
A hashtag recommendation system
for twitter data streams
Eriko Otsuka1, Scott A. Wallace1 and David Chiu2*

Background
Micro-blogging has become a popular communication and information search tool, and
Twitter is one of the most prevalent micro-blogging platforms today, with over 200 million
active users posting tweets, a message limited to 140 characters [1]. The tweet’s character
limit promotes users to casually update posts, whereas traditional blogging has a tendency
to require more dedicated time to write a new post. Additionally, with increasing owner-
ship of mobile devices, many users are engaged to Twitter activities, resulting in over 400
million tweets sent to the Twitter network per day [2, 3]. The downside to this popularity is
that Twitter users may easily be overwhelmed by the massive volume of data. As a mecha-
nism to combat the issue, Twitter users have organically incorporated the hashtag culture
into their tweets. A hashtag is a word or a phrase without spaces prefixed with the hash
symbol # inserted anywhere in the body of tweets. Trendy topics can be quickly propa-
gated among millions of users through tagging, which creates an instant community with

Abstract 

Background:  Twitter has evolved into a powerful communication and information
sharing tool used by millions of people around the world to post what is happening
now. A hashtag, a keyword prefixed with a hash symbol (#), is a feature in Twitter to
organize tweets and facilitate effective search among a massive volume of data. In this
paper, we propose an automatic hashtag recommendation system that helps users
find new hashtags related to their interests on-demand.

Methods:  For hashtag ranking, we propose the Hashtag Frequency-Inverse Hashtag
Ubiquity (HF-IHU) ranking scheme, which is a variation of the well-known TF-IDF, that
considers hashtag relevancy, as well as data sparseness which is one of the key chal-
lenges in analyzing microblog data. Our system is built on top of Hadoop, a leading
platform for distributed computing, to provide scalable performance using Map-
Reduce. Experiments on a large Twitter data set demonstrate that our method success-
fully yields relevant hashtags for user’s interest and that recommendations are more
stable and reliable than ranking tags based on tweet content similarity.

Results and conclusions:  Our results show that HF-IHU can achieve over 30 %
hashtag recall when asked to identify the top 10 relevant hashtags for a particular
tweet. Furthermore, our method out-performs kNN, k-popularity, and Naïve Bayes by
69, 54, and 17 %, respectively, on recall of the top 200 hashtags.

Keywords:  Twitter, Recommendation

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Otsuka et al. Compu Social Networls (2016) 3:3
DOI 10.1186/s40649-016-0028-9

*Correspondence:
dchiu@pugetsound.edu
2 Department
of Mathematics
and Computer Science,
University of Puget Sound,
Tacoma, USA
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40649-016-0028-9&domain=pdf

Page 2 of 26Otsuka et al. Compu Social Networls (2016) 3:3

similar interests. With the implementation of the hashtag search feature in Twitter, many
individual users and business marketers have started applying tagging to organize posts
into related conversations and facilitate easier search by associated hashtags.

As tagging culture becomes widely adopted, the development of hashtag recommen-
dation systems has gained researchers’ attention. Some recent studies have proposed to
recommend predefined hashtags [4, 5] or general topics hidden in each tweet [6]. Though
these systems are beneficial in encouraging and assisting users to get into the tagging
habit, it may not be sufficient for information seekers who wish to find newly emerging
hashtags. In contrast, recommending the most popular hashtags does reflect timely top-
ics, but it often includes heavily used general hashtags and suggestions are not personal-
ized. Other studies have proposed recommending hashtags based on similar tweets [7].

In this paper, we propose a new method to automatically recommend personalized
trending hashtags based on users’ tweets. Our approach does not limit the number of
candidate hashtags to be examined, but rather provides an arbitrarily long list of ranked
recommendations. Specifically, we make the following contributions:

– – We build an effective hashtag recommendation system using a proposed hashtag rank-
ing method, Hashtag Frequency-Inverse Hashtag Ubiquity (HF-IHU).

–– We provide scalable Map-Reduce algorithms to construct two fundamental structures,
the term-frequency map for hashtags (THFM) and hashtag-frequency map (HFM).
These indices are used to support fast HF-IHU calculations.

–– We conduct a nuanced evaluation of HF-IHU over a large Twitter data set. We com-
pare HF-IHU against several popular schemes, including k-nearest neighbors using
Cosine similarity, k-popularity, and Naïve Bayes. Our results show that HF-IHU
achieves substantially higher recall than the other schemes and is resistant to retweets.

The remainder of this paper is organized as follows. “Background” section provides an
overview of Twitter terminology. “Index generation and ranking” section describes our
distributed Map-Reduce algorithm for building the inverted indices that are central to
our recommendation algorithm. Our hashtag ranking algorithm is also presented in this
section. In “Experimental evaluation” section, we describe our experimental setup and
the performance results of our algorithm. Finally, in “Conclusion and future work” sec-
tion, we conclude the paper with a discussion and ideas for future work.

Background
This section introduces the terminologies that are used to address the services and fea-
tures of Twitter.

Tweet: In Twitter, a tweet is a short message limited to 140 characters posted by a user.
To tweet is also used as a verb for posting such messages. Unless an account is private,
all tweets are public by default.
Follow: In Twitter, subscribing to other users to read their tweets is called a follow.
Users can become a follower of someone without his or her approval unless the user
has set tweet protection or have blocked the user. Unlike friend-ing in other social net-
works, following is not mutual.

Page 3 of 26Otsuka et al. Compu Social Networls (2016) 3:3

User: A user is identified by a Twitter handle, @user. Users can mention other users by
adding another their handle in their tweet. When mentioned, a user is notified by the
Twitter API, and the mentioning tweet is displayed on the user’s feed.
Retweet: When users want to share someone else’s tweet, they can retweet it to their
own followers. There are two ways: automatic retweeting and manual retweeting. Auto-
matic retweeting is Twitter’s built-in feature where a tweet is shared verbatim and
marked as a retweet. Users can manually retweet by copying the body of a tweet they
want to share and pasting it into their tweet box. Since these tweets are not automati-
cally marked as retweets, Twitter instructs users to add the keyword RT and the initial
author’s handle in the tweet content. Sometimes, users will add their own thoughts to a
manual retweet, which changes the content of the original tweet.
Hashtag: A hashtag is a keyword prefixed with # and can be placed anywhere in the
body of the tweet to categorize or mark words/phrases as keywords related to their
tweets. By clicking hashtags in Tweets, users can view all Tweets containing the
hashtag. Extremely popular hashtags often become trends.
Trend: Twitter displays a list of immediately popular keywords and hashtags on the user’s
homepage to help users discover the emerging topics in Twitter, and these keywords are
referred to as trends. Trends are user-locality aware, but are not context-sensitive.

Index generation and ranking
Our hashtag ranking algorithm is inspired by the well-known TF-IDF [8] approach
used in information retrieval. Our algorithm relies on two central data structures that
are compiled from a large number of Tweets. We built these data structures using the
Hadoop distributed computing platform with Map-Reduce [9].

Both data structures are nested maps: the first is a term to hashtag-frequency-map
(THFM); the second is the converse—a hashtag frequency-map (HFM). In the THFM,
the primary keys are terms that have been observed in tweets. The value associated with
each primary key is a map from hashtag to a frequency count indicating how often that
hashtag (the secondary key) has occurred with the term specified by the primary key.
The HFM is an analogous data structure using hashtags as the primary key and term
frequencies as the final value. Figure 1 illustrates the THFM (left) and HFM (right) pro-
vided a data set containing two tweets: “washington state university #wsuv” and “george
washington #president”.

Fig. 1  THFM (left) and HFM (right)

Page 4 of 26Otsuka et al. Compu Social Networls (2016) 3:3

Given that 400 million tweets are posted per day [3], the THFM and HFM need to
be updated frequently so that the recommendation of hashtags reflects the most recent
trends. Moreover, simply processing the tweets over a relatively small window of time
(e.g., weeks) requires substantial computational power. As a result, we have developed
an approach for building the THFM and HFM using the Map-Reduce programming par-
adigm [9] that can scale easily to hundreds of nodes.

Map‑Reduce

The Map-Reduce model consists of three phases: Map, Shuffle and Reduce. Map and
Reduce are user-provided functions, but Shuffle is performed automatically by the Map-
Reduce framework between the Map phase and the Reduce phase. Given a data set, the
master node divides the problem into data-parallel sub-problems and distributes them
to worker nodes. At each worker node, the Map function produces a set of key-value
pairs as intermediate outputs. Shuffle collects the intermediate outputs from the Map
function and groups them by key. Worker nodes are then assigned with the grouped out-
puts and perform the Reduce task to process the final results.

Provided the input “government of the people by the people for the people”, Fig. 2 illus-
trates a simple example of Map-Reduce that computes the term-frequency of the input.
In the Map phase, instead of performing the Map function on the entire input, the input
is divided into sub-problems and distributed to worker nodes. The Map function for this
example outputs key-value pairs using terms as keys and ‘1’ as values. The outputs from
Map are fed into the Shuffle phase as shown in Fig. 3. Shuffle sorts the data by key (terms
in this example) and sends the sorted data to the Reduce phase.

In the Reduce phase, each reduce task runs the user-provided function. The received
input results are combined by key and the final output includes one value per key. In
this example, the Reduce function sums the value, ‘1’, for each key to generate a term
frequency for the sample input. Figure 4 depicts the output from the Reduce phase for
the example.

Map Map Map
Fig. 2  Map-Reduce—Map phase

Page 5 of 26Otsuka et al. Compu Social Networls (2016) 3:3

Frequency map generation algorithm

The Map functions used to generate the THFM and HFM are similar to the Map
function in the above Map-Reduce example. Provided a training data set contain-
ing a list of tweets, the program prints lines in the format of #hashtag:term, where
#hashtag is a hashtag appeared in a tweet and term is a term appeared in a tweet
with the hashtag. For example, when the input tweet contains multiple hashtags such
as washington state university #wsuv #cs, then the result prints six lines:
#wsuv:washington, #wsuv:state, #wsuv:university, #cs:washington,
#cs:state, #cs:university. The Map function to generate the HFM is shown in
Algorithm 1.

Fig. 3  Map-Reduce—Shuffle phase

ecudeRecudeR

Fig. 4  Map-Reduce—Reduce phase

Page 6 of 26Otsuka et al. Compu Social Networls (2016) 3:3

The output of the Map function is sent to the Shuffle phase and gets sorted by hashtag.
Next, the reduce function (Algorithm 2) receives the shuffled key-value pairs and iter-
ates values (terms) per key (hashtag) summing the occurrences of terms for each key.
The output of the reduce function lists keys followed by key-value pairs (term to term-
frequencies). The THFM is generated in an analogous manner.

The generated THFM and HFM are stored in an inverted index. Provided a term t,
THFM[t] retrieves a collection of hashtags that appeared with t in the corpus in O(1)
time. The frequency of each hashtag co-occurring with t is retrieved by THFM[t][h].

Similarly, provided a hashtag h, HFM[h] contains a collection of terms that appeared
with h in the corpus, and HFM[h][t] retrieves the frequency of each term co-occurring
with h.

Ranking hashtags with HF‑IHU

After generating THFM and HFM, the next step is to score hashtags in the data set to
find personalized recommendations for a user. Our proposed scoring method utilizes
the variation of the TF-IDF scheme, we call Hashtag Frequency-Inverse Hashtag Ubiq-
uity (HF-IHU). HF-IHU has two opposing weighting factors: the first is the frequency
with which a hashtag appears with a given term (the hashtag frequency). The second
is the hashtag ubiquity which discounts hashtags that are prevalent in all contexts and
rewards hashtags that are tightly associated with a narrow subset of terms.

Page 7 of 26Otsuka et al. Compu Social Networls (2016) 3:3

Provided a term t and a hashtag h which co-occurred with t, hft,h is expressed as
follows:

where THFM[t][h] denotes the occurrences of h with t in the corpus. The denominator
of hft,h is the sum of all hashtag frequencies associated with t. Thus, hft,h measures the
association between a term and a hashtag. Intuitively, if many users used a hashtag with
a particular term, the hashtag is more likely relevant to the term.

The ihuh is derived from the following formula:

where |CorpusNH | denotes the number of all terms in the corpus with hashtags removed.
The denominator of ihuh is the sum of all term frequencies associated with h. Thus ihuh
decreases as the hashtag h becomes associated with a large fraction of terms in the cor-
pus. The intuition is that these ubiquitous tags are less likely to be personally important
to any given user, thus they must overcome a larger hurdle than other hashtags to be
recommended. This is in contrast to the IDF term in the well-known TF-IDF, where IDF
would have decreased the important of term t, rather than h, contradicting our objective.

Our main hashtag scoring algorithm is shown in Algorithm 3. The algorithm inputs a
tweet, which is a list of terms T = (t1, ..., tn). For each term ti ∈ T , we locate all hashtags
hj that co-occurred with it from our THFM and HFM indices. The hashtag-term fre-
quency hfti ,hj and the inverse hashtag ubiquity metric ihuhj are computed across all
hashtags to calculate the partial score. These partial scores are aggregated for all hashtags
pertaining to ti before being returned.

One advantage of HF-IFU is that our algorithm looks up candidate hashtags using the
terms in a candidate tweet. This means that the number of candidate hashtags grows as

(1)
hft,h =

THFM[t][h]
∑

h′

THFM[t][h′]
,

(2)
ihuh = log

|CorpusNH |
∑

t ′

HFM[h]
,

Page 8 of 26Otsuka et al. Compu Social Networls (2016) 3:3

a function of the number of terms in the tweet (t) and is bound from above by the total
number of hashtags in the corpus (H). Because Twitter limits tweets to 140 characters,
only a small number of words will actually fit in a tweet. Thus, the dominating term will
be, in the worst case, the search over all H hashtags. However, the terms in any given
tweet will typically not be associated with all H hashtags, so in practice, we would expect
the cost to be substantially lower.

It is also worth noting, that HF-IFU avoids a search over all terms in the corpus. The
best approaches for k-Nearest Neighbors, another plausible method for generating
recommendations, are linear in the dimensionality of the data (e.g., [10–12]). In our
domain, tweets are represented with a bag-of-words model which is a vector whose
dimensionality is exactly the size of the entire dictionary of known terms. This is a prob-
lem for kNN search, since we expect that the total number of terms will be substan-
tially larger than H (the number of hashtags). Worse, there is no short-cut in a search
over d-dimensions as there is in our approach when a term is associated with only a few
hashtags. Rather, for kNN search, all searches will exhibit the worst-case linear in d cost.
Thus, a search that examines all H hashtags is much preferable, from a cost perspective,
to one that must examine all d dimensions of the data set.

Experimental evaluation
In this section, we present a nuanced evaluation of our system. We initially describe the
characteristics of the Twitter corpus we obtained and will use for evaluation in "Tweet
corpus" section. Next, in "Experimental setup" section, we explain how we will carry out
the results, as well as the algorithms we compare against. The recall metric to judge the
goodness of the hashtag ranking algorithms is described in "Evaluation metric: precision
and recall" section. Finally, detailed results of our evaluation, including a case study, are
then presented in "Experimental results" section.

Tweet corpus

To evaluate our hashtag recommendation system, we first obtained the Tweets 2011 cor-
pus, consisting of a collection of tweet identifiers, provided by Twitter for the TREC
2011 Microblog Track 2011 [13]. The corpus represents approximately 13 million tweets
sampled between January 23 and February 5, 2011. We used the HTML crawler from an
open-source tool1 and directly downloaded the actual tweets from Twitter including id,
username, timestamp, HTTP response code, and tweet body.

Although the tool was supplied with the repair code to re-fetch missed tweets, the crawler
still returned some null tweets after several attempts to re-fetch them. Most of the missed
tweets are returned with HTTP status code 301, 302 or 404. The description of code 301 is
moved permanently and that of code 302 is moved temporarily, and both denote retweets,
which is not completely handled by the tool. Code 404 means that the requested page was
not found, which denotes deleted tweets. In all, the corpus size was 3 GB.

As illustrated in the figures below, approximately 61% of the provided corpus included
tweet bodies, and 8.3 million tweets were successfully retrieved to be used in the

1  Twitter-corpus-tools, http://www.twittertools.cc.

http://www.twittertools.cc

Page 9 of 26Otsuka et al. Compu Social Networls (2016) 3:3

experiment. Figure 5 depicts the distribution of tweets with returned HTTP statuses in
the downloaded data, and Fig. 6 shows the number of retrieved tweet bodies per HTTP
status code.

Twitter users often mention one or more users in their own tweets with @user to
include the other users in their conversation. Although mentions appear many times in
the data set, we removed these user handles from the data set because they are gen-
erally used to show interest in the mentioned user or the relationship, but not in the
user itself. Additionally, we follow common information retrieval preprocessing steps by:
(1) removing punctuation and non-alphanumeric symbols; (2) removing common stop-
words; (3) transforming all text to lowercase; (4) stemming (we employed the Porter
Stemmer from the open source Python library NLTK [14]). Some non-English languages
that do not use word dividers (e.g., a blank space between words) such as Japanese would
require an extra pre-processing step to identify the parts of speech before performing
the above steps.

We successfully downloaded approximately 8.3 million tweets. Text pre-process-
ing eliminated 1 % of these tweets because some consisted of only stop words or user

Fig. 5  HTTP Response Code

Fig. 6  Downloaded Tweets

Page 10 of 26Otsuka et al. Compu Social Networls (2016) 3:3

mentions. We then found that remaining tweets, approximately 13 %, contained at least
one hashtag. The remaining 87 % contained no hashtags. An overview of the down-
loaded data characterization is listed in Table 1.

Experimental setup

To evaluate the performance of our recommendation method, we set up a data set by
splitting the pre-processed data into a training set (90 %) and a test set (10 %). The train-
ing set contains approximately 8.1 million tweets; roughly 900,000 of these contain at
least one hashtag. The test set contains about 100,000 tweets, all of which include at least
one hashtag. Finally, the THFM and HFM were generated by running our Map-Reduce
applications using the training set as input.

To evaluate HF-IHU, we compared it with four other recommendation methods:
Cosine similarity with k-Nearest Neighbour (kNN), overall popularity, and Naïve Bayes,
and User similarity and Tweet similarity. The descriptions of each tested method are
briefly explained below:

– – kNN with Cosine similarity Provided a tweet in the training set, t1 and another tweet t2
from the test set, this method computes the Cosine similarity:

 For each tweet in the test data, we iterated through all tweets in the training data and
computed the Cosine similarity between them. We found the k-Nearest Neighbors
(k = 200) of the test tweet and used these neighbors to produce a ranked list of rec-
ommended hashtags.

–– Naïve Bayes This method makes recommendations based on the results of a multino-
mial Naive Bayes model that is standard for text documents with large vocabularies
and sparse data. In this model, the hashtag ranking depends on the posterior probabil-
ity of a hashtag Hi given a tweet composed of a set of terms tj each with frequency ftj:

 We use Laplacian smoothing to deal with edge conditions in the conditional prob-
ability tables.

(3)cos(t1, t2) =
t1 · t2

� t1 �� t2 �
.

(4)P(Hi|t1, ..., tn) ∝ P(Hi)
∏

j

P(tj|Hi)
ftj .

Table 1  Overview of data characterization

Characteristic Value

Downloaded tweets 8,320,161

Cleaned tweets 8,234,098

Tweets containing no hashtags 7,182,506

Tweets containing at least one hashtag 1,051,592

One hashtag per tweet 827,630

Two hashtags per tweet 145,718

More than two hashtags per tweet 78,244

Maximum number of hashtags used in a tweet 28

Page 11 of 26Otsuka et al. Compu Social Networls (2016) 3:3

–– Overall popularity This method simply recommends the most frequently occurring
(popular) hashtags in the training set for each test tweet. Table 2 shows the top 30
popular hashtags in our data set. This ranking method is not designed to make per-
sonalized recommendation, and therefore, the recommendations are consistently the
same hashtags for any given tweet.

–– User similarity and Tweet similarity This method is proposed by Kywe et al. [15]. They
score candidate hashtags based on the combination of user similarity and tweet simi-
larity employing TF-IDF as a means of scoring each similarity. A user is represented by
the preference weight for each hashtag in the data. The preference weight wij for user uj
for hashtag hi is defined by the following formula:

where Freqij is the usage frequency of hashtag hi by uj, Maxj is the total number of
hashtags used by uj, Nu is the total number of users, and ni denotes the number of
users who used hi. Similar tweets are retrieved in a similar manner as shown in the
following formula:

where Freqkl is the frequency of word wl in tweet tk, Maxk is the total number of word
used in tk, Nt is the total number of tweets, and nl denotes the number of tweets in
which wl appears. To find the top X similar users, HTofUsers(u), the cosine similarity
between a target user u and another user ui, is measured as follows:

 Similarly, to find the top Y similar tweets, HTofTweets(t), the cosine similarity
between a target tweet t and another tweet tk, is measured as follows.

(5)wij = TFij · IDFi,

(6)=
Freqij

Maxj
· log

(

Nu

ni

)

,

(7)wkl = TFkl · IDFl

(8)=
Freqkl
Maxk

· log

(

Nt

nl

)

,

(9)cos(u,ui) =
u · ui

� u �� ui �
.

Table 2  Top 30 popular #hashtags

No. Hashtag No. Hashtag No. Hashtag

1 #ff 11 #bbb 21 #nicovideo

2 #egypt 12 #news 22 #1

3 #jan25 13 #icantdateyou 23 #partiu

4 #nowplaying 14 #fail 24 #shoutout

5 #np 15 #sougofollow 25 #music

6 #mentionke 16 #sotu 26 #followme

7 #fb 17 #rt 27 #follow

8 #jobs 18 #tcot 28 #win

9 #teamfollowback 19 #famouslies 29 #nw

10 #followmejp 20 #improudtosay 30 #iphone

Page 12 of 26Otsuka et al. Compu Social Networls (2016) 3:3

After finding HTofUsers(u) and HTofTweets(t), the candidate hashtags for the target
tweet t posted by user u are obtained in the following formula:

The recommendations are ranked by hashtag frequency in SuggestedHashtags(u, t).
Since they reported that this method performed the best when X = 5 and Y = 50, we
used the same numbers for these parameters in our experiment.

Evaluation metric: precision and recall

To evaluate the performance of the above methods, we examined each method’s abil-
ity to recall hashtags from our ground-truth tweets in the test set. We view recall as the
most salient metric since our approach is designed to recommend new hashtags, which
by definition may not be present in the original tweet. For completeness, however, we
also include the precision for each method. High precision is obtained if the recom-
mended hashtags are exactly those found in the original tweet; novel recommendations
decrease precision but not recall.

Formally, let T = {T1, . . . ,Tn} denote the set of all tweets in our test set. Each tweet Ti
is composed of a set of terms, Ti = {t1, . . . , tm} and a set of hashtags Hi = {h1, . . . , hk} .
For each method, we input a tweet Ti to produce a set of ranked recommended hashtags
Si = {s1, . . . , sp} for that tweet. We then compare the recommended hashtags Si to the
ground-truth hashtags, Hi, that we removed from the original tweet. A well-functioning
recommendation system will generate Si such that most, or all, of the hashtags from Hi
are highly ranked. To measure this, we define:

The (micro-averaged) precision, P, can be computed as follows,

where n is the total number of tweets in the test set and p is the number of ranked rec-
ommendations provided by the method under examination. Figure 7 shows a simple
example of the precision notations with a sample test set containing two tweets.

The micro-averaged recall, R, can be computed as follows,

Figure 8 shows an example of the recall notations with a sample test set of two tweets.

(10)cos(t, tk) =
t · tk

� t �� tk �
.

(11)SuggestedHashtags(u, t) = HTofUsers(u) ∪HTofTweets(t).

(12)1Hi(sj) =

{

1, if sj ∈ Hi

0, otherwise

(13)P(p) =

∑n

i=0

∑p

j=0
1Hi(sj)

∑n

i=0
|Si|

,

(14)R(p) =

∑n

i=0

∑p

j=0
1Hi(sj)

∑n

i=0
|Hi|

.

Page 13 of 26Otsuka et al. Compu Social Networls (2016) 3:3

Experimental results

Full corpus

We ran all the ranking methods introduced above on the full set of testing data and plot-
ted R (recall) and P (precision) for various values of p (on the horizontal axis). Full recall
results are shown in Fig. 9 and full precision results are shown in Fig. 10. At p = 1, each
method returns only its top recommended hashtag for each tweet in the test set, while at
p = 100 each method returns its top 100 recommended hashtags for that tweet. Note an
ideal method will not be able to obtain 100 % Recall. Rather the maximum recall ceiling
lies at roughly 74 % when p = 1 and increases to approximately 81 % when p ≥ 6. The
maximum-recall ceiling lies below 100 % because not all tags in the test set occur in the
training data. Thus, some tags in the test tweets could never be recommended. Moreo-
ver, since many test tweets have more than one hashtag, for small values of p, some tags
will necessarily go unmatched, even if they would be recalled for larger values of p. The
maximum-recall ceiling reaches an asymptote near p = 6 since very few tweets in the
test set have more than six hashtags to recall.

Figures 9 and 10 show that HF-IHU consistently reproduced the removed-hashtags
over the other methods. The result of overall popularity simply reflects the percentage
of popular hashtags occurring in our test set as expected. One surprise in the results is

Test Set (n = 2)

High-scored hashtags (p = 3)

S0,0

1

High-scored hashtags (p = 3)

S0 = {#wsuv, #pullman, #cougar}

H0 = {#wsuv, #vancouver}
T0 = {washington, state, university}

H1 = {#president}
T1 = {george, washington}

S1 = {#us, #president, #first}
S0,1

0

S0,2

0

S1,0

0

S1,1

1

S1,2

0

P(p)= 2/6

Fig. 7  Example measurement of precision

Test Set (n = 2)

High-scored hashtags (p = 3)

S0,0

1

High-scored hashtags (p = 3)

S0 = {#wsuv, #pullman, #cougar}

H0 = {#wsuv, #vancouver}
T0 = {washington, state, university}

H1 = {#president}
T1 = {george, washington}

S1 = {#us, #president, #first}
S0,1

0

S0,2

0

S1,0

0

S1,1

1

S1,2

0

R(p)= 2/3

Fig. 8  Example measurement of recall

Page 14 of 26Otsuka et al. Compu Social Networls (2016) 3:3

how poorly kNN performs. One of the strengths of the HF-IHU method over kNN is
that it examines the weight of all of the candidate hashtags, whereas kNN only examines
at the term-level and simply returns hashtags that occur with similar tweets. Thus, all
hashtags in those similar tweets are ranked equally. For example, to find hashtags for a
test tweet “george washington” with the HF-IHU method, it first computes the score for
all hashtags that occurred with the term “george” (576 hashtags) and then computes for
hashtags that occurred with “washington” (641 hashtags), accumulates hashtag scores,
and it finally returns the top n high-scored hashtags.

With the kNN method, however, only similar tweets are used to determine recom-
mended tags. Thus, the individual terms have little direct contribution. Rather, it is the
set of terms that will determine the recommendations. For example, in our test tweet
“george washington”, tweets that have exactly these terms and one or more hashtags will
have a perfect similarity score while tweets that differ only in one word will be close
neighbors. On the other hand, tweets that not only have both “george” and “washington”,
but also contain a variety of other terms will not be close neighbors. The result is that

Fig. 9  Recall for the ranking methods

Fig. 10  Precision for the ranking methods

Page 15 of 26Otsuka et al. Compu Social Networls (2016) 3:3

fewer tweets will be taken into account to determine recommendations. This will tend to
bias the statistical relationships in an unpredictable, and based on the observed results,
often undesirable manner.

In Fig. 10, we show the precision results of all methods over p. The higher P(p) values
for small values of p indicate that our method is selecting the hashtags from the ground-
truth set, Hi, to be highly ranked in the result set. As expected, as p increases, the preci-
sion decreases across all methods. Even as the methods reach their asymptotic limits,
HF-IHU consistently outperforms the other methods.

There is a need to explain the low precision results. Defined in Eq. 13, the precision
P(p) is normalized over the number of hashtags returned by our system. As we ask for an
increasing number of recommended hashtags (along the horizontal axis), the denomina-
tor also increases. However, recall from Table 1 that most tweets in our sanitized corpus
only contain few hashtags (~1.34 hashtags per tweet on average). Worse, only 7.4 % of
tweets contain more than two hashtags. Therefore, when we request p > p′ hashtags to
be recommended, where p′ is the actual number of hashtags in the tweet, the precision
is artificially reduced. This is the case for all methods evaluated.

Even for low values p the precision is still evidently mediocre. For instance, precision
tops out at ∼25 and ∼15% respectively for p = 1 and p = 2. Several issues contribute
to this problem. First, tweets are short. Twitter imposes a maximum character limit per
tweet of 140. An average tweet in our sanitized corpus has somewhere in the range of
3–10 real terms, not including any hashtags. Second, some tweets only contain hashtags,
and lack any supporting terms. Third, because of the terms’ sparseness, there exist sup-
porting terms that appear in the test set, but not in the training set. In combination,
these factors conspire to add noise to the result set.

It should be emphasized, however, that the key objective of our system is to discover
and recommend new hashtags to the user, which intuitively do not appear in the set of
“ground truths” being returned.

Stratified retweets

As mentioned previously, Twitter users often retweet to share what they have read with
their followers. Due to this retweet feature, our training set contains some tweets that
are very similar to, or even exactly the same as, tweets in the test set. We conducted
another experiment to explore how the existence of similar tweets affects the ranking
performance. Recall that Twitter offers two ways of retweeting: automatic retweeting
and manual retweeting. With automatic retweeting, users do not add any comments to
the tweet text. Therefore, this kind of retweet adds duplicated tweets to the data set.
With manual retweeting, users are allowed to add their own comments with a keyword
RT; therefore, manually added retweets may be very similar tweets or could be dupli-
cates once the retweeting keyword, RT, is removed in pre-processing phase.

To find similar tweets that are possibly retweets of test tweets, we used the result
scores in the kNN method, which computed Cosine similarity between each tweet in
the training set and each tweet in the test set. We then set a similarity threshold, r, that
we use to distinguish likely retweets from non-retweets. For example, when r = 0.9, we
stratify the training set into: retweets only (0.9) which is the set of training tweets that
have a Cosine similarity of 0.9 or greater with some tweet in the test set; and no retweets

Page 16 of 26Otsuka et al. Compu Social Networls (2016) 3:3

(0.9) which is the set of training tweets that have a Cosine similarity of less than 0.9 will
all tweets in the test set. To observe the impact of Tweet similarity between the training
and testing set, we examined the performance with r = 0.75 and r = 0.9 and compared
these against the unstratified (complete) training data.

Figure 11 shows the result of our HF-IHU ranking method on the stratified corpus.
The x-axis in the figure represents the user-specified number of returned high-scored
hashtags. The y-axis shows the percentage of ranked recommendations that match the
removed hashtags from original tweets. Not surprisingly, HF-IHU performs better when
the test set contains only retweets from the training data (Fig. 11). It is interesting to
note, however, that HF-IHU’s performance on the retweet only data is typically within
7% of the performance on the retweet-less data and the standard unstratified corpus.
This suggests that the approach is not overly sensitive to retweets and adds further evi-
dence as to our method’s robustness.

These findings are in contrast to the results shown in Fig. 12. Here, we see the result of
running kNN on the stratified data. Previously, we noted that kNN performed notably

Fig. 11  Recall depending on the number of recommended tags ranked with HF-IHU

Fig. 12  Recall depending on the number of recommended tags ranked with kNN

Page 17 of 26Otsuka et al. Compu Social Networls (2016) 3:3

worse than HF-IHU in terms of recall (Fig. 9). We further note that kNN is significantly
influenced by the presence of retweets. The difference in performance between retweet
data and retweet-less data is often more than 20 %. Interestingly, with the exception of
the recall for a single recommendation (the point plotted at x = 1), kNN’s performance
on retweet only data fails to achieve the performance of HF-IHU on the full corpus.

Cosine similarity scores each training tweet only based on the similarity between
each training tweet and each test tweet; hence, it simply ranks higher on retweets that
presumably contain the removed hashtags. The wider gap, therefore, is not surprising.
Though we expected it to show an even larger gap, the actual result is reasonable because
it is not guaranteed that similar tweets are actual retweets and that similar tweets always
contain all of the removed hashtags. Suppose, for example, there is a training tweet
washington #wsuv and a test tweet washington #DC. Since hashtags are ignored
when Cosine similarity is calculated, the similarity score for these two test tweets is 1.0.
This training tweet is then considered as a retweet of the test tweet washington, even
though it returns #wsuv instead of #DC.

As previously observed for HF-IHU in Fig. 11, kNN also shows that the no-retweet
line plots are almost overlapped with the All-Dataset line plot, yet slightly less overlap
than the HF-IHU. We further analyzed the difference simply by finding the percentage
of matched hashtags due to the presence of retweets. We let MA denote the number of
hashtag matches when the training set contains all data sets. We also let MNR denote the
number of hashtag matches when the training set contains no retweets. Then, the per-
centage of hashtag matches due to the presence of retweets, MR, is computed as follows:

Figure 13 shows the result with four line plots: HF-IHU with r = 0.9, HF-IHU with
r = 0.75, kNN with r = 0.9, and kNN with r = 0.75, where r = 0.9 means that all tweets
scored greater than 0.9 in Cosine similarity are considered retweets. We can observe
that kNN is affected by the presence of retweets in the training set, while our HF-IHU

(15)MR =
MA −MNR

MA
.

Fig. 13  Percentage of matched hashtags due to the presence of retweets depending on the ranking
method

Page 18 of 26Otsuka et al. Compu Social Networls (2016) 3:3

is much more resistant. At x = 1, kNN with r = 0.9 shows that approximately 14 % of
hashtags were reproduced because of retweets, and kNN with r = 0.75 slightly increases
to 20 % because more tweets are considered retweets. Both kNN line plots consist-
ently decrease as more hashtags are returned. At x = 200, for example, the number
of matched hashtags increases, but it is much less probable that those hashtags come
from retweets. On the other hand, both HF-IHU line plots show that the percentage
of matched hashtags due to retweets is consistently under 5 %, regardless the changing
number of high-scored hashtags, thus not affected by the presence of retweets in the
training set.

Case study: recommendations for users

As the last element of our analysis, we want to have some qualitative evidence of the
effectiveness of the recommendation system. To this end, we retrieved a list of the most
prolific users (tweeted most frequently) in our data set. From this list, we then selected
three sample users with clear interests: @XboxSupport, @jewishblogger, and @freepro-
jectinfo. @XboxSupport is a twitter account set up to provide support for XBox users.
@jewishblogger, according to their profile page, are a “worldwide leader in Jewish and
Israeli blogs”. @Freeprojectinfo tweets about freelance job postings. These sample users
were selected because their tweets seem to focus on a relatively narrow range of topics,
and thus we should be able to manually validate recommendations provided by our sys-
tem with a reasonable amount of confidence.

Given the tweets by each sample user as input, Table 3 lists the top 10 recommended
hashtags ranked with our proposed method. For each recommended hashtag, we deter-
mined if the tag was clearly related to the topics covered based on the account profile,
and if so we marked that hashtag as a hit. When a recommended hashtag had no intui-
tive semantic value, we performed a web search to provide a first-order approximation
on the meaning associated with the tag before determining whether it qualified as a hit.

Table 3 shows that the recommended hashtags ranked with HF-IHU include many
pertinent hashtags for @jewishblogger and @freeprojectinfo, but only a few relevant
hashtags for @XboxSupport. #vuze was the only tag that did not have an intuitive

Table 3  Top 10 recommended hashtags ranked with HF-IHU

@XboxSupport @jewishblogger @freeprojectinfo

#vuze • #israel • #jobs •

#kinect • #jewish • #freelance •

#egypt #obama #webdevelopment •

#jan25 #israeli • #job •

#jobs #telaviv • #egypt

#fb #synagogue • #design •

#sissyboys #gasztro • #jan25

#xbox • #parashat • #fb

#ff #jan25 #seo •

#nowplaying #jerusalem • #wordpress •

Hits 3 8 7

Page 19 of 26Otsuka et al. Compu Social Networls (2016) 3:3

semantic value. A cursory search indicates that Vuze is a program that allows users to
stream music and videos through devices, such as XBox consoles, so it was deemed a hit.

Unlike the hashtags recommended by HF-IHU, kNN fails to identify any intuitively
salient tags for our three sample users (Table 4). Moreover, most of recommended
hashtags by kNN are in the top 50 popular hashtags. As observed in the evaluation with
retweets, the performance of kNN method is directly affected by retweets in the data set.
Since there are more terms that were tweeted with popular hashtags, it is more probable
that tweets containing popular hashtags score high with Cosine similarity.

Because the purpose of hashtag recommendation is to introduce new hashtags
to users, it is worth examining the novel hashtags (i.e., those not already used by the
user). Table 5 shows the result of the HF-IHU method when we remove recommended
hashtags that were found in any of the user’s prior tweets.

Both @XboxSupport and @freeprojectinfo did not use many hashtags in their tweets,
resulting in no changes in the correlation rate. Interestingly, although the recommen-
dations for @jewishblogger did change, their overall hit score stayed the same. This
lends additional evidence to the quality of recommendations provided by our approach.
Although popular hashtags sometimes include such important topics that every user
should be aware of, #egypt and #jan25 during the Egypt revolution, for exam-
ple, many of them still consist of frequently used twitter terms such as #ff(short for

Table 4  Top 10 recommended hashtags ranked with kNN

@XboxSupport @jewishblogger @freeprojectinfo

#codysimpsonu... #codysimpsonu... #codysimpsonu...

#backintheday #cruzazul #cruzazul

#nowplaying #lastfm #lastfm

#fb #nowplaying #nowplaying

#np #news #news

#ff #followmejp #followmejp

#mentionke #zodiacfacts #zodiacfacts

#zodiacfacts #magistream #magistream

#bkstage #sougofollow #sougofollow

#codysimpson #win #win

Hits 0 0 0

Table 5  Top 10 recommended #hashtags that are not used in user’s tweets

@XboxSupport @jewishblogger @freeprojectinfo

#vuze • #gasztro • #jobs •

#kinect • #parashat • #freelance •

#egypt #jerusalem • #webdevelopment •

#jan25 #egypt • #job •

#jobs #holocaust • #egypt

#fb #judaism • #design •

#sissyboys #mentionke #jan25

#xbox • #jew • #fb

#ff #talmud • #seo •

#nowplaying #nowplaying #wordpress •

Hits 3 8 7

Page 20 of 26Otsuka et al. Compu Social Networls (2016) 3:3

follow-friday), #nowplaying (tagged with songs), and others. Table 6 shows the rec-
ommendations when we exclude any of the top 30 most popular hashtags.

Without hashtags already used by the user and the top 30 popular hashtags in the
recommended hashtags with our HF-IHU method, the hit rate increased or stayed the
same for all three users; again adding evidence as to the quality of the recommendations.
Table 7 shows, on the other hand, that removing popular hashtags from the recom-
mended hashtags by the kNN method simply lists other popular hashtags from the high-
scored hashtags list. Further note that, as before, the hit rate of kNN is 0 for all users.

Performance evaluation

In "Index generation and ranking" section, we described our indexing structures and
generation algorithm in Map-Reduce. To carry out these algorithms, we installed
Hadoop version 2.6.2 on a MacOS X machine running on a 3.2 GHz quadcore Intel
Xeon CPU, 8 GB RAM, and a 2 TB hard disk. Because the corpus data set (3 GB) is not
prohibitively large, we can achieve good performance by simply run Hadoop in pseudo-
distributed mode. The corpus data were split into 64 MB blocks (Hadoop default), and
loaded into the Hadoop Distributed Filesystem (HDFS). The number of splits defines the

Table 6  Top 10 recommended #hashtags not including top 30 most popular #hashtags
in the data set

@XboxSupport @jewishblogger @freeprojectinfo

#vuze • #gasztro • #freelance •

#kinect • #parashat • #webdevelopment •

#sissyboys #jerusalem • #job •

#xbox • #holocaust • #design •

#xbox360 • #judaism • #seo •

#taddei #jew • #wordpress •

#job #talmud • #lukewilliamss

#5 #bethaderej • #html •

#coupon #sm #css •

#deals #orangotag #marketing •

Hits 4 8 9

Table 7  Top 10 recommended #hashtags ranked by the KNN method, not including top 30
most popular #hashtags in the data set

@XboxSupport @jewishblogger @freeprojectinfo

#codysimpsonust. . . #codysimpsonust. . . #codysimpsonust. . .

#backintheday #cruzazul #cruzazul

#zodiacfacts #lastfm #lastfm

#bkstage #zodiacfacts #zodiacfacts

#codysimpson #magistream #magistream

#thatswhatiwant #sougofollow #sougofollow

#bears #ebay #win

#goodwoman #sagittarius #ebay

#packers #codysimpson #sagittarius

#cruzazul #qanow #qanow

Hits 0 0 0

Page 21 of 26Otsuka et al. Compu Social Networls (2016) 3:3

number of map tasks that are spawned by the runtime. Specifically, the Hadoop mapre-
duce system will create 3GB/64MB = 48 tasks. Each task is scheduled on a CPU core
when it becomes available.

We compared the Hadoop implementation against a sequential implementation that
is executed on the same machine. Figure 14 shows the performance comparisons over
increasing sizes of our corpus.

The speedup of Map-Reduce is not apparent for smaller data sets, which is expected
due to the overhead costs (initialization and cleanup routines) of invoking Hadoop.
However, these costs are amortized when the corpus size reaches around 1 GB and
beyond. In the final experiment, we processed a 3-GB corpus and observe roughly a
3.2× speedup over sequential. This result is expected, over a 4-node pseudo-distributed
execution.

Related work
As the number of micro-blog users increases, Twitter has become one of the most pow-
erful medium generating millions of free-form tweets per day, and many researchers and
industries have conducted extensive analysis of micro-blogs data since Twitter launched
in 2006. Most of the research mainly focus on data organization and retrieving impor-
tant information. However, there are four bodies of work that overlap significantly with
our project. We discuss each below.

Keyword extraction

Due to rapidly growing population of social media, majority of today’s businesses are
participating in social media marketing and Twitter has been one of the most popular
platforms for marketers [16].

As a potential commercial application, Wu et al. designed a system for automati-
cally generating personalized annotation tags to label users’ interests based on users’
tweets [17]. In their pre-processing stage, they applied the Stanford POS tagger so that
only nouns and adjectives are selected as valid keyword candidates, and compared

Fig. 14  Map-Reduce vs. sequential implementation

Page 22 of 26Otsuka et al. Compu Social Networls (2016) 3:3

TF-IDF ranking and TextRank [18]. Given a collection of tweets for a user, TF-IDF
scores each term for its term frequency normalized for length and the IDF weighs down
the term’s score if it appears in many users’ tweets. In the TextRank method, a collec-
tion of tweets by one user is modeled as a graph where each term is represented by a
vertex. Both methods were experimented for approximately 11,000 Twitter users, and
their tagging results were evaluated by three human evaluators judging based on the rel-
evancy between the recommended tags and user’s interests. The experimental results
show that TextRank slightly outperformed TF-IDF ranking, but both methods resulted
in high precision (approximately 60 %). Michelson et al. also present a method to dis-
cover user interests by analyzing user tweets [19]. They leverage Wikipedia as a knowl-
edge base to generate a sub-tree of candidate categories associated with the key entities
in tweets, and those retrieved categories are then ranked based on the frequency and the
category’s level in the sub-tree. Four sample users, 300 tweets per user in average, were
selected for the experiments, and they evaluated whether the retrieved topics are rel-
evant to the tweet’s actual topics that are manually discovered by reading through their
tweets. Although the stated purpose of this study is to generate topic profiles for Twitter
users, the discovered topics such as SPORT IN ENGLAND and CHICAGO CUBS can be
used for marketing.

Although their work is similar to ours in a sense that we both try to find user interests,
Wu et al. extract relevant terms within user’s own tweets and Michelson et al. retrieve
candidate topics from Wikipedia, whereas we focus on finding topics that ideally are
new to users and utilizing the real-time information retrieved from the Twitter network.

User classification

Pennacchiotti et al. present a method to classify Twitter users in various classes such
as political orientation, ethnicity and business fan detection (e.g. Starbucks fans) ana-
lyzing four general feature classes: user profile, tweeting behavior, tweet contents and
user network [20]. Many studies proposed various mechanisms to detect spammers in
social media [21–23]. As example, Magno et al. [21] provide the spammer attributes to
differentiate spammers and non-spammers and their experiments applying a supervised
machine learning method results in high classification accuracy and low misclassifica-
tion of non-spammers. Romero et al. developed an algorithm to measure the influence
and passivity of all the users in the Twitter network, and found that the majority of users
with high passivity tend to be spammers and robot users [24].

These works focus on analyzing the features for the specific classification of users and
apply those features to find user classification. Since our focus is on finding the most
relevant hashtags for tweets, our ranking method does not implement conditions to find
any specific features in users or tweets.

Category recommendation

Sriram et al. present a method to classify tweets to a predefined set of classes such as
news, events, opinions, deals, and private messages [4]. Their approach relies on features
derived from the tweet contents. A news feature, for example, may be absence of emoti-
cons and slang words, and presence of a currency symbol may be a feature for deal. Sim-
ilarly, Esparza et al. [5] suggest hashtags in five pre-defined categories (movies, books,

Page 23 of 26Otsuka et al. Compu Social Networls (2016) 3:3

music, apps and games) focusing more on the textual contents of tweets to encourage
the use of hashtags. They manually created a category-term map, and rank each category
with TF-IDF where TF denotes the term occurrence in a list of terms for a category and
IDF denotes the frequency of occurrence of the term in all categories.

The purpose of category recommendation systems is to suggest topics for user tweets
so that users can group their tweets into specific topics to facilitate easier search. In con-
trast, one of the motivation in our work is to help users discover new topics by sug-
gesting personalized hashtags; therefore, our approach does not limit the number of
candidate hashtags by specific topics.

Hashtag recommendation

Most related to our work is the class of hashtag recommendation systems. Zangerle et al.
compare three different hashtag ranking methods in Recommending #-Tags in Twit-
ter [7]. Receiving a user’s tweet, they first find similar tweets in their data set using TF-
IDF and retrieve a set of candidate hashtags that appeared in these most similar tweets.
They rank the hashtags based on the overall popularity of candidate hashtags, the fre-
quency of candidate hashtags within the most similar tweets, and the similarity score of
the most similar tweets. The reported results show that the third method performed the
best in recommending hashtags. Their approach solely relies on tweets’ similarities and
those hashtags occurred in the most similar tweets are recommended to users, whereas
our approach more focuses on terms in tweets and the relevance of those terms to can-
didate hashtags.

Kywe et al. proposed a method that recommends hashtags retrieved from similar
users and/or similar tweets [15]. They compute the preference weight of a user towards
a hashtag in the data set using the TF-IDF scheme, and then select the top n users who
scored high in cosine similarity between a user and another user. The top m similar
tweets are selected in a similar manner. Their approach basically adds more hashtags
(used by similar users) to the list of candidate hashtags retrieved by the method pro-
posed by Zangerle et al. However, when target users have never used hashtags before,
the recommendations only include hashtags from similar tweets. Although user similar-
ity is taken into account in this method, many of recommended hashtags may be from
similar tweets because majority of tweets do not contain hashtags [15, 25], and also their
approach still focuses on similarities in terms and used hashtags, while our approach
does not rely on similarities.

Godin et al. point out the challenge of ranking hashtags based on the tweet’s simi-
larity and recommending hashtags existing in similar tweets due to the sparseness of
hashtags [6]. To combat this challenge, their approach focuses on detecting hidden top-
ics for the tweets and then suggests the use of those general topics as hashtags using
a latent dirichlet allocation (LDA) model to facilitate better search. Although both our
approach and their approach take into account the data sparseness of micro-blog data,
the fundamental difference is that their approach limits the suggestions to general top-
ics. Our approach rather attempts to retrieve relevant and emerging hashtags in the data
set.

Dovgopol et al. propose a recommendation model based on k-Nearest Neighbor and
Naive Bayes [26]. They first find three most important words in a target tweet using

Page 24 of 26Otsuka et al. Compu Social Networls (2016) 3:3

inverse document frequency (IDF) and use all tweets that contain at least one of those
three words to speed up the system. Bayes’ Theorem scores hashtags by the probability
of co-occurring with each term in a tweet, and k-Nearest Neighbor score is the num-
ber of hashtags that occurred in similar tweets. Their comparison result showed that the
hybrid model performed slightly better than using only one model. Our method, how-
ever, delves into the impact of retweets as they can be identical to a target tweet and
the hashtags in retweets often receive the highest score. In our method, we removed
retweets from the training set so that the recommendation results do not get affected by
retweets.

Lu et al. propose a model for hashtag recommendation which collects time-sensi-
tive latent topics from tweets by combining the Topics-over-Time (TOT) Model with
the mixed membership model (MMM) [27]. They estimate the topic mix of given
tweets based on words and time stamp, that determine the distribution of words in the
tweet, and recommend words with high probabilities of occurring in the target tweet
as hashtags. Their result show that the difference between TOT-MMM and similarity-
based approach with a time-clustering effect (SIM-T) is not significant; however, TOT-
MMM combined with SIM-T yielded the best performance among all approaches
considered in their study. The main focus of their model is to capture timely topics
rather than performance improvements in terms of computational speed, while one of
our goals is the ability to quickly work with a large Twitter data set.

Conclusion and future work
The objective of this paper was to implement an effective hashtag recommendation sys-
tem that automatically suggests a list of personalized hashtags emerging real-time for
Twitter users.

Inspired by classic information retrieval approaches, we proposed the use of an
inverted-index data structure to store two frequency maps that are be built prior to per-
forming the hashtag ranking. By leveraging these inverted-indices, the term/hashtag
look-ups are performed in O(1) time, and thus we achieve faster and more effective
search of associated hashtags for a term and vice-versa. We showed a Map-Reduce-
based algorithm to scalably build these inverted-indices over large Twitter data sets. We
proposed a ranking method, Hashtag Frequency-Inverse Hashtag Ubiquity (HF-IHU),
which is a variation of the TF-IDF weighting scheme to score hashtag relevancy while
also taking into account data sparseness of Twitter data set.

Our experiments on a large Twitter data set demonstrated that our proposed method
performed better than other methods that rely only on hashtag popularity and tweet
similarity. Further experiments clearly showed that our performance is more stable and
reliable than ranking based on tweets’ content similarity. Finally, we conducted experi-
ments on the top 10 high-scored hashtags. Compared with a ranking method based on
cosine similarity, the experiments exhibited that our system consistently assigned high
score on hashtags that interests the user.

While our research has demonstrated promising results on recommending person-
alized hashtags, the scope of the research can be extended in several other directions
in the future. We discuss the most prominent. There exist several studies on sentiment
analysis for the domain of microblogs. Text sentiment could potentially be used to detect

Page 25 of 26Otsuka et al. Compu Social Networls (2016) 3:3

user’s interests more accurately and make better hashtag recommendations. Some pre-
vious efforts show sentiment analysis on the whole tweet [28, 29]. Zhang et al. propose
sentiment analysis at the entity level [30]. We could exploit this analysis so that enti-
ties with positive sentiment have a greater impact on the hashtag recommendations than
entities with negative or no sentiment. For example, provided “I bought iPad yesterday
and love it :-)”, hashtags relevant to iPad score high because the entity iPad is positive.

Liu et al. presented a news recommendation system that leverages collaborative filter-
ing and was improved by adding information filtering [31]. These synergistic methods
could also be used for hashtag recommendation as in our current work. Tweet content
analysis in our method could be viewed as information filtering, and we could add col-
laborative filtering based on a users’ subscription (i.e., the users they follow). Research
on Twitter users’ motivation found that there are many users who are categorized as
“information seekers: those who post rarely, but follow other users regularly.” [32]. Even
though collaborative filtering increases computational complexity, it may dramatically
improve recommendations when an individual user has relatively few posts as is the case
with information seekers.

Finally, we note that hashtag recommendation may be relevant for more use-cases
than our work has so far explored. In particular, a recommendation system could be
used to recommend hashtags for a particular tweet from within a user’s own lexicon.
This could be done, for example, by limiting recommendations to the set of hashtags that
a user has previously applied to her tweets.

Authors’ contributions
EO carried out the implementation of the system over Hadoop, e.g., HF-IHU scheme, inverted-lists, and evaluation suite.
SW and DC designed the experimental plan, added interpretation of results, research mentoring, and writing/editing
significant portions of this paper. All authors have given approval for the publication of this paper. All authors read and
approved the final manuscript.

Author details
1 School of Engineering and Computer Science, Washington State University, Vancouver, USA. 2 Department of Math-
ematics and Computer Science, University of Puget Sound, Tacoma, USA.

Acknowledgements
We would like to thank TREC 2011 Microblog Track 2011 for providing the data set used for evaluation. Additionally, the
authors would like to thank the reviewers for their insightful comments and for the suggestion of additional uses (in
particular hashtag recommendations from with a user’s own lexicon) for our work.

Competing interests
The authors declare that they have no competing interests.

Received: 7 May 2015 Accepted: 12 May 2016

References
	1.	 Schreiner T. New compete study: primary mobile users on twitter. 2011. https://www.blog.twitter.com/2013/

new-compete-study-primary-mobile-users-on-twitter.
	2.	 Heggestuen J. One in every 5 people in the world own a smartphone, one in every 17 own a tablet. 2013.
	3.	 Tsukayama H. Twitter turns 7: Users send over 400 million tweets per day. 2013.
	4.	 Sriram B, Fuhry D, Demir E, Ferhatosmanoglu H, Demirbas M. Short text classification in twitter to improve informa-

tion filtering. In SIGIR’10. New York: ACM. 2010.
	5.	 Garcia Esparza S, O’Mahony MP, Smyth B. Towards tagging and categorization for micro-blogs. 2010.
	6.	 Godin F, Slavkovikj V, De Neve W, Schrauwen B, Van de Walle R. Using topic models for twitter hashtag recommenda-

tion. In Proceedings of the 22nd international conference on World Wide Web Companion, WWW ’13 Companion;
2013. p. 593–596.

	7.	 Zangerle E, Gassler W, Specht G. Recommending#-tags in twitter. In Proceedings of the Workshop on Semantic
Adaptive Social Web (SASWeb 2011). CEUR Workshop Proceedings, vol. 730; 2011. p. 67–78.

https://www.blog.twitter.com/2013/new-compete-study-primary-mobile-users-on-twitter
https://www.blog.twitter.com/2013/new-compete-study-primary-mobile-users-on-twitter

Page 26 of 26Otsuka et al. Compu Social Networls (2016) 3:3

	8.	 Jones KS. A statistical interpretation of term specificity and its application in retrieval. J Doc. 1972;28(1):11.
	9.	 Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. In Proceedings of the 6th conference

on symposium on opearting systems design and implementation, vol 6, OSDI’04, Berkeley: USENIX Association,
2004. p. 10.

	10.	 Weber R, Schek HJ, Blott S. A quantitative analysis and performance study for similarity-search methods in high-
dimensional spaces. In Proceedings of the 24rd international conference on very large data bases, VLDB ’98. San
Francisco: Morgan Kaufmann Publishers Inc.; 1998. p. 194–205.

	11.	 Gionis A, Indyk P, Motwani R. Similarity search in high dimensions via hashing. In Proceedings of the 25th inter-
national conference on very large data bases, VLDB ’99. San Francisco: Morgan Kaufmann Publishers Inc.; 1999. p.
518–529.

	12.	 Muja M, Lowe DG. Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans Pattern Anal Mach
Intell. 2014;36:2227–40.

	13.	 NIST. Tweets 2011 twitter collection. 2011. http://www.trec.nist.gov/data/tweets.
	14.	 Bird S, Klein E, Loper E, Natural language processing with python. 1st ed. Sebastopol: O’Reilly Media Inc.; 2009.
	15.	 Kywe SM, Hoang TA, Lim EP, Zhu F. On recommending hashtags in twitter networks. In Social Informatics. Berlin:

Springer; 2012. p. 337–50.
	16.	 Stelzner MA. Social media marketing industry report. Social Media Examiner; 2012.
	17.	 Wu W, Zhang B, Ostendorf M. Automatic generation of personalized annotation tags for twitter users. In Human

language technologies: the 2010 annual conference of the North American chapter of the Association for Compu-
tational Linguistics, HLT ’10. Stroudsburg: Association for Computational Linguistics; 2010. p. 689–92.

	18.	 Mihalcea R, Tarau P. Textrank: Bringing order into texts. In: Lin D, Wu D, editors. Proceedings of EMNLP 2004. Barce-
lona: Association for Computational Linguistics; 2004. p. 404–11.

	19.	 Michelson M, Macskassy SA. Discovering users’ topics of interest on twitter: a first look.
	20.	 Pennacchiotti M, Popescu AM. A machine learning approach to twitter user classification. In: Adamic LA, Baeza-Yates

RA, Counts S, editors. ICWSM. Menlo Park: The AAAI Press; 2011.
	21.	 Benevenuto F, Magno G, Rodrigues T, Almeida V. Detecting spammers on twitter. In Collaboration, electronic mes-

saging, anti-abuse and spam conference (CEAS); 2010.
	22.	 McCord M, Chuah M. Spam detection on twitter using traditional classifiers. In Proceedings of the 8th international

conference on autonomic and trusted computing, ATC’11. Berlin: Springer; 2011. p. 175–86.
	23.	 Yardi S, Romero DM, Schoenebeck G, Boyd D. Detecting spam in a twitter network. First Monday. 2010;15(1).
	24.	 Romero DM, Galuba W, Asur S, Huberman BA. Influence and passivity in social media. In Machine learning and

knowledge discovery in databases. Berlin: Springer; 2011. p. 18–33.
	25.	 Efron M. Hashtag retrieval in a microblogging environment. In Proceedings of the 33rd international ACM SIGIR

conference on research and development in information retrieval, SIGIR ’10. New York: ACM; 2010. p. 787–8.
	26.	 Dovgopol R, Nohelty M. Twitter hash tag recommendation. CoRR; 2015. vol. abs/1502.00094.
	27.	 Lu H, Lee C. A twitter hashtag recommendation model that accommodates for temporal clustering effects. IEEE

Intell Syst. 2015;30(3):18–25.
	28.	 Go A, Huang L, Bhayani R. Twitter sentiment analysis. Entropy, vol. 17; 2009.
	29.	 Wasserman T. Twitter sentiment to light up london’s ferris wheel; 2012.
	30.	 Mudinas A, Zhang D, Levene M. Combining lexicon and learning based approaches for concept-level sentiment

analysis. In Proceedings of the first international workshop on issues of sentiment discovery and opinion mining,
WISDOM ’12. New York: ACM; 2012. p. 5:1–5:8.

	31.	 Liu J, Dolan P, Pedersen ER. Personalized news recommendation based on click behavior. In Proceedings of the 15th
international conference on intelligent user interfaces, IUI ’10. New York: ACM; 2010. p. 31–40.

	32.	 Java A, Song X, Finin T, Tseng B. Why We Twitter: Understanding Microblogging Usage and Communities. In Proced-
ings of the Joint 9th WEBKDD and 1st SNA-KDD Workshop 2007. Berlin: Springer; 2007. p. 56–65.

http://www.trec.nist.gov/data/tweets

	A hashtag recommendation system for twitter data streams
	Abstract
	Background:
	Methods:
	Results and conclusions:

	Background
	Background
	Index generation and ranking
	Map-Reduce
	Frequency map generation algorithm
	Ranking hashtags with HF-IHU

	Experimental evaluation
	Tweet corpus
	Experimental setup
	Evaluation metric: precision and recall
	Experimental results
	Full corpus
	Stratified retweets
	Case study: recommendations for users

	Performance evaluation

	Related work
	Keyword extraction
	User classification
	Category recommendation
	Hashtag recommendation

	Conclusion and future work
	Authors’ contributions
	References

