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Background
Micro-blogging has become a popular communication and information search tool, and 
Twitter is one of the most prevalent micro-blogging platforms today, with over 200 million 
active users posting tweets, a message limited to 140 characters [1]. The tweet’s character 
limit promotes users to casually update posts, whereas traditional blogging has a tendency 
to require more dedicated time to write a new post. Additionally, with increasing owner-
ship of mobile devices, many users are engaged to Twitter activities, resulting in over 400 
million tweets sent to the Twitter network per day [2, 3]. The downside to this popularity is 
that Twitter users may easily be overwhelmed by the massive volume of data. As a mecha-
nism to combat the issue, Twitter users have organically incorporated the hashtag culture 
into their tweets. A hashtag is a word or a phrase without spaces prefixed with the hash 
symbol # inserted anywhere in the body of tweets. Trendy topics can be quickly propa-
gated among millions of users through tagging, which creates an instant community with 
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similar interests. With the implementation of the hashtag search feature in Twitter, many 
individual users and business marketers have started applying tagging to organize posts 
into related conversations and facilitate easier search by associated hashtags.

As tagging culture becomes widely adopted, the development of hashtag recommen-
dation systems has gained researchers’ attention. Some recent studies have proposed to 
recommend predefined hashtags [4, 5] or general topics hidden in each tweet [6]. Though 
these systems are beneficial in encouraging and assisting users to get into the tagging 
habit, it may not be sufficient for information seekers who wish to find newly emerging 
hashtags. In contrast, recommending the most popular hashtags does reflect timely top-
ics, but it often includes heavily used general hashtags and suggestions are not personal-
ized. Other studies have proposed recommending hashtags based on similar tweets [7].

In this paper, we propose a new method to automatically recommend personalized 
trending hashtags based on users’ tweets. Our approach does not limit the number of 
candidate hashtags to be examined, but rather provides an arbitrarily long list of ranked 
recommendations. Specifically, we make the following contributions:

– – We build an effective hashtag recommendation system using a proposed hashtag rank-
ing method, Hashtag Frequency-Inverse Hashtag Ubiquity (HF-IHU).

–– We provide scalable Map-Reduce algorithms to construct two fundamental structures, 
the term-frequency map for hashtags (THFM) and hashtag-frequency map (HFM). 
These indices are used to support fast HF-IHU calculations.

–– We conduct a nuanced evaluation of HF-IHU over a large Twitter data set. We com-
pare HF-IHU against several popular schemes, including k-nearest neighbors using 
Cosine similarity, k-popularity, and Naïve Bayes. Our results show that HF-IHU 
achieves substantially higher recall than the other schemes and is resistant to retweets.

The remainder of this paper is organized as follows. “Background” section provides an 
overview of Twitter terminology. “Index generation and ranking” section describes our 
distributed Map-Reduce algorithm for building the inverted indices that are central to 
our recommendation algorithm. Our hashtag ranking algorithm is also presented in this 
section. In “Experimental evaluation” section, we describe our experimental setup and 
the performance results of our algorithm. Finally, in “Conclusion and future work” sec-
tion, we conclude the paper with a discussion and ideas for future work.

Background
This section introduces the terminologies that are used to address the services and fea-
tures of Twitter.

Tweet: In Twitter, a tweet is a short message limited to 140 characters posted by a user. 
To tweet is also used as a verb for posting such messages. Unless an account is private, 
all tweets are public by default.
Follow: In Twitter, subscribing to other users to read their tweets is called a follow. 
Users can become a follower of someone without his or her approval unless the user 
has set tweet protection or have blocked the user. Unlike friend-ing in other social net-
works, following is not mutual.
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User: A user is identified by a Twitter handle, @user. Users can mention other users by 
adding another their handle in their tweet. When mentioned, a user is notified by the 
Twitter API, and the mentioning tweet is displayed on the user’s feed.
Retweet: When users want to share someone else’s tweet, they can retweet it to their 
own followers. There are two ways: automatic retweeting and manual retweeting. Auto-
matic retweeting is Twitter’s built-in feature where a tweet is shared verbatim and 
marked as a retweet. Users can manually retweet by copying the body of a tweet they 
want to share and pasting it into their tweet box. Since these tweets are not automati-
cally marked as retweets, Twitter instructs users to add the keyword RT and the initial 
author’s handle in the tweet content. Sometimes, users will add their own thoughts to a 
manual retweet, which changes the content of the original tweet.
Hashtag: A hashtag is a keyword prefixed with # and can be placed anywhere in the 
body of the tweet to categorize or mark words/phrases as keywords related to their 
tweets. By clicking hashtags in Tweets, users can view all Tweets containing the 
hashtag. Extremely popular hashtags often become trends.
Trend: Twitter displays a list of immediately popular keywords and hashtags on the user’s 
homepage to help users discover the emerging topics in Twitter, and these keywords are 
referred to as trends. Trends are user-locality aware, but are not context-sensitive.

Index generation and ranking
Our hashtag ranking algorithm is inspired by the well-known TF-IDF  [8] approach 
used in information retrieval. Our algorithm relies on two central data structures that 
are compiled from a large number of Tweets. We built these data structures using the 
Hadoop distributed computing platform with Map-Reduce [9].

Both data structures are nested maps: the first is a term to hashtag-frequency-map 
(THFM); the second is the converse—a hashtag frequency-map (HFM). In the THFM, 
the primary keys are terms that have been observed in tweets. The value associated with 
each primary key is a map from hashtag to a frequency count indicating how often that 
hashtag (the secondary key) has occurred with the term specified by the primary key. 
The HFM is an analogous data structure using hashtags as the primary key and term 
frequencies as the final value. Figure 1 illustrates the THFM (left) and HFM (right) pro-
vided a data set containing two tweets: “washington state university #wsuv” and “george 
washington #president”.

Fig. 1  THFM (left) and HFM (right)
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Given that 400 million tweets are posted per day  [3], the THFM and HFM need to 
be updated frequently so that the recommendation of hashtags reflects the most recent 
trends. Moreover, simply processing the tweets over a relatively small window of time 
(e.g., weeks) requires substantial computational power. As a result, we have developed 
an approach for building the THFM and HFM using the Map-Reduce programming par-
adigm [9] that can scale easily to hundreds of nodes.

Map‑Reduce

The Map-Reduce model consists of three phases: Map, Shuffle and Reduce. Map and 
Reduce are user-provided functions, but Shuffle is performed automatically by the Map-
Reduce framework between the Map phase and the Reduce phase. Given a data set, the 
master node divides the problem into data-parallel sub-problems and distributes them 
to worker nodes. At each worker node, the Map function produces a set of key-value 
pairs as intermediate outputs. Shuffle collects the intermediate outputs from the Map 
function and groups them by key. Worker nodes are then assigned with the grouped out-
puts and perform the Reduce task to process the final results.

Provided the input “government of the people by the people for the people”, Fig. 2 illus-
trates a simple example of Map-Reduce that computes the term-frequency of the input. 
In the Map phase, instead of performing the Map function on the entire input, the input 
is divided into sub-problems and distributed to worker nodes. The Map function for this 
example outputs key-value pairs using terms as keys and ‘1’ as values. The outputs from 
Map are fed into the Shuffle phase as shown in Fig. 3. Shuffle sorts the data by key (terms 
in this example) and sends the sorted data to the Reduce phase.

In the Reduce phase, each reduce task runs the user-provided function. The received 
input results are combined by key and the final output includes one value per key. In 
this example, the Reduce function sums the value, ‘1’, for each key to generate a term 
frequency for the sample input. Figure 4 depicts the output from the Reduce phase for 
the example.

Map Map Map 
Fig. 2  Map-Reduce—Map phase
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Frequency map generation algorithm

The Map functions used to generate the THFM and HFM are similar to the Map 
function in the above Map-Reduce example. Provided a training data set contain-
ing a list of tweets, the program prints lines in the format of #hashtag:term, where 
#hashtag is a hashtag appeared in a tweet and term is a term appeared in a tweet 
with the hashtag. For example, when the input tweet contains multiple hashtags such 
as washington state university #wsuv #cs, then the result prints six lines: 
#wsuv:washington, #wsuv:state, #wsuv:university, #cs:washington, 
#cs:state, #cs:university. The Map function to generate the HFM is shown in 
Algorithm 1.

Fig. 3  Map-Reduce—Shuffle phase

ecudeRecudeR

Fig. 4  Map-Reduce—Reduce phase
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The output of the Map function is sent to the Shuffle phase and gets sorted by hashtag. 
Next, the reduce function (Algorithm 2) receives the shuffled key-value pairs and iter-
ates values (terms) per key (hashtag) summing the occurrences of terms for each key. 
The output of the reduce function lists keys followed by key-value pairs (term to term-
frequencies). The THFM is generated in an analogous manner.

The generated THFM and HFM are stored in an inverted index. Provided a term t, 
THFM[t] retrieves a collection of hashtags that appeared with t in the corpus in O(1) 
time. The frequency of each hashtag co-occurring with t is retrieved by THFM[t][h].

Similarly, provided a hashtag h, HFM[h] contains a collection of terms that appeared 
with h in the corpus, and HFM[h][t] retrieves the frequency of each term co-occurring 
with h.

Ranking hashtags with HF‑IHU

After generating THFM and HFM, the next step is to score hashtags in the data set to 
find personalized recommendations for a user. Our proposed scoring method utilizes 
the variation of the TF-IDF scheme, we call Hashtag Frequency-Inverse Hashtag Ubiq-
uity (HF-IHU). HF-IHU has two opposing weighting factors: the first is the frequency 
with which a hashtag appears with a given term (the hashtag frequency). The second 
is the hashtag ubiquity which discounts hashtags that are prevalent in all contexts and 
rewards hashtags that are tightly associated with a narrow subset of terms.
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Provided a term t and a hashtag h which co-occurred with t, hft,h is expressed as 
follows:

where THFM[t][h] denotes the occurrences of h with t in the corpus. The denominator 
of hft,h is the sum of all hashtag frequencies associated with t. Thus, hft,h measures the 
association between a term and a hashtag. Intuitively, if many users used a hashtag with 
a particular term, the hashtag is more likely relevant to the term.

The ihuh is derived from the following formula:

where |CorpusNH | denotes the number of all terms in the corpus with hashtags removed. 
The denominator of ihuh is the sum of all term frequencies associated with h. Thus ihuh 
decreases as the hashtag h becomes associated with a large fraction of terms in the cor-
pus. The intuition is that these ubiquitous tags are less likely to be personally important 
to any given user, thus they must overcome a larger hurdle than other hashtags to be 
recommended. This is in contrast to the IDF term in the well-known TF-IDF, where IDF 
would have decreased the important of term t, rather than h, contradicting our objective.

Our main hashtag scoring algorithm is shown in Algorithm 3. The algorithm inputs a 
tweet, which is a list of terms T = (t1, ..., tn). For each term ti ∈ T , we locate all hashtags 
hj that co-occurred with it from our THFM and HFM indices. The hashtag-term fre-
quency hfti ,hj and the inverse hashtag ubiquity metric ihuhj are computed across all 
hashtags to calculate the partial score. These partial scores are aggregated for all hashtags 
pertaining to ti before being returned.

One advantage of HF-IFU is that our algorithm looks up candidate hashtags using the 
terms in a candidate tweet. This means that the number of candidate hashtags grows as 

(1)
hft,h =

THFM[t][h]
∑

h′

THFM[t][h′]
,

(2)
ihuh = log

|CorpusNH |
∑

t ′

HFM[h]
,
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a function of the number of terms in the tweet (t) and is bound from above by the total 
number of hashtags in the corpus (H). Because Twitter limits tweets to 140 characters, 
only a small number of words will actually fit in a tweet. Thus, the dominating term will 
be, in the worst case, the search over all H hashtags. However, the terms in any given 
tweet will typically not be associated with all H hashtags, so in practice, we would expect 
the cost to be substantially lower.

It is also worth noting, that HF-IFU avoids a search over all terms in the corpus. The 
best approaches for k-Nearest Neighbors, another plausible method for generating 
recommendations, are linear in the dimensionality of the data (e.g.,   [10–12]). In our 
domain, tweets are represented with a bag-of-words model which is a vector whose 
dimensionality is exactly the size of the entire dictionary of known terms. This is a prob-
lem for kNN search, since we expect that the total number of terms will be substan-
tially larger than H (the number of hashtags). Worse, there is no short-cut in a search 
over d-dimensions as there is in our approach when a term is associated with only a few 
hashtags. Rather, for kNN search, all searches will exhibit the worst-case linear in d cost. 
Thus, a search that examines all H hashtags is much preferable, from a cost perspective, 
to one that must examine all d dimensions of the data set.

Experimental evaluation
In this section, we present a nuanced evaluation of our system. We initially describe the 
characteristics of the Twitter corpus we obtained and will use for evaluation in "Tweet 
corpus" section. Next, in "Experimental setup" section, we explain how we will carry out 
the results, as well as the algorithms we compare against. The recall metric to judge the 
goodness of the hashtag ranking algorithms is described in "Evaluation metric: precision 
and recall" section. Finally, detailed results of our evaluation, including a case study, are 
then presented in "Experimental results" section.

Tweet corpus

To evaluate our hashtag recommendation system, we first obtained the Tweets 2011 cor-
pus, consisting of a collection of tweet identifiers, provided by Twitter for the TREC 
2011 Microblog Track 2011 [13]. The corpus represents approximately 13 million tweets 
sampled between January 23 and February 5, 2011. We used the HTML crawler from an 
open-source tool1 and directly downloaded the actual tweets from Twitter including id, 
username, timestamp, HTTP response code, and tweet body.

Although the tool was supplied with the repair code to re-fetch missed tweets, the crawler 
still returned some null tweets after several attempts to re-fetch them. Most of the missed 
tweets are returned with HTTP status code 301, 302 or 404. The description of code 301 is 
moved permanently and that of code 302 is moved temporarily, and both denote retweets, 
which is not completely handled by the tool. Code 404 means that the requested page was 
not found, which denotes deleted tweets. In all, the corpus size was 3 GB.

As illustrated in the figures below, approximately 61% of the provided corpus included 
tweet bodies, and 8.3 million tweets were successfully retrieved to be used in the 

1  Twitter-corpus-tools, http://www.twittertools.cc.

http://www.twittertools.cc
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experiment. Figure 5 depicts the distribution of tweets with returned HTTP statuses in 
the downloaded data, and Fig. 6 shows the number of retrieved tweet bodies per HTTP 
status code.

Twitter users often mention one or more users in their own tweets with @user to 
include the other users in their conversation. Although mentions appear many times in 
the data set, we removed these user handles from the data set because they are gen-
erally used to show interest in the mentioned user or the relationship, but not in the 
user itself. Additionally, we follow common information retrieval preprocessing steps by: 
(1) removing punctuation and non-alphanumeric symbols; (2) removing common stop-
words; (3) transforming all text to lowercase; (4) stemming (we employed the Porter 
Stemmer from the open source Python library NLTK [14]). Some non-English languages 
that do not use word dividers (e.g., a blank space between words) such as Japanese would 
require an extra pre-processing step to identify the parts of speech before performing 
the above steps.

We successfully downloaded approximately 8.3 million tweets. Text pre-process-
ing eliminated 1 % of these tweets because some consisted of only stop words or user 

Fig. 5  HTTP Response Code

Fig. 6  Downloaded Tweets
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mentions. We then found that remaining tweets, approximately 13 %, contained at least 
one hashtag. The remaining 87  % contained no hashtags. An overview of the down-
loaded data characterization is listed in Table 1.

Experimental setup

To evaluate the performance of our recommendation method, we set up a data set by 
splitting the pre-processed data into a training set (90 %) and a test set (10 %). The train-
ing set contains approximately 8.1 million tweets; roughly 900,000 of these contain at 
least one hashtag. The test set contains about 100,000 tweets, all of which include at least 
one hashtag. Finally, the THFM and HFM were generated by running our Map-Reduce 
applications using the training set as input.

To evaluate HF-IHU, we compared it with four other recommendation methods: 
Cosine similarity with k-Nearest Neighbour (kNN), overall popularity, and Naïve Bayes, 
and User similarity and Tweet similarity. The descriptions of each tested method are 
briefly explained below:

– – kNN with Cosine similarity Provided a tweet in the training set, t1 and another tweet t2 
from the test set, this method computes the Cosine similarity: 

 For each tweet in the test data, we iterated through all tweets in the training data and 
computed the Cosine similarity between them. We found the k-Nearest Neighbors 
(k = 200) of the test tweet and used these neighbors to produce a ranked list of rec-
ommended hashtags.

–– Naïve Bayes This method makes recommendations based on the results of a multino-
mial Naive Bayes model that is standard for text documents with large vocabularies 
and sparse data. In this model, the hashtag ranking depends on the posterior probabil-
ity of a hashtag Hi given a tweet composed of a set of terms tj each with frequency ftj: 

 We use Laplacian smoothing to deal with edge conditions in the conditional prob-
ability tables.

(3)cos(t1, t2) =
t1 · t2

� t1 �� t2 �
.

(4)P(Hi|t1, ..., tn) ∝ P(Hi)
∏

j

P(tj|Hi)
ftj .

Table 1  Overview of data characterization

Characteristic Value

Downloaded tweets 8,320,161

Cleaned tweets 8,234,098

Tweets containing no hashtags 7,182,506

Tweets containing at least one hashtag 1,051,592

One hashtag per tweet 827,630

Two hashtags per tweet 145,718

More than two hashtags per tweet 78,244

Maximum number of hashtags used in a tweet 28
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–– Overall popularity This method simply recommends the most frequently occurring 
(popular) hashtags in the training set for each test tweet. Table  2 shows the top 30 
popular hashtags in our data set. This ranking method is not designed to make per-
sonalized recommendation, and therefore, the recommendations are consistently the 
same hashtags for any given tweet.

–– User similarity and Tweet similarity This method is proposed by Kywe et al. [15]. They 
score candidate hashtags based on the combination of user similarity and tweet simi-
larity employing TF-IDF as a means of scoring each similarity. A user is represented by 
the preference weight for each hashtag in the data. The preference weight wij for user uj 
for hashtag hi is defined by the following formula: 

where Freqij is the usage frequency of hashtag hi by uj, Maxj is the total number of 
hashtags used by uj, Nu is the total number of users, and ni denotes the number of 
users who used hi. Similar tweets are retrieved in a similar manner as shown in the 
following formula: 

where Freqkl is the frequency of word wl in tweet tk, Maxk is the total number of word 
used in tk, Nt is the total number of tweets, and nl denotes the number of tweets in 
which wl appears. To find the top X similar users, HTofUsers(u), the cosine similarity 
between a target user u and another user ui, is measured as follows: 

 Similarly, to find the top Y similar tweets, HTofTweets(t), the cosine similarity 
between a target tweet t and another tweet tk, is measured as follows. 

(5)wij = TFij · IDFi,

(6)=
Freqij

Maxj
· log

(

Nu

ni

)

,

(7)wkl = TFkl · IDFl

(8)=
Freqkl
Maxk

· log

(

Nt

nl

)

,

(9)cos(u,ui) =
u · ui

� u �� ui �
.

Table 2  Top 30 popular #hashtags

No. Hashtag No. Hashtag No. Hashtag

1 #ff 11 #bbb 21 #nicovideo

2 #egypt 12 #news 22 #1

3 #jan25 13 #icantdateyou 23 #partiu

4 #nowplaying 14 #fail 24 #shoutout

5 #np 15 #sougofollow 25 #music

6 #mentionke 16 #sotu 26 #followme

7 #fb 17 #rt 27 #follow

8 #jobs 18 #tcot 28 #win

9 #teamfollowback 19 #famouslies 29 #nw

10 #followmejp 20 #improudtosay 30 #iphone
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After finding HTofUsers(u) and HTofTweets(t), the candidate hashtags for the target 
tweet t posted by user u are obtained in the following formula: 

The recommendations are ranked by hashtag frequency in SuggestedHashtags(u,  t). 
Since they reported that this method performed the best when X = 5 and Y = 50, we 
used the same numbers for these parameters in our experiment.

Evaluation metric: precision and recall

To evaluate the performance of the above methods, we examined each method’s abil-
ity to recall hashtags from our ground-truth tweets in the test set. We view recall as the 
most salient metric since our approach is designed to recommend new hashtags, which 
by definition may not be present in the original tweet. For completeness, however, we 
also include the precision for each method. High precision is obtained if the recom-
mended hashtags are exactly those found in the original tweet; novel recommendations 
decrease precision but not recall.

Formally, let T = {T1, . . . ,Tn} denote the set of all tweets in our test set. Each tweet Ti 
is composed of a set of terms, Ti = {t1, . . . , tm} and a set of hashtags Hi = {h1, . . . , hk} . 
For each method, we input a tweet Ti to produce a set of ranked recommended hashtags 
Si = {s1, . . . , sp} for that tweet. We then compare the recommended hashtags Si to the 
ground-truth hashtags, Hi, that we removed from the original tweet. A well-functioning 
recommendation system will generate Si such that most, or all, of the hashtags from Hi 
are highly ranked. To measure this, we define:

The (micro-averaged) precision, P, can be computed as follows,

where n is the total number of tweets in the test set and p is the number of ranked rec-
ommendations provided by the method under examination. Figure  7 shows a simple 
example of the precision notations with a sample test set containing two tweets.

The micro-averaged recall, R, can be computed as follows,

Figure 8 shows an example of the recall notations with a sample test set of two tweets.

(10)cos(t, tk) =
t · tk

� t �� tk �
.

(11)SuggestedHashtags(u, t) = HTofUsers(u) ∪HTofTweets(t).

(12)1Hi(sj) =

{

1, if sj ∈ Hi

0, otherwise

(13)P(p) =

∑n

i=0

∑p

j=0
1Hi(sj)

∑n

i=0
|Si|

,

(14)R(p) =

∑n

i=0

∑p

j=0
1Hi(sj)

∑n

i=0
|Hi|

.
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Experimental results

Full corpus

We ran all the ranking methods introduced above on the full set of testing data and plot-
ted R (recall) and P (precision) for various values of p (on the horizontal axis). Full recall 
results are shown in Fig. 9 and full precision results are shown in Fig. 10. At p = 1, each 
method returns only its top recommended hashtag for each tweet in the test set, while at 
p = 100 each method returns its top 100 recommended hashtags for that tweet. Note an 
ideal method will not be able to obtain 100 % Recall. Rather the maximum recall ceiling 
lies at roughly 74 % when p = 1 and increases to approximately 81 % when p ≥ 6. The 
maximum-recall ceiling lies below 100 % because not all tags in the test set occur in the 
training data. Thus, some tags in the test tweets could never be recommended. Moreo-
ver, since many test tweets have more than one hashtag, for small values of p, some tags 
will necessarily go unmatched, even if they would be recalled for larger values of p. The 
maximum-recall ceiling reaches an asymptote near p = 6 since very few tweets in the 
test set have more than six hashtags to recall.

Figures  9 and  10 show that HF-IHU consistently reproduced the removed-hashtags 
over the other methods. The result of overall popularity simply reflects the percentage 
of popular hashtags occurring in our test set as expected. One surprise in the results is 

Test Set (n = 2) 

High-scored hashtags (p = 3) 

S0,0 

1 

High-scored hashtags (p = 3) 

S0 = {#wsuv, #pullman, #cougar} 

H0 = {#wsuv, #vancouver} 
T0 = {washington, state, university} 

H1 = {#president} 
T1 = {george, washington} 

S1 = {#us, #president, #first}  
S0,1 

0 

S0,2 

0 

S1,0 

0 

S1,1 

1 

S1,2 

0 

P(p)=  2/6 

Fig. 7  Example measurement of precision

Test Set (n = 2) 

High-scored hashtags (p = 3) 

S0,0 

1 

High-scored hashtags (p = 3) 

S0 = {#wsuv, #pullman, #cougar} 

H0 = {#wsuv, #vancouver} 
T0 = {washington, state, university} 

H1 = {#president} 
T1 = {george, washington} 

S1 = {#us, #president, #first}  
S0,1 

0 

S0,2 

0 

S1,0 

0 

S1,1 

1 

S1,2 

0 

R(p)=  2/3 

Fig. 8  Example measurement of recall
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how poorly kNN performs. One of the strengths of the HF-IHU method over kNN is 
that it examines the weight of all of the candidate hashtags, whereas kNN only examines 
at the term-level and simply returns hashtags that occur with similar tweets. Thus, all 
hashtags in those similar tweets are ranked equally. For example, to find hashtags for a 
test tweet “george washington” with the HF-IHU method, it first computes the score for 
all hashtags that occurred with the term “george” (576 hashtags) and then computes for 
hashtags that occurred with “washington” (641 hashtags), accumulates hashtag scores, 
and it finally returns the top n high-scored hashtags.

With the kNN method, however, only similar tweets are used to determine recom-
mended tags. Thus, the individual terms have little direct contribution. Rather, it is the 
set of terms that will determine the recommendations. For example, in our test tweet 
“george washington”, tweets that have exactly these terms and one or more hashtags will 
have a perfect similarity score while tweets that differ only in one word will be close 
neighbors. On the other hand, tweets that not only have both “george” and “washington”, 
but also contain a variety of other terms will not be close neighbors. The result is that 

Fig. 9  Recall for the ranking methods

Fig. 10  Precision for the ranking methods
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fewer tweets will be taken into account to determine recommendations. This will tend to 
bias the statistical relationships in an unpredictable, and based on the observed results, 
often undesirable manner.

In Fig. 10, we show the precision results of all methods over p. The higher P(p) values 
for small values of p indicate that our method is selecting the hashtags from the ground-
truth set, Hi, to be highly ranked in the result set. As expected, as p increases, the preci-
sion decreases across all methods. Even as the methods reach their asymptotic limits, 
HF-IHU consistently outperforms the other methods.

There is a need to explain the low precision results. Defined in Eq. 13, the precision 
P(p) is normalized over the number of hashtags returned by our system. As we ask for an 
increasing number of recommended hashtags (along the horizontal axis), the denomina-
tor also increases. However, recall from Table 1 that most tweets in our sanitized corpus 
only contain few hashtags (~1.34 hashtags per tweet on average). Worse, only 7.4 % of 
tweets contain more than two hashtags. Therefore, when we request p > p′ hashtags to 
be recommended, where p′ is the actual number of hashtags in the tweet, the precision 
is artificially reduced. This is the case for all methods evaluated.

Even for low values p the precision is still evidently mediocre. For instance, precision 
tops out at ∼25 and ∼15% respectively for p = 1 and p = 2. Several issues contribute 
to this problem. First, tweets are short. Twitter imposes a maximum character limit per 
tweet of 140. An average tweet in our sanitized corpus has somewhere in the range of 
3–10 real terms, not including any hashtags. Second, some tweets only contain hashtags, 
and lack any supporting terms. Third, because of the terms’ sparseness, there exist sup-
porting terms that appear in the test set, but not in the training set. In combination, 
these factors conspire to add noise to the result set.

It should be emphasized, however, that the key objective of our system is to discover 
and recommend new hashtags to the user, which intuitively do not appear in the set of 
“ground truths” being returned.

Stratified retweets

As mentioned previously, Twitter users often retweet to share what they have read with 
their followers. Due to this retweet feature, our training set contains some tweets that 
are very similar to, or even exactly the same as, tweets in the test set. We conducted 
another experiment to explore how the existence of similar tweets affects the ranking 
performance. Recall that Twitter offers two ways of retweeting: automatic retweeting 
and manual retweeting. With automatic retweeting, users do not add any comments to 
the tweet text. Therefore, this kind of retweet adds duplicated tweets to the data set. 
With manual retweeting, users are allowed to add their own comments with a keyword 
RT; therefore, manually added retweets may be very similar tweets or could be dupli-
cates once the retweeting keyword, RT, is removed in pre-processing phase.

To find similar tweets that are possibly retweets of test tweets, we used the result 
scores in the kNN method, which computed Cosine similarity between each tweet in 
the training set and each tweet in the test set. We then set a similarity threshold, r, that 
we use to distinguish likely retweets from non-retweets. For example, when r = 0.9, we 
stratify the training set into: retweets only (0.9) which is the set of training tweets that 
have a Cosine similarity of 0.9 or greater with some tweet in the test set; and no retweets 
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(0.9) which is the set of training tweets that have a Cosine similarity of less than 0.9 will 
all tweets in the test set. To observe the impact of Tweet similarity between the training 
and testing set, we examined the performance with r = 0.75 and r = 0.9 and compared 
these against the unstratified (complete) training data.

Figure 11 shows the result of our HF-IHU ranking method on the stratified corpus. 
The x-axis in the figure represents the user-specified number of returned high-scored 
hashtags. The y-axis shows the percentage of ranked recommendations that match the 
removed hashtags from original tweets. Not surprisingly, HF-IHU performs better when 
the test set contains only retweets from the training data (Fig.  11). It is interesting to 
note, however, that HF-IHU’s performance on the retweet only data is typically within 
7% of the performance on the retweet-less data and the standard unstratified corpus. 
This suggests that the approach is not overly sensitive to retweets and adds further evi-
dence as to our method’s robustness.

These findings are in contrast to the results shown in Fig. 12. Here, we see the result of 
running kNN on the stratified data. Previously, we noted that kNN performed notably 

Fig. 11  Recall depending on the number of recommended tags ranked with HF-IHU

Fig. 12  Recall depending on the number of recommended tags ranked with kNN
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worse than HF-IHU in terms of recall (Fig. 9). We further note that kNN is significantly 
influenced by the presence of retweets. The difference in performance between retweet 
data and retweet-less data is often more than 20 %. Interestingly, with the exception of 
the recall for a single recommendation (the point plotted at x = 1), kNN’s performance 
on retweet only data fails to achieve the performance of HF-IHU on the full corpus.

Cosine similarity scores each training tweet only based on the similarity between 
each training tweet and each test tweet; hence, it simply ranks higher on retweets that 
presumably contain the removed hashtags. The wider gap, therefore, is not surprising. 
Though we expected it to show an even larger gap, the actual result is reasonable because 
it is not guaranteed that similar tweets are actual retweets and that similar tweets always 
contain all of the removed hashtags. Suppose, for example, there is a training tweet 
washington #wsuv and a test tweet washington #DC. Since hashtags are ignored 
when Cosine similarity is calculated, the similarity score for these two test tweets is 1.0. 
This training tweet is then considered as a retweet of the test tweet washington, even 
though it returns #wsuv instead of #DC.

As previously observed for HF-IHU in Fig.  11, kNN also shows that the no-retweet 
line plots are almost overlapped with the All-Dataset line plot, yet slightly less overlap 
than the HF-IHU. We further analyzed the difference simply by finding the percentage 
of matched hashtags due to the presence of retweets. We let MA denote the number of 
hashtag matches when the training set contains all data sets. We also let MNR denote the 
number of hashtag matches when the training set contains no retweets. Then, the per-
centage of hashtag matches due to the presence of retweets, MR, is computed as follows:

Figure  13 shows the result with four line plots: HF-IHU with r = 0.9, HF-IHU with 
r = 0.75, kNN with r = 0.9, and kNN with r = 0.75, where r = 0.9 means that all tweets 
scored greater than 0.9 in Cosine similarity are considered retweets. We can observe 
that kNN is affected by the presence of retweets in the training set, while our HF-IHU 

(15)MR =
MA −MNR

MA
.

Fig. 13  Percentage of matched hashtags due to the presence of retweets depending on the ranking 
method
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is much more resistant. At x = 1, kNN with r = 0.9 shows that approximately 14 % of 
hashtags were reproduced because of retweets, and kNN with r = 0.75 slightly increases 
to 20  % because more tweets are considered retweets. Both kNN line plots consist-
ently decrease as more hashtags are returned. At x = 200, for example, the number 
of matched hashtags increases, but it is much less probable that those hashtags come 
from retweets. On the other hand, both HF-IHU line plots show that the percentage 
of matched hashtags due to retweets is consistently under 5 %, regardless the changing 
number of high-scored hashtags, thus not affected by the presence of retweets in the 
training set.

Case study: recommendations for users

As the last element of our analysis, we want to have some qualitative evidence of the 
effectiveness of the recommendation system. To this end, we retrieved a list of the most 
prolific users (tweeted most frequently) in our data set. From this list, we then selected 
three sample users with clear interests: @XboxSupport, @jewishblogger, and @freepro-
jectinfo. @XboxSupport is a twitter account set up to provide support for XBox users. 
@jewishblogger, according to their profile page, are a “worldwide leader in Jewish and 
Israeli blogs”. @Freeprojectinfo tweets about freelance job postings. These sample users 
were selected because their tweets seem to focus on a relatively narrow range of topics, 
and thus we should be able to manually validate recommendations provided by our sys-
tem with a reasonable amount of confidence.

Given the tweets by each sample user as input, Table 3 lists the top 10 recommended 
hashtags ranked with our proposed method. For each recommended hashtag, we deter-
mined if the tag was clearly related to the topics covered based on the account profile, 
and if so we marked that hashtag as a hit. When a recommended hashtag had no intui-
tive semantic value, we performed a web search to provide a first-order approximation 
on the meaning associated with the tag before determining whether it qualified as a hit.

Table  3 shows that the recommended hashtags ranked with HF-IHU include many 
pertinent hashtags for @jewishblogger and @freeprojectinfo, but only a few relevant 
hashtags for @XboxSupport. #vuze was the only tag that did not have an intuitive 

Table 3  Top 10 recommended hashtags ranked with HF-IHU

@XboxSupport @jewishblogger @freeprojectinfo

#vuze • #israel • #jobs •

#kinect • #jewish • #freelance •

#egypt #obama #webdevelopment •

#jan25 #israeli • #job •

#jobs #telaviv • #egypt

#fb #synagogue • #design •

#sissyboys #gasztro • #jan25

#xbox • #parashat • #fb

#ff #jan25 #seo •

#nowplaying #jerusalem • #wordpress •

Hits 3 8 7
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semantic value. A cursory search indicates that Vuze is a program that allows users to 
stream music and videos through devices, such as XBox consoles, so it was deemed a hit.

Unlike the hashtags recommended by HF-IHU, kNN fails to identify any intuitively 
salient tags for our three sample users (Table  4). Moreover, most of recommended 
hashtags by kNN are in the top 50 popular hashtags. As observed in the evaluation with 
retweets, the performance of kNN method is directly affected by retweets in the data set. 
Since there are more terms that were tweeted with popular hashtags, it is more probable 
that tweets containing popular hashtags score high with Cosine similarity.

Because the purpose of hashtag recommendation is to introduce new hashtags 
to users, it is worth examining the novel hashtags (i.e., those not already used by the 
user). Table 5 shows the result of the HF-IHU method when we remove recommended 
hashtags that were found in any of the user’s prior tweets.

Both @XboxSupport and @freeprojectinfo did not use many hashtags in their tweets, 
resulting in no changes in the correlation rate. Interestingly, although the recommen-
dations for @jewishblogger did change, their overall hit score stayed the same. This 
lends additional evidence to the quality of recommendations provided by our approach. 
Although popular hashtags sometimes include such important topics that every user 
should be aware of, #egypt and #jan25 during the Egypt revolution, for exam-
ple, many of them still consist of frequently used twitter terms such as #ff(short for 

Table 4  Top 10 recommended hashtags ranked with kNN

@XboxSupport @jewishblogger @freeprojectinfo

#codysimpsonu... #codysimpsonu... #codysimpsonu...

#backintheday #cruzazul #cruzazul

#nowplaying #lastfm #lastfm

#fb #nowplaying #nowplaying

#np #news #news

#ff #followmejp #followmejp

#mentionke #zodiacfacts #zodiacfacts

#zodiacfacts #magistream #magistream

#bkstage #sougofollow #sougofollow

#codysimpson #win #win

Hits 0 0 0

Table 5  Top 10 recommended #hashtags that are not used in user’s tweets

@XboxSupport @jewishblogger @freeprojectinfo

#vuze • #gasztro • #jobs •

#kinect • #parashat • #freelance •

#egypt #jerusalem • #webdevelopment •

#jan25 #egypt • #job •

#jobs #holocaust • #egypt

#fb #judaism • #design •

#sissyboys #mentionke #jan25

#xbox • #jew • #fb

#ff #talmud • #seo •

#nowplaying #nowplaying #wordpress •

Hits 3 8 7
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follow-friday), #nowplaying (tagged with songs), and others. Table 6 shows the rec-
ommendations when we exclude any of the top 30 most popular hashtags.

Without hashtags already used by the user and the top 30 popular hashtags in the 
recommended hashtags with our HF-IHU method, the hit rate increased or stayed the 
same for all three users; again adding evidence as to the quality of the recommendations. 
Table  7 shows, on the other hand, that removing popular hashtags from the recom-
mended hashtags by the kNN method simply lists other popular hashtags from the high-
scored hashtags list. Further note that, as before, the hit rate of kNN is 0 for all users.

Performance evaluation

In "Index generation and ranking" section, we described our indexing structures and 
generation algorithm in Map-Reduce. To carry out these algorithms, we installed 
Hadoop version 2.6.2 on a MacOS X machine running on a 3.2  GHz quadcore Intel 
Xeon CPU, 8 GB RAM, and a 2 TB hard disk. Because the corpus data set (3 GB) is not 
prohibitively large, we can achieve good performance by simply run Hadoop in pseudo-
distributed mode. The corpus data were split into 64 MB blocks (Hadoop default), and 
loaded into the Hadoop Distributed Filesystem (HDFS). The number of splits defines the 

Table 6  Top 10 recommended #hashtags not including  top 30 most popular #hashtags 
in the data set

@XboxSupport @jewishblogger @freeprojectinfo

#vuze • #gasztro • #freelance •

#kinect • #parashat • #webdevelopment •

#sissyboys #jerusalem • #job •

#xbox • #holocaust • #design •

#xbox360 • #judaism • #seo •

#taddei #jew • #wordpress •

#job #talmud • #lukewilliamss

#5 #bethaderej • #html •

#coupon #sm #css •

#deals #orangotag #marketing •

Hits 4 8 9

Table 7  Top 10 recommended #hashtags ranked by the KNN method, not including top 30 
most popular #hashtags in the data set

@XboxSupport @jewishblogger @freeprojectinfo

#codysimpsonust. . . #codysimpsonust. . . #codysimpsonust. . .

#backintheday #cruzazul #cruzazul

#zodiacfacts #lastfm #lastfm

#bkstage #zodiacfacts #zodiacfacts

#codysimpson #magistream #magistream

#thatswhatiwant #sougofollow #sougofollow

#bears #ebay #win

#goodwoman #sagittarius #ebay

#packers #codysimpson #sagittarius

#cruzazul #qanow #qanow

Hits 0 0 0
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number of map tasks that are spawned by the runtime. Specifically, the Hadoop mapre-
duce system will create 3GB/64MB = 48 tasks. Each task is scheduled on a CPU core 
when it becomes available.

We compared the Hadoop implementation against a sequential implementation that 
is executed on the same machine. Figure 14 shows the performance comparisons over 
increasing sizes of our corpus.

The speedup of Map-Reduce is not apparent for smaller data sets, which is expected 
due to the overhead costs (initialization and cleanup routines) of invoking Hadoop. 
However, these costs are amortized when the corpus size reaches around 1  GB and 
beyond. In the final experiment, we processed a 3-GB corpus and observe roughly a 
3.2× speedup over sequential. This result is expected, over a 4-node pseudo-distributed 
execution.

Related work
As the number of micro-blog users increases, Twitter has become one of the most pow-
erful medium generating millions of free-form tweets per day, and many researchers and 
industries have conducted extensive analysis of micro-blogs data since Twitter launched 
in 2006. Most of the research mainly focus on data organization and retrieving impor-
tant information. However, there are four bodies of work that overlap significantly with 
our project. We discuss each below.

Keyword extraction

Due to rapidly growing population of social media, majority of today’s businesses are 
participating in social media marketing and Twitter has been one of the most popular 
platforms for marketers [16].

As a potential commercial application, Wu et  al. designed a system for automati-
cally generating personalized annotation tags to label users’ interests based on users’ 
tweets [17]. In their pre-processing stage, they applied the Stanford POS tagger so that 
only nouns and adjectives are selected as valid keyword candidates, and compared 

Fig. 14  Map-Reduce vs. sequential implementation
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TF-IDF ranking and TextRank  [18]. Given a collection of tweets for a user, TF-IDF 
scores each term for its term frequency normalized for length and the IDF weighs down 
the term’s score if it appears in many users’ tweets. In the TextRank method, a collec-
tion of tweets by one user is modeled as a graph where each term is represented by a 
vertex. Both methods were experimented for approximately 11,000 Twitter users, and 
their tagging results were evaluated by three human evaluators judging based on the rel-
evancy between the recommended tags and user’s interests. The experimental results 
show that TextRank slightly outperformed TF-IDF ranking, but both methods resulted 
in high precision (approximately 60 %). Michelson et al. also present a method to dis-
cover user interests by analyzing user tweets [19]. They leverage Wikipedia as a knowl-
edge base to generate a sub-tree of candidate categories associated with the key entities 
in tweets, and those retrieved categories are then ranked based on the frequency and the 
category’s level in the sub-tree. Four sample users, 300 tweets per user in average, were 
selected for the experiments, and they evaluated whether the retrieved topics are rel-
evant to the tweet’s actual topics that are manually discovered by reading through their 
tweets. Although the stated purpose of this study is to generate topic profiles for Twitter 
users, the discovered topics such as SPORT IN ENGLAND and CHICAGO CUBS can be 
used for marketing.

Although their work is similar to ours in a sense that we both try to find user interests, 
Wu et al. extract relevant terms within user’s own tweets and Michelson et al. retrieve 
candidate topics from Wikipedia, whereas we focus on finding topics that ideally are 
new to users and utilizing the real-time information retrieved from the Twitter network.

User classification

Pennacchiotti et  al. present a method to classify Twitter users in various classes such 
as political orientation, ethnicity and business fan detection (e.g. Starbucks fans) ana-
lyzing four general feature classes: user profile, tweeting behavior, tweet contents and 
user network [20]. Many studies proposed various mechanisms to detect spammers in 
social media [21–23]. As example, Magno et al. [21] provide the spammer attributes to 
differentiate spammers and non-spammers and their experiments applying a supervised 
machine learning method results in high classification accuracy and low misclassifica-
tion of non-spammers. Romero et al. developed an algorithm to measure the influence 
and passivity of all the users in the Twitter network, and found that the majority of users 
with high passivity tend to be spammers and robot users [24].

These works focus on analyzing the features for the specific classification of users and 
apply those features to find user classification. Since our focus is on finding the most 
relevant hashtags for tweets, our ranking method does not implement conditions to find 
any specific features in users or tweets.

Category recommendation

Sriram et al. present a method to classify tweets to a predefined set of classes such as 
news, events, opinions, deals, and private messages [4]. Their approach relies on features 
derived from the tweet contents. A news feature, for example, may be absence of emoti-
cons and slang words, and presence of a currency symbol may be a feature for deal. Sim-
ilarly, Esparza et  al.  [5] suggest hashtags in five pre-defined categories (movies, books, 



Page 23 of 26Otsuka et al. Compu Social Networls  (2016) 3:3 

music, apps and games) focusing more on the textual contents of tweets to encourage 
the use of hashtags. They manually created a category-term map, and rank each category 
with TF-IDF where TF denotes the term occurrence in a list of terms for a category and 
IDF denotes the frequency of occurrence of the term in all categories.

The purpose of category recommendation systems is to suggest topics for user tweets 
so that users can group their tweets into specific topics to facilitate easier search. In con-
trast, one of the motivation in our work is to help users discover new topics by sug-
gesting personalized hashtags; therefore, our approach does not limit the number of 
candidate hashtags by specific topics.

Hashtag recommendation

Most related to our work is the class of hashtag recommendation systems. Zangerle et al. 
compare three different hashtag ranking methods in Recommending #-Tags in Twit-
ter [7]. Receiving a user’s tweet, they first find similar tweets in their data set using TF-
IDF and retrieve a set of candidate hashtags that appeared in these most similar tweets. 
They rank the hashtags based on the overall popularity of candidate hashtags, the fre-
quency of candidate hashtags within the most similar tweets, and the similarity score of 
the most similar tweets. The reported results show that the third method performed the 
best in recommending hashtags. Their approach solely relies on tweets’ similarities and 
those hashtags occurred in the most similar tweets are recommended to users, whereas 
our approach more focuses on terms in tweets and the relevance of those terms to can-
didate hashtags.

Kywe et  al. proposed a method that recommends hashtags retrieved from similar 
users and/or similar tweets [15]. They compute the preference weight of a user towards 
a hashtag in the data set using the TF-IDF scheme, and then select the top n users who 
scored high in cosine similarity between a user and another user. The top m similar 
tweets are selected in a similar manner. Their approach basically adds more hashtags 
(used by similar users) to the list of candidate hashtags retrieved by the method pro-
posed by Zangerle et al. However, when target users have never used hashtags before, 
the recommendations only include hashtags from similar tweets. Although user similar-
ity is taken into account in this method, many of recommended hashtags may be from 
similar tweets because majority of tweets do not contain hashtags [15, 25], and also their 
approach still focuses on similarities in terms and used hashtags, while our approach 
does not rely on similarities.

Godin et  al. point out the challenge of ranking hashtags based on the tweet’s simi-
larity and recommending hashtags existing in similar tweets due to the sparseness of 
hashtags [6]. To combat this challenge, their approach focuses on detecting hidden top-
ics for the tweets and then suggests the use of those general topics as hashtags using 
a latent dirichlet allocation (LDA) model to facilitate better search. Although both our 
approach and their approach take into account the data sparseness of micro-blog data, 
the fundamental difference is that their approach limits the suggestions to general top-
ics. Our approach rather attempts to retrieve relevant and emerging hashtags in the data 
set.

Dovgopol et al. propose a recommendation model based on k-Nearest Neighbor and 
Naive Bayes  [26]. They first find three most important words in a target tweet using 
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inverse document frequency (IDF) and use all tweets that contain at least one of those 
three words to speed up the system. Bayes’ Theorem scores hashtags by the probability 
of co-occurring with each term in a tweet, and k-Nearest Neighbor score is the num-
ber of hashtags that occurred in similar tweets. Their comparison result showed that the 
hybrid model performed slightly better than using only one model. Our method, how-
ever, delves into the impact of retweets as they can be identical to a target tweet and 
the hashtags in retweets often receive the highest score. In our method, we removed 
retweets from the training set so that the recommendation results do not get affected by 
retweets.

Lu et  al. propose a model for hashtag recommendation which collects time-sensi-
tive latent topics from tweets by combining the Topics-over-Time (TOT) Model with 
the mixed membership model (MMM)  [27]. They estimate the topic mix of given 
tweets based on words and time stamp, that determine the distribution of words in the 
tweet, and recommend words with high probabilities of occurring in the target tweet 
as hashtags. Their result show that the difference between TOT-MMM and similarity-
based approach with a time-clustering effect (SIM-T) is not significant; however, TOT-
MMM combined with SIM-T yielded the best performance among all approaches 
considered in their study. The main focus of their model is to capture timely topics 
rather than performance improvements in terms of computational speed, while one of 
our goals is the ability to quickly work with a large Twitter data set.

Conclusion and future work
The objective of this paper was to implement an effective hashtag recommendation sys-
tem that automatically suggests a list of personalized hashtags emerging real-time for 
Twitter users.

Inspired by classic information retrieval approaches, we proposed the use of an 
inverted-index data structure to store two frequency maps that are be built prior to per-
forming the hashtag ranking. By leveraging these inverted-indices, the term/hashtag 
look-ups are performed in O(1) time, and thus we achieve faster and more effective 
search of associated hashtags for a term and vice-versa. We showed a Map-Reduce-
based algorithm to scalably build these inverted-indices over large Twitter data sets. We 
proposed a ranking method, Hashtag Frequency-Inverse Hashtag Ubiquity (HF-IHU), 
which is a variation of the TF-IDF weighting scheme to score hashtag relevancy while 
also taking into account data sparseness of Twitter data set.

Our experiments on a large Twitter data set demonstrated that our proposed method 
performed better than other methods that rely only on hashtag popularity and tweet 
similarity. Further experiments clearly showed that our performance is more stable and 
reliable than ranking based on tweets’ content similarity. Finally, we conducted experi-
ments on the top 10 high-scored hashtags. Compared with a ranking method based on 
cosine similarity, the experiments exhibited that our system consistently assigned high 
score on hashtags that interests the user.

While our research has demonstrated promising results on recommending person-
alized hashtags, the scope of the research can be extended in several other directions 
in the future. We discuss the most prominent. There exist several studies on sentiment 
analysis for the domain of microblogs. Text sentiment could potentially be used to detect 
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user’s interests more accurately and make better hashtag recommendations. Some pre-
vious efforts show sentiment analysis on the whole tweet [28, 29]. Zhang et al. propose 
sentiment analysis at the entity level  [30]. We could exploit this analysis so that enti-
ties with positive sentiment have a greater impact on the hashtag recommendations than 
entities with negative or no sentiment. For example, provided “I bought iPad yesterday 
and love it :-)”, hashtags relevant to iPad score high because the entity iPad is positive.

Liu et al. presented a news recommendation system that leverages collaborative filter-
ing and was improved by adding information filtering  [31]. These synergistic methods 
could also be used for hashtag recommendation as in our current work. Tweet content 
analysis in our method could be viewed as information filtering, and we could add col-
laborative filtering based on a users’ subscription (i.e., the users they follow). Research 
on Twitter users’ motivation found that there are many users who are categorized as 
“information seekers: those who post rarely, but follow other users regularly.” [32]. Even 
though collaborative filtering increases computational complexity, it may dramatically 
improve recommendations when an individual user has relatively few posts as is the case 
with information seekers.

Finally, we note that hashtag recommendation may be relevant for more use-cases 
than our work has so far explored. In particular, a recommendation system could be 
used to recommend hashtags for a particular tweet from within a user’s own lexicon. 
This could be done, for example, by limiting recommendations to the set of hashtags that 
a user has previously applied to her tweets.
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