in static betweenness is that this 
vertex is close to the center of the static community, connecting peripheral vertices to the 
most central nodes of the network (such as L1(05) and H1(05)). It is mainly proximity to 
these important vertices that sustains A3(07)’s static centrality.

Such temporal insights lend further support to understanding mobilization through 
a network lens coupled with sensitivity to time. A temporal shift to the periphery for an 
actor translates into decreased potential for sustained mobilization.

Fig. 4  Comparison between different values for vertex A3(07). Ranks of the vertex in the last interval are not 
provided as both betweenness values are zero
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Invisible rapids and brooks

On the basis of our observations, we define two concepts to differentiate the static and 
temporal flow of vertices in knowledge mobilization networks. We call rapids the nodes 
with high foremost betweenness, meaning that they can potentially mobilize knowl-
edge in a timelier manner, and brooks the ones with insignificant foremost betweenness. 
Moreover, we call invisible rapids those vertices whose temporal betweenness rank is 
considerably more significant than their static rank (i.e., the ones whose centrality was 
undetected by static betweenness), and invisible brooks the ones whose static between-
ness is considerably higher than their temporal betweenness, meaning that these vertices 
can potentially be effective knowledge mobilizers, yet they are not acting as effectively as 
others due to slow or non-timely relations.

Invisible rapids and brooks can be present in different lifetimes as their temporal role 
might be restricted to some time intervals only; for example, as we have seen in the pre-
vious section, S1(10) and J1(06) are invisible rapids in T = [2005–2011], P1(06) is an 
invisible rapid in T = [2007–2011], and A3(07) is an invisible brook in T = [2008–2011]. 
Tables 4 and 5 indicate the major invisible rapids and brooks observed in Knowledge-Net.

The presence of a poster presentation, a research project, two journals, and a confer-
ence publication among the invisible rapids supports that different types of mobilization 
actors can impact timely mobilization while not being as effective at creating short paths 
among entities for knowledge mobilization. In other words, they can play a role of accel-
erating knowledge mobilization, but to a concentrated group of actors.

As for invisible brooks, we observe a journal (the Biochemica et Biophysica Acta-
Molecular Cell Research (J3(08)), three papers (C3(11), C4(07), and C5(07)) that cite 
publications by the main laboratory in the study (L1(05)), a publication (A3(07)) mobi-
lizing knowledge from members of L1(05), and a research assistant who worked on sev-
eral research projects as an HQP. In comparison with invisible rapids, there is a wider 
variety in the type of mobilization actors that act as brooks which does not readily lend 
itself to generalization.

Table 4  Major invisible rapids

Actor Time Temp. rank Stat. rank Type

P1(06) [07–11] 5 105 Project

S1(10) [05–11] 8 115 Poster

[06–11] 8 113

[07–11] 7 115

[08–11] 5 104

J1(06) [05–11] 10 160 Journal

[06–11] 10 154

[07–11] 10 223

C1(07) [05–11] 11 223 Citing publication

[06–11] 11 220

J2(09) [06–11] 17 179 Journal

[07–11] 16 182

C2(10) [05–11] 19 133 Citing poster

[06–11] 16 132

[07–11] 15 133
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Interestingly, we see the presence of journals among invisible rapids and brooks. From 
our analysis, it seems that journals can hold strikingly opposite roles: on the one hand, 
they can contribute considerably to more timely mobilization of knowledge while not 
being very strong bridges between communities, while on the other hand they can play 
critical roles in bridging network communities, but at a slow pace. A brook, the jour-
nal Biochemica et Biophysica Acta-Molecular Cell Research (J3(08)), for example, helped 
mobilize knowledge in two papers for L1(05) (in 2008 and 2009), and is a journal in 
which a paper (in 2011) citing a L1(05) publication was also published. Given expected 
variability in potential mobilization for a journal, further research is needed to establish 
their roles in mobilization, whether these mobilization actors exist at both ends of the 
spectrum, or they have a neutral role in mobilization of knowledge.

In contrast, the presence of a research project as an invisible rapid might indicate 
meaningful observations that should be studied further. First, because when public 
funders invest in research projects as a mobilization actor, an implicit if not explicit 
measure of success is timely mobilization with potential impact inside and outside of 
academia [19]. Ranking as a rapid (for a mobilization actor) is one measure that could 
therefore help funding agencies monitor and detect temporal change in mobilization 
networks. Second, a research project as rapid might be meaningful because by its very 
nature a research project can help accelerate mobilization for the full range of mobiliza-
tion actors, including other research projects. As such, it is not surprising that they can 
become temporal conduits to knowledge mobilization in all of its forms.

Conclusions
In this paper, we proposed the use of a temporal betweenness measure (foremost 
betweenness) to analyze a knowledge mobilization network that had been already stud-
ied using classical “static” parameters. Our goal was to see the impact on the perceived 
static central nodes when employing a measure that explicitly takes time into account. 
We observed interesting differences. In particular, we witnessed the emergence of invis-
ible rapids: nodes whose static centrality was considered negligible, but whose tem-
poral centrality appears relevant. Our interpretation is that nodes with high temporal 
betweenness contribute to accelerate mobilization flow in the network and, as such, they 
can remain undetected when the analysis is performed statically. We conclude that fore-
most betweenness is a crucial tool to understand the temporal role of the actors in a 

Table 5  Major invisible brooks

Actor Time Stat. rank Temp. rank Type

J3(08) [08–11] 9 117 Journal

[09–11] 12 84

C3(11) [08–11] 10 191 Citing publication

[09–11] 15 153

C4(11) [08–11] 15 105 Citing publication

H2(05) [06–11] 16 118 Researcher

[07–11] 15 134

A3(07) [08–11] 16 187 Publication

C5(07) [08–11] 18 158 Citing publication
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dynamic network, and that the combination of static and temporal betweenness is com-
plementary to provide insights into their importance and centrality.

The algorithm proposed in this paper to compute foremost betweenness constitutes a 
deterministic solution and its running time can be exponential in the worst case, which 
makes it applicable only on very small-scale networks. Since counting all foremost jour-
neys in a graph is a #P-complete problem, such a high cost is inevitable for any deter-
ministic solution. An open interesting direction is the design of approximate solutions, 
feasible for large networks.

Temporal network analysis as performed here is especially pertinent for KM research 
that must take time into account to understand academic research impact beyond the 
narrow short-term context of academia. Measures of temporal betweenness, as studied 
in this paper, can provide researchers and funders with critical tools to more confidently 
investigate the role of specific mobilization actors for short- and long-term impact 
within and beyond academia. The same type of analysis could clearly be beneficial when 
applied to any other temporal context.

In conclusion, we focused here on a form of temporal betweenness designed to detect 
accelerators. This is only a first step toward understanding temporal dimensions of social 
networks; other measures are already under investigation.
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