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Background
Most social, biological, topological and technological networks display distinct nontriv-
ial topological features demonstrating that connections between the nodes are neither 
regular nor random at the same time [1]. Such systems are called complex networks. On 
of the well-known and well-studied classes of complex networks is scale-free networks 
whose degree distribution P(k) follows a power law P(k) ∼ k−α, where α is a parameter 
whose value is typically in the range 2 < α < 3. Many real networks have been reported 
to be scale-free [2].

Generating scale-free networks is an important problem because they usually have 
useful properties, such as high clustering [3], robustness to random attacks [4] and easy 
achievable synchronization [5]. Several models for producing scale-free networks have 
been suggested; most of them are based on the preferential attachment approach [1]. 
This approach forces existing nodes of higher degrees to gain edges added to the net-
work more rapidly in a “rich-get-richer” manner. This paper offers a model with another 
explanation of scale-free property.

Our approach is inspired by matrix factorization, a machine learning method being 
successfully used for link prediction [6]. The main idea is to approximate a network 
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adjacency matrix by a product of matrices V and VT, where V is the matrix of nodes’ 
latent features vectors. To create a generative model of scale-free networks, we sample 
latent features V from some probabilistic distribution and try to generate a network 
adjacency matrix. Two nodes are connected by an edge if the dot product of their latent 
features exceeds some threshold. This threshold condition is influenced by the geograph-
ical threshold models that are applied to scale-free network generation [7]. Because of 
the methods used (adjacency matrix factorization and threshold condition), we call our 
model the factorization threshold model.

A network produced in such a way is scale-free and follows power-law degree distribu-
tion with an exponent of 2, which differs from the results for basic preferential attach-
ment models [8–10] where the exponent equals 3. We also suggest an extension of our 
model that allows us to generate directed networks with a tunable power-law exponent.

This paper is organized as follows. “Related work” section provides information about 
related works that inspired us. The formal description of our model in the case of an 
undirected fixed size network is presented in “Model description” section, which is fol-
lowed by a discussion of how to generate growing networks. In “Generating sparse net-
works” section, the problem of making resulting networks sparse is considered. “Degree 
distribution” section shows that our model indeed produces scale-free networks. Exten-
sions of our model, which allows to generate directed networks with a tunable power-law 
exponents and some other interesting properties, will be discussed in “Model modifica-
tions” section. “Conclusion” section concludes the paper.

Related work
In this section, we consider related works that encouraged us to create a new model for 
complex networks generation.

Matrix factorization

Matrix factorization is a group of algorithms where a given matrix R is factorized into 
two smaller matrices Q and P such that: R ≈ QTP [11].

There is a popular approach in recommendation systems which is based on matrix fac-
torization [12]. Assume that users express their preferences by rating some items, this 
can be viewed as an approximate representation of their interests. Combining known 
ratings, we get partially filled matrix R, the idea is to approximate unknown ratings using 
matrix factorization R ≈ QTP. A geometrical interpretation is the following. The rows 
of matrices Q and P can be seen as latent features vectors �qi and �pu of items and users, 
respectively. The dot product (�qi, �pu) captures an interaction between an user u and an 
item i, and it should approximate the rating of the item i by the user u: Rui ≈ (�qi, �pu). 
Mapping of each user and item to latent features is considered as an optimization prob-
lem of minimizing distance between R and QTP that is usually solved using stochastic 
gradient descent (SGD) or alternating least squares (ALS) methods.

Furthermore, matrix factorization was suggested to be used for link prediction in net-
works [6]. Link prediction refers to the problem of finding missing or hidden links which 
probably exist in a network [13]. In [6] it is solved via matrix factorization: a network 
adjacency matrix A is approximated by a product of the matrices V and VT, where V is 
the matrix of nodes’ latent features.
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Geographical threshold models

Geographical threshold models were recently proven to have good results in scale-free net-
works generation [7]. We are going to briefly summarize one variation of these models [14].

Suppose the number of nodes to be fixed. Each node carries a randomly and indepen-
dently distributed weight variable wi ∈ R. Also, the nodes are uniformly and indepen-
dently distributed with specified density in a Rd. A pair of nodes with weights w,w′ and 
Euclidean distance r are connected if and only if:

where θ is the model threshold parameter and h(r) is the distance function that is 
assumed to decrease in r. For example, we can take h(r) = r−β ,  where β > 0. 

First, exponential distribution of weights with the inverse scale parameter � has been 
studied. This distribution of weights leads to scale-free networks with a power-law expo-
nent of 2: P(k) ∝ k−2. It is interesting that the exponent of a power law does not depend 
on the �, d and β in this case. Second, Pareto weight distribution with scale parameter 
w0 and shape parameter a has been considered. In this case, a tunable power-law degree 
distribution has been achieved: P(k) ∝ k−1− aβ

d .
There are other variations of this approach: uniform distribution of coordinates in the 

d-dimensional unit cube [15], lattice-based models [16, 17] and even networks embed-
ded in fractal space [18].

Model description
We studied theoretically matrix factorization by turning it from a trainable supervised 
model into a generative probabilistic model. When matrix factorization is used in 
machine learning, the adjacency matrix A is given and the goal is to train the model 
by tuning the matrix of latent features V in such way that A ≈ VTV . In our model, we 
make the reverse: latent features V are sampled from some probabilistic distribution and 
we generate a network adjacency matrix A based on VTV .

Formally our model is described in the following way:

• • Network has n nodes and each node is associated with a d-dimensional latent fea-
tures vector �vi.

• • Each latent features vector �vi is a product of weight wi and direction �xi.
• • Directions �xi are i.i.d. random vectors uniformly distributed over the surface of 
(d − 1)-sphere.

• • Weights are i.i.d. random variables distributed according to Pareto distribution with 
the following density function f(w): 

(1)(w + w′) · h(r) ≥ θ ,















Aij = I
�

( �vi, �vj) ≥ θ
�

�vi = wi �xi ∈ R
d

wi ∼ Pareto(a,w0), �xi ∼ Uniform(Sd−1)

i = 1 . . . n, j = 1 . . . n

(2)f (w) = a

w0

(w0

w

)a+1
(w ≥ w0).
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• • Edges between nodes i and j appear if a dot product of their latent features vectors 
( �vi, �vj) exceeds a threshold parameter θ.

Therefore, we take into consideration both node’s importance wi and its location xi on the 
surface of a (d − 1)-sphere (that can be interpreted as the earth in the case of �xi ∈ S2 ⊂ R

3 ). 
Thus, inspired by the matrix factorization approach we achieved the following model 
behavior: the edges in our model are assumed to be formed when a pair of nodes is spatially 
close and/or has large weights. Actually, compared with the geographical threshold models, 
we use dot product to measure proximity of nodes instead of Euclidean distance.

We have defined our model for fixed size networks, but in principle, our model can 
be generalized for the case of growing networks. The problem is that a fixed threshold 
θ when the size of a network tends to infinity with high probability leads to a complete 
graph. But real networks are usually sparse.

Therefore, to introduce growing factorization threshold models we use a threshold 
function θ := θ(n) which depends on the number of nodes n in the network. Then for 
every value of network size n we have the same parameters except of threshold θ. This 
means that at every step, when a new node will be added to the graph, some of the exist-
ing edges will be removed. In the next section, we will try to find threshold functions 
which lead to sparse networks.

To preserve readability of the proofs, we consider only the case d = 3 because proofs 
for higher dimensions can be derived in a similar way. However, we will give not only 
mean-field approximations but also strict probabilistic proofs, which to the best of our 
knowledge have not been done for geographical threshold models yet and can be likely 
applied in the other works too.

Generating sparse networks
The aim of this section is to model sparse growing networks. To do this, we need to find 
a proper threshold function.

First, we have studied the growth of the real networks. For example, Fig. 1 shows the 
growth of a citation graph. The data was obtained from the SNAP1 database. It can be 
seen that the function y(x) = 4.95x log x− 40x is a good estimation of the growth rate of 
this network. That is why we decided to focus on the linearithmic or sub-linearithmic 
growth rate of the model (here and subsequently, by the growth of the model we mean 
the growth of the number of edges).

Analysis of the expected number of edges

Let M(n) denote the number of edges in the network of size n. To find its expectation, we 
need the two following lemmas.

Lemma 1  The probability for a node with weight w to be connected to a random node is

1  https://snap.stanford.edu/data/.

(3)

Pe(w) =







1
2

�

1− aθ
w(a+1)w0

�

, w > θ
w0
,

1
2

wa
0

θa(a+1)w
a, w ≤ θ

w0
.

https://snap.stanford.edu/data/
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Lemma 2  The edge probability in the network is

To improve readability, we moved the proofs of Lemmas 1 and  2 to Appendix.
The next theorem shows that our model can have any growth which is less than 

quadratic.

Theorem  1  Denote as R(n) such function that R(n) = o(n2) and R(n)>0. Then there 
exists such threshold function θ(n) that the growth of the model is R(n):

Proof It easy to check that Pe is a continuous function of θ. The intermediate value theo-
rem states that Pe(θ) takes any value between Pe(θ = 0) = 1/2 and Pe(θ = ∞) = 0 at 
some point within the interval.

Since R(n) = o(n2) and positive, there exists N such that for all n ≥ N , 
0 < R(n) < 1

2 × n(n−1)
2 .

It means that the equation EM(n) = R(n) is feasible for all n ≥ N . � �

Taking into account Theorem 1, we obtain parameters for the linearithmic and linear 
growths of the expected number of edges.

Theorem  2  Suppose the following threshold function: θ(n) = Dn
1
a where D is a con-

stant. Then the growth of the model is linearithmic:

where A  is a constant depending on the Pareto distribution parameters.

(4)Pe =







1
2 − 1

2
a2

(a+1)2
θ

w2
0

, θ < w2
0,

w2a
0

2θa

�

a(ln θ−2 lnw0)
a+1 − a2

(a+1)2
+ 1

�

, θ ≥ w2
0.

∃N EM(n) = R(n) (n ≥ N ).

EM(n) = An ln n(1+ o(1))

(

n ≥ w2a
0

Da

)

,

Fig. 1  The growth of citation graph Arxiv HEP-PH
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Proof We can rewrite inequality n ≥ w2a
0
Da  as Dn

1
a ≥ w2

0 and apply Lemma 2 in the case 
θ(n) = Dn

1
a ≥ w2

0

If we replace θ by Dn
1
a, we obtain

Theorem  3  Suppose that the growth of the model is sub-linearithmic: EM(n)
n ln n

= o(1) , 
then n

1
a

θ(n) = o(1).

Proof Let us consider another model with a threshold function θ ′(n) = Dn
1
a and 

the expected number of edges EM′(n). According to Theorem  2 and the condition 
EM(n)
n ln n

= o(1) there exists a natural number ND such that

This also means that for all n ≥ ND we have θ(n) ≥ θ ′(n). Therefore

By the arbitrariness of the choice of D, we have n
1
a

θ(n) = o(1). � �

Concentration theorem

In this section, we will find the variance of the number of the edges and prove the con-
centration theorem

Proofs of the following lemmas can be found in the Appendix.

Lemma 3  Suppose that x, y and z are random nodes. Let P< be the probability for the 
node x to be connected to both nodes y and z. Then the variance of the number of edges M is

Lemma 4  Suppose that x, y and z are random nodes. Let P< be the probability for the 
node x to be connected to both nodes y and z. Then

Combining these results, we get the following theorem that will be needed to prove 
the concentration theorem

(5)EM = n(n− 1)

2

w2a
0

2θa

(a(ln θ − 2 lnw0)

a+ 1
− a2

(a+ 1)2
+ 1

)

.

EM(n) = n(n− 1)w2a
0

4(Dn
1
a )a

(

a(ln(Dn
1
a )− 2 lnw0)

a+ 1
− a2

(a+ 1)2
+ 1

)

= (n− 1)w2a
0

4Da

(

ln n

a+ 1
− a2

(a+ 1)2
+ 1+ a(lnD − 2 lnw0)

a+ 1

)

= An ln n(1+ o(1)).

∀n ≥ ND EM′(n) = An ln n(1+ o(1)) ≥ EM(n).

∀n ≥ ND
n

1
a

θ(n)
≤ n

1
a

θ ′(n)
= 1

D
.

Var(M) = n(n− 1)

2
Pe(1− Pe)+ n

(n− 1)(n− 2)

2
(P< − P2

e ),

P< =







1
4

w2a
0

θ2a(a+1)2
[θa − w2a

0 ] + 1
4

w2a
0
θa

�

1− 2 a2

(a+1)2
+ a3

(a+1)2(a+2)

�

, θ ≥ w2
0,

1
4 − 1

2
a2θ

(a+1)2
1
w2
0

+ 1
4

a3θ2

(a+1)2(a+2)
1
w4
0

, θ < w2
0.
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Theorem 4  If θ ≥ w2
0, the variance is

where A and B are constants which depend on the Pareto distribution parameters.

Proof According to Lemmas 3 and 4 in case of θ ≥ w2
0, the variance is

According to Lemma 2, the expected number of edges is

Combining (8) and (6), we obtain

Therefore,

where C1, C2, C3, A and B are constants depending on the Pareto distribution parameters.
Finally, we obtain

� �

Theorem 5  Concentration theorem If θ(n) and EM(n) tends to infinity as n → ∞ and 
n3

(EM(n))2θ(n)a
= o(1), then

where M is the number of edges in the graph.

Proof According to Chebyshev’s inequality, we have

Var(M) = EM + n
(n− 1)(n− 2)

2

[

A
1

θa
+ B

1

θ2a

]

− 2(n− 2)

n(n− 1)
(EM)2,

(6)Var(M) = n(n− 1)

2
Pe(1− Pe)+ n

(n− 1)(n− 2)

2
(P< − P2

e ).

(7)P< = 1

4

w2a
0

θ2a(a+ 1)2
[θa − w2a

0 ] + 1

4

w2a
0

θa

[

1− 2
a2

(a+ 1)2
+ a3

(a+ 1)2(a+ 2)

]

(8)EM = n(n− 1)

2
Pe.

Var(M) = EM(1− Pe)+ n
(n− 1)(n− 2)

2
P< − EM(n− 2)Pe

= EM + n
(n− 1)(n− 2)

2
P< − 2(n− 2)

n(n− 1)
(EM)2.

P< = 1

4

w
2a
0

θ2a(a+ 1)2
[θa − w

2a
0 ] + 1

4

w
2a
0

θa

[

1− 2
a
2

(a+ 1)2
+ a

3

(a+ 1)2(a+ 2)

]

= 1

θa
C1 −

1

θ2a
C2 +

1

θa
C3 = A

1

θa
+ B

1

θ2a
,

Var(M) = EM + n
(n− 1)(n− 2)

2

[

A
1

θa
+ B

1

θ2a

]

− 2(n− 2)

n(n− 1)
(EM)2.

∀ε > 0 P(|M − EM| ≥ ε · EM)
n→∞−−−→ 0,

(9)P(|M − EM| ≥ ε · EM) ≤ Var(M)M

ε2 · (EM)2
.
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Let us estimate the right part of the inequality. Using Theorem 4, we get

Using the conditions of the theorem, we obtain

� �

Combining Theorems 2, 3 and 5, we obtain the following corollary.

Corollary 1  Suppose that one of the following conditions holds:
• • The threshold function θ(n) equals Dn

1
a

• • n
EM(n) = O(1) and EM(n)

n ln n
= o(1)

Then

where M is the number of edges in the graph.
In this way, we have proved that the number of edges in the graph does not deviate 

much from its expected value. It means that having the linearithmic or the sub-linearith-
mic growth of the expected number of edges we also have the same growth for the actual 
number of edges.

Degree distribution
In this section, we show that our model follows power-law degree distribution with an 
exponent of 2 and give two proofs. The first is a mean-field approximation. It is usually 
applied for a fast checking of hypotheses. The second one is a strict probabilistic proof. 
To the best of our knowledge it has not been considered in the context of the geographic 
threshold models yet.

To confirm our proofs, we carried out a computer simulation and plotted complemen-
tary cumulative distribution of node degree which is shown on Fig. 2. We also used a 
discrete power-law fitting method, which is described in [2] and implemented in the net-
work analysis package igraph.2 We obtained α = 2.16, xmin = 4 and a quite large p-value 
of 0.9984 for the Kolmogorov–Smirnov goodness of fit test.

Theorem 6  Let P(k) be the probability of a random node to have a degree k. If n
1
a

θ(n) = o(1) , 
then there exist such constants C0 and N0 such that ∀ k(n) : ∀ n > N0 k(n) < C0n we 
have

Var(M)

ε2 · (EM)2
=

1

ε2EM
+

O(n3)

(EM)2

[

A
1

θa
+ B

1

θ2a

]

+ O

(

1

n

)

=
1

ε2EM
+

O(n3)

(EM)2

1

θa

[

1+
B

Aθ2a

]

+ O

(

1

n

)

Var(M)

ε2 · (EM)2
→ 0 as n → ∞.

∀ε > 0 P(|M − EM| ≥ ε · EM) −−−→
n→∞

0,

2  http://igraph.org/.

P(k) = (1+ o(1))k−2.

http://igraph.org/
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Mean‑field approximation

This approximation gives power law only for nodes with weights w ≤ θ
w0

. But the 
expected number of nodes with weights not satisfying this inequality Em is extremely 
small

As it was shown in Lemma 1, the probability of the node �vi = wi �xi with weight 
wi = w ≤ θ

w0
 to have an edge to another random node is

Let ki(w) be the degree of the node vi. Then

where I stands for the indicator function.
As all nodes are independent, we get

In the mean-field approximation, we assume that ki(w) is really close to its expectation 
and we can substitute it by (n− 1)Pe(w) in the following expression for the degree distri-
bution P(k) = f (w)dw

dk
, where f(w) is a density of weights. Thus,

(10)Em = nP

(

w >
θ

w0

)

= n

(

w2
0

θ

)a

= o(1).

Pe(w) =
wa
0

2θa(a+ 1)
wa.

ki(w) =
∑

i �=j

I[vi is connected to vj],

Eki(w) = (n− 1)Pe(w).

Fig. 2  Complementary cumulative distribution of node degree n = 3 · 105, �xi ∈ R
3, wi ∼ Pareto(3, 1), 

θ = 66.9
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� �

Note that we have not used conditions on k(n) and θ(n) yet, they are needed to esti-
mate residual terms in the following rigorous proof.

Proof Degree ki of the node vi is a binomial random variable. Using the probability Pe(w) 
of the node vi with weight wi = w to have an edge to another random node, we can get 
the probability that ki equals k:

To get the total probability, we need to integrate this expression with respect to w

Because of Pe(w) is a composite function, the integral breaks up into two parts.

Thus,

For estimating I1 we can use the formula Pe(w) = 1
2

wa
0

θa(a+1)w
a from Lemma 1. After mak-

ing the substitution to integrate with respect to Pe(w) and using the incomplete beta-
function, we get

For I2 we can derive an upper bound. Note that for w ≥ θ/w0 we have

Therefore, we obtain the following upper estimate

P(k) = 2awa
0θ

a(a+ 1)

(n− 1)w2a
∝ k−2

P(ki = k|wi = w) =
(

n− 1

k

)

(Pe(w))
k(1− Pe(w))

n−k−1.

P(ki = k) =
(

n− 1

k

)

∞
∫

w0

(Pe(w))
k(1− Pe(w))

n−k−1 awa
0

wa+1
dw.

I1 =
θ/w0
∫

w0

(Pe(w))
k(1− Pe(w))

n−k−1 awa
0

wa+1
dw,

I2 =
∞
∫

θ/w0

(Pe(w))
k(1− Pe(w))

n−k−1 awa
0

wa+1
dw.

P(ki = k) =
(

n− 1

k

)

(I1 + I2).

I1 =
w2a
0

2θaa(a+ 1)
·
(

B

(

1

2(a+ 1)
; k − 1, n− k

)

− B

(

w2a
0

2θa(a+ 1)
; k − 1, n− k

))

.

Pe(w) =
1

2

(

1− aθ

w(a+ 1)w0

)

<
1

2

1− Pe(w) ≤ 1− Pe(θ/w0) =
1

2

(

1+ a

a+ 1

)

= ε0 < 1.
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We now combine estimates for I1, I2 and the following estimates for the incomplete 
beta-function:

This gives us

Let us introduce the following notations:

Using n
θa(n) = o(1), for k(n) < C0n we get

I2 = O







(ε0)
n−k−1

2k

∞
�

θ/w0

awa
0

wa+1
dw






= O

�

(ε0)
n−k−1

θa2k

�

B(x; a, b) = O

(

x
a

a

)

,

B(x; a, b) = B(a, b)+ O

( (1− x)b

b

)

,

1

B(d − 1, n− d)
= Ŵ(n− 1)

Ŵ(d − 1)Ŵ(n− d)
= O

(

n
d−1

Ŵ(d − 1)

)

.

P(ki = k) =
�

n− 1

k

�

w
2a
0

2θaa(a+ 1)






B(k − 1, n− k)+ O







�

1− 1

2(a+1)

�n−k

n− k







−O











�

w
2a
0

2θa(a+1)

�k−1

k − 1











+ O

�

(ε0)
n−k−1

θa2k

�











=
�

n− 1

k

�

w
2a
0

2θaa(a+ 1)
B(k − 1, n− k)











1+ O

�

(ε1)
n−k

n
k−1

(n− k)Ŵ(k − 1)

�

+ O











�

w
2a
0

2θa(a+1)

�k−1

n
k−1

(k − 1)Ŵ(k − 1)











+ O

�

(ε0)
n−k−1

θa2k

n
k−1

Ŵ(k − 1)

��

.

A = O

�

(ε1)
n−knk−1

(n− k)Ŵ(k − 1)

�

, where ε1 = 1− 1

2(a+ 1)
,

B = O











�

w2a
0

2θa(a+1)

�k−1

nk−1

(k − 1)Ŵ(k − 1)











,

C = O

�

(ε0)
n−k−1

θa2k
nk−1

Ŵ(k − 1)

�

, where ε0 =
1

2

�

1+ a

a+ 1

�

.

B = O











�

w2a
0

2(a+1)

�k−1

( n
θa
)k−1

Ŵ(k)











= o(1).
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If k(n) is a bounded function, then since ε0 < 1 and ε1 < 1 we have

If k(n) → ∞ as n → ∞, using Stirling’s approximation Ŵ(k − 1) ∼ √
2π(k − 2)

(

e
k−2

)k−2
 

we get

Since εxx → 0 for ε < 1 as x → ∞ there exist constants C0 and N0 such that for n > N0 
and k(n) < C0n we have (ε1)

n−k
k−1 n

k−2
< 1 and (ε0)

n−k−1
k−1 n

k−2
< 1. This implies that 

A = o(1) and C = o(1).
Thus, we obtain

� �

Note that regardless of the shape parameter of the Pareto distribution of weights we 
always generate networks with a degree distribution following a power law with an expo-
nent equals 2. In the next section, we modify our model to change the exponent of the 
degree destribution and some other properties of the resulting networks.

Model modifications
In this section, we will show how to modify our model to get new properties and how 
these modifications will affect the degree distribution.

Directed network

Many real networks are directed. To model them and obtain an exponent of the power 
law that differs from 2, we changed the condition for the existence of an edge. There will 
be a directed edge (vi, vj), if and only if

As it follows from the next theorem this modification allows us to tune an exponent of 
the power law.

Theorem  7  Let Pout(k) be the probability of an random node to have out-degree k, 
Pin(k) in-degree k. If nmax{α,β}/a/θ(n) = o(1), then there exist constants C0 and N0 such 
that ∀k(n) : ∀n > N0 k(n) < C0n we have

A = O
(

(ε1)
n−k
k−1 nk−1

)

= o(1),

C = O
(

(ε0)
n−knk−1

)

= o(1).

A = O

(

k − 2

(n− k)
√
k − 2

(

(ε1)
n−k
k−1

n

k − 2

)k−1
)

,

C = O

(√
k − 2

θa

(

(ε0)
n−k−1
k−1

n

k − 2

)k−1
)

.

(11)P(ki = k) = (1+ o(1))

(

n− 1

k

)

B(k − 1, n− k) = (1+ o(1))k−2.

(wα
i �xi,w

β
j �xj) ≥ θ , α,β > 0.
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Proof Here is a proof for the out-degree distribution. The case of the in-degree distribu-
tion is similar.

First, let us compute Pe(w)—the probability of the node �vi = wi �xi with weight wi = w 
to have an edge to another random node.

Similar to Lemma  1 we get

Thus, we obtain

Like in Theorem  6, we have

The rest of the proof is similar to the corresponding steps of Theorem  6, so we omit 
details here. � �

With α = β this model turns into an undirected case with the power-law exponent 
equals 2 that agrees with Theorem  6.

Functions of dot product

In our model because of the condition wiwj( �xi, �xj) ≥ θ ≥ 0 node �vi can only be con-
nected to the node �vj if an angle between �xi and �xj is less than π/2. This is a constraint on 
the possible neighbors of a node that restricts the scope of our model.

We can solve this issue by changing the condition for the existence of an edge:

where h : [−1, 1] → R. On Fig. 3 is an example of how it works in R2.

Theorem  8  Let Pout(k) be the probability of an random node to have out-degree k, 
Pin(k)—in-degree k. If nmax{α,β}/a/θ(n) = o(1) and h : [−1, 1] → R-continuous, strictly 

Pout(k) = (1+ o(1))k−1−α/β ,Pin(k) = (1+ o(1))k−1−β/α .

(12)
Pe(w) =

∞
∫

w0

f (w′)
∫

x′ ∈ S(0, 1)

(wαx, (w′)βx′) ≥ θ

1

4π
dx′dw′.

(13)Pe(w) =
∞
∫

max{w0,θ1/β/wα/β }

awa
0

(w′)a+1

1

2

(

1− θ

wα(w′)β

)

dw′.

(14)Pe(w) =











1
2

�

1− aθ

wα(a+β)w
β
0

�

, w >

�

θ
wα
0

�1/β
,

waα/βwa
0

2θa/β

�

1
a − 1

β+a

�

, w ≤
�

θ
wα
0

�1/β
.

P(ki = k) =
(

n− 1

k

)

∞
∫

w0

(Pe(w))
k(1− Pe(w))

n−k−1 awa
0

wa+1
dw.

(15)wα
i w

β
j h(( �xi, �xj)) ≥ θ ,
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increasing function, positive at least in one point from (−1, 1), then there exist constants 
C0 and N0 such that ∀k(n) : ∀n > N0 k(n) < C0n we have

Short scheme of proof

Here is the scheme of proof for the out-degree distribution. The case of the in-degree is 
similar.

Restrictions on the function h allow us to modify the proof of the directed case. The 
main difference is a value of the probability Pe(w) of a node �vi = wi �xi with the weight 
wi = w to have an edge to another random node.

We will denote by I the inner integral:

We can rewrite inequality (15) as h((x, x′)) ≥ θ
wα(w′)β  and notice that θ

wα(w′)β ∈ (0,+∞) . 
Let us consider h([−1, 1]) = [r, q], on this interval function h is invertable. We 
examine the mutual position of [r,  q] and (0,+∞). The definition of h implies that 
[r, q] ∩ (0,+∞) �= ∅. This gives us the next two cases.

A.	 The first case is [r, q] ⊂ (0,+∞). If θ
wα(w′)β ∈ [r, q], then we may invert h and the 

inner integral I is equal to 2π
(

1− h−1
(

θ
wα(w′)β

))

. If θ
wα(w′)β > q, then the inequal-

ity (15) is not satisfied and I = 0. If 0 < θ
wα(w′)β < r, then the inequality (15) is satis-

fied for any pair of x and x′, I = 4π, the surface area of S2.

Pout(k) = k−1−α/β(1+ o(1)),Pin(k) = k−1−β/α(1+ o(1)).

(16)
Pe(w) =

∞
∫

w0

awa
0

(w′)a+1

∫

x′ ∈ S2

wα(w′)βh((x, x′)) ≥ θ

1

4π
dx′dw′.

(17)

∫

x′ ∈ S2

wα(w′)βh((x, x′)) ≥ θ

1

4π
dx′dw′.

Fig. 3  Example in R2 of influence h(x) = x, h(x) = e
x, h(x) = x

2
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	 To deal with Pe(w), we need to compare w0 with boundaries for each range of 
θ

wα(w′)β

1.	 If w0 <
θ1/β

wα/βq1/β
, then 

2.	 If θ1/β

wα/βq1/β
≤ w0 <

θ1/β

wα/β r1/β
, then 

3.	 Last case is w0 ≥ θ1/β

wα/β r1/β
. But θ(n) grows with n, and for big enough n this ine-

quality will not be satisfied.

B.	  The second case is [r, q] �⊂ (0,+∞), which implies r ≤ 0. If θ
wα(w′)β ∈ (0, q], then 

I = 2π
(

1− h−1
(

θ
wα(w′)β

))

. If θ
wα(w′)β > q, then I = 0. This gives

It remains only to show that Pout(k) = k−2(1+ o(1)). But now it is easy to see that 
the influence of every kind of the principal parts of the integral for Pe(w) has been 
already examined in previous theorems for degree distributions. For example,

what is proportional to the one we got in Theorem 7. Therefore, we are not giving 
here additional details. � �

For example, described class of functions contains functions like ex and x2m+1 + c, 
m ∈ N, for a proper constant c.

Of course, not only this small class of functions h(x) has no influence on the degree 
distribution. For example, it is easy to show that h(x) = x2m,m ∈ N also has this prop-
erty. In this way, a proof will be different only in the computation of Pe(w).

Pe(w) =

θ1/β

wα/β q1/β
∫

w0

0dw′ +

θ1/β

wα/β r1/β
∫

θ1/β

wα/β q1/β

awa
0

(w′)a+1

1

2

[

1− h−1

(

θ

wα(w′)β

)]

dw′

+
∞
∫

θ1/β

wα/β r1/β

4π
awa

0

(w′)a+1
dw′.

Pe(w) =

θ1/β

wα/β r1/β
∫

w0

awa
0

(w′)a+1

1

2

[

1− h−1

(

θ

wα(w′)β

)]

dw′ +
∞
∫

θ1/β

wα/β r1/β

4π
awa

0

(w′)a+1
dw′.

Pe(w) =
∞
∫

max(w0,
θ1/β

wα/β q1/β
)

awa
0

(w′)a+1

1

2

[

1− h−1

(

θ

wα(w′)β

)]

dw′

θ1/β

wα/β r1/β
∫

θ1/β

wα/β q1/β

awa
0

(w′)a+1

1

2

[

1− h−1

(

θ

wα(w′)β

)]

dw′ = wa
0w

2aα/β

βθa/β

q
∫

r

(1− h−1(t))ta/β−1dt,
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Conclusion
In our work, we suggest a new model for scale-free networks generation, which is based 
on the matrix factorization and has a geographical interpretation. We formalize it for 
fixed size and growing networks. We proof and validate empirically that degree distribu-
tion of resulting networks obeys power law with an exponent of 2.

We also consider several extensions of the model. First, we research the case of the 
directed network and obtain power-law degree distribution with a tunable exponent. 
Then, we apply different functions to the dot product of latent features vectors, which 
give us modifications with interesting properties.

Further research could focus on the deep study of latent features vectors distribution. 
It seems that not only a uniform distribution over the surface of the sphere should be 
considered because, for example, cities are not uniformly distributed over the surface of 
Earth. Besides, we want to try other distributions of weights.
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Appendix
Proof of Lemma 1

For a node x with the weight w, the probability to be connected to a random node is rep-
resented by

We can rewrite inequality ww′(x, x′) ≥ θ as (x, x′) ≥ θ
ww′. If θ

ww′ ∈ [0, 1], this inequality 
defines the spherical cap of the area 2π(1− θ

ww′ ). Therefore, we have

If we substitute f (w′) from (2), we obtain

(18)
Pe(w) =

∞
∫

w0

f (w′)
∫

x′ ∈ S2

ww′(x, x′) ≥ θ

1

4π
dx′dw′.

(19)Pe(w) =
∞
∫

max{w0,θ/w}

f (w′)2π
(

1− θ

ww′

)

1

4π
dw′.

(20)Pe(w) =
∞
∫

max{w0,θ/w}

a

w0

(w0

w′

)a+1 1

2

(

1− θ

ww′

)

dw′.
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If w ≤ θ/w0, then

If w > θ/w0, then

Proof of Lemma 2

The edge probability is represented by

Using (18), we obtain

If θ < w2
0, then for all w ∈ [w0,∞) Pe(w) equals to 12

(

1− aθ
w(a+1)w0

)

. Using it, we get

Pe(w) =
∞
∫

θ/w

a

2w0

(

w0

w′

)a+1
(

1− θ

ww′

)

dw
′ =

∞
∫

θ/w

a

2w0

(

w0

w′

)a+1

dw
′ −

∞
∫

θ/w

a

2w0

(

w0

w′

)a+1 θ

ww′ dw
′

= aw
a

0

2

1

a(θ/w)a
− aw

a

0
θ

2w

1

(a+ 1)(θ/w)a+1
= 1

2

w
a

0

θa(a+ 1)
w
a
.

Pe(w) =
∞
∫

w0

a

w0

(

w0

w′

)a+1

2π

(

1− θ

ww′

)

1

4π
dw

′ = aw
a

0

2

∞
∫

w0

1

w′a+1
dw

′ − aw
a

0
θ

2w

∞
∫

w0

1

w′a+2
dw

′

= aw
a

0

2

1

aw
a

0

− aw
a

0
θ

2w

1

(a+ 1)wa+1

0

= 1

2

(

1− aθ

w(a+ 1)w0

)

.

(21)
Pe =

∞
∫

w0

∫

S2

∞
∫

w0

∫

x′ ∈ S2

ww′(x, x′) ≥ θ

f (w)f (w′)
1

16π2
dx′dw′dxdw.

(22)Pe =
∞
∫

w0

∫

S(0,1)

1

4π
f (w)Pe(w)dxdw =

∞
∫

w0

f (w)Pe(w)dw.

Pe =
∞
∫

w0

1

2

(

1− aθ

w(a+ 1)w0

)

a
wa
0

wa+1
dw

= 1

2
−

∞
∫

w0

1

2

(

aθ

w(a+ 1)w0

)

a
wa
0

wa+1
dw

= 1

2
− 1

2
a2θ

wa−1
0

a+ 1

∞
∫

w0

1

wa+2
dw

= 1

2
− 1

2
a2θ

wa−1
0

a+ 1

1

a+ 1

1

wa+1
0

= 1

2
− 1

2

a2

(a+ 1)2
θ

w2
0

.



Page 18 of 20Artikov et al. Compu Social Networls  (2016) 3:4 

If θ ≥ w2
0, then

Proof of Lemma 3

Let us enumerate pairs of nodes. Each pair of nodes i has an edge indicator Iei.
By definition, we have

Ie1, . . ., Ien(n−1)/2 is the sequence of identically distributed random variables, so their 
expected value is the same and equals to Pe.

Since EI2ei = EIei = Pe, it follows that

If edges ei and ej do not have mutual nodes, then Iei and Iej are independent variables. 
Therefore, E(Iei Iej ) = E(Iei)E(Iej ) = P2

e . We get

EIe(v,w)Ie(v,z) is exactly equal to P<.

Proof of Lemma 4

It can be easily seen that

Pe =
θ/w0
∫

w0

1

2

wa
0

θa(a+ 1)
waa

wa
0

wa+1
dw +

∞
∫

θ/w0

1

2

(

1− aθ

w(a+ 1)w0

)

a
wa
0

wa+1
dw

= 1

2

wa
0

θa(a+ 1)
awa

0

θ/w0
∫

w0

1

w
dw + 1

2
awa

0

∞
∫

θ/w0

1

wa+1
− a2wa−1

0 θ

2(a+ 1)

∞
∫

θ/w0

1

wa+2
dw

= 1

2

w2a
0 a

θa(a+ 1)
(ln θ − 2 lnw0)+

w2a
0

2θa
− a2

2(a+ 1)2
w2a
0

θa
.

Var(M) = E(M2)− E(M)2 = E(Ie1 + · · · + Ien(n−1)/2)
2 − (EIe1 + · · · + EIen(n−1)/2)

2

=
∑

i

EI2ei + 2
∑

i �=j

EIei Iej −
∑

i

(EIei)
2 − 2

∑

i �=j

EIeiEIej .

EIei Iej −
n(n− 1)

2
(Pe)

2 − 2
∑

i �=j

EIeiEIej =
n(n− 1)

2
Pe(1− Pe)+ 2

∑

i �=j

EIei Iej − 2
∑

i �=j

EIeiEIej .

Var(M) = n(n− 1)

2
Pe(1− Pe)+

n
∑

v=1

n
∑

w = 1

w �= v

n
∑

z = w + 1

z �= v

(EIe(v,w)Ie(v,z) − EIe(v,w)EIe(v,z))

= n(n− 1)

2
Pe(1− Pe)+

n
∑

v=1

n
∑

w = 1

w �= v

n
∑

z = w + 1

z �= v

(EIe(v,w)Ie(v,z) − P
2
e )

P< =
∞
∫

w0

Pe(w)
2f (w)dw.
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If θ < w2
0 we have

If θ ≥ w2
0, then

Computing the first integral, we get

And for the second one, we have

This gives us P< in the case of θ ≥ w2
0:

P< =
∞
∫

w0

1

4

(

1− aθ

w(a+ 1)w0

)2

a
wa
0

wa+1
dw

= 1

4
awa

0

∞
∫

w0

1

wa+1
dw − 1

2

a2θwa−1
0

a+ 1

∞
∫

w0

1

wa+2
dw + 1

4

a3θ2wa−2
0

(a+ 1)2

∞
∫

w0

1

wa+3
dw

= 1

4
− 1

2

a2θ

(a+ 1)2
1

w2
0

+ 1

4

a3θ2

(a+ 1)2(a+ 2)

1

w4
0

.

P< =
θ/w0
∫

w0

1

4

w2a
0

θ2a(a+ 1)2
w2aa

wa
0

wa+1
dw +

∞
∫

θ/w0

1

4

(

1− aθ

w(a+ 1)w0

)2
a

wa
0

wa+1
dw.

θ/w0
∫

w0

1

4

w
2a

0

θ2a(a+ 1)2
w
2a
a

w
a

0

wa+1
dw = 1

4

w
2a

0

θ2a(a+ 1)2
aw

a

0

θ/w0
∫

w0

w
a−1

dw

= 1

4

w
2a

0

θ2a(a+ 1)2
[θa − w

2a

0 ].

∞
∫

θ/w0

1

4

(

1− aθ

w(a+ 1)w0

)2

a
w
a

0

wa+1
dw =

∞
∫

θ/w0

1

4
a

w
a

0

wa+1
dw −

∞
∫

θ/w0

1

2

aθ

w(a+ 1)w0

a
w
a

0

wa+1
dw

+
∞
∫

θ/w0

1

4

a
2θ2

w2(a+ 1)2w2
0

a
w
a

0

wa+1
dw

= 1

4
aw

a

0

∞
∫

θ/w0

1

wa+1
dw − 1

2

a
2θwa−1

0

a+ 1

∞
∫

θ/w0

1

wa+2
dw

+ 1

4

a
3θ2wa−2

0

(a+ 1)2

∞
∫

θ/w0

1

wa+3
dw

= 1

4
w
a

0

w
a

0

θa
− 1

2

a
2θwa−1

0

(a+ 1)2

w
a+1

0

θa+1
+ 1

4

a
3θ2wa−2

0

(a+ 1)2(a+ 2)

w
a+2

0

θa+2

= 1

4

w
2a

0

θa
− 1

2

a
2

(a+ 1)2

w
2a

0

θa
+ 1

4

a
3

(a+ 1)2(a+ 2)

w
2a

0

θa
.

P(<) = 1

4

w2a
0

θ2a(a+ 1)2
[θa − w2a

0 ] + 1

4

w2a
0

θa

[

1− 2
a2

(a+ 1)2
+ a3

(a+ 1)2(a+ 2)

]

.
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