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Background
In the last years, social and economic phenomena have attracted the interest of scien-
tists belonging to hard sciences, as mathematics, physics and computer science. As result, 
the interdisciplinary fields of social dynamics  [1, 2] and econophysics  [3] have rapidly 
emerged. For instance, several analytical and computational approaches have been devel-
oped for studying behaviors such as homophily [4], conformity [5–8], and rationality [9, 
10]. Furthermore, many social and economic phenomena can be studied in the context of 
Evolutionary Game Theory [11–13], which represents the attempt of describing the evolu-
tion of populations by Game Theory using famous models like the Prisoner’s Dilemma [14, 
15] (PD hereinafter). Since the PD allows to analyze the phenomenon of cooperation [16–
18], it is possible to study the evolutionary dynamics among agents whose interactions are 
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based on this game. In doing so, we can evaluate if, and under which conditions, coop-
eration emerges. It is worth to highlight that simple games like the PD, implemented 
considering different social behaviors, contexts (see [19]), or topologies (e.g., [20–24]) to 
implement agent’s interactions, as sketched before, allow to investigate a wide variety of 
topics such as criminality [25], biological systems [26], imitation phenomena [27], and fur-
ther social psychology aspects such as conformity [28, 29]. Here, we consider an important 
social character, i.e., the competitiveness, that strongly affects dynamics in animal herds 
and among individuals  [4]. In particular, in this study, we aim to investigate if there is a 
relation between competitiveness and cooperation. To this end, we implement a popula-
tion whose agents, provided with a parameter that represents their degree of competitive-
ness (see [30]), play the PD. The relevance of this work lays in the fact that, both in herds 
and in human communities, many contexts are defined as competitive, e.g., stock mar-
kets, athletic challenges, and job markets. Numerical simulations, of the proposed model, 
allowed to analyze parameters as the average out-degree over time and to define the TS-
diagram; the latter constitutes a relevant tool to assess if, and in which extent, coopera-
tion emerges among agents. As result, we found that competitiveness strongly affects these 
dynamics and, in particular, it increases the cooperation among agents. The remainder of 
the paper is organized as follows: “Model” introduces the model for studying the PD in 
continuous spaces and in discrete spaces. “Results” shows results of numerical simulations 
on varying the initial conditions. Eventually, "Discussion and conclusion” ends the paper.

Model
In the proposed model [30], we study a population, embedded in a bidimensional continu-
ous space and in a discrete space, whose agents play the PD. The continuous space is repre-
sented by a square of side L = 1, where agents are equally spread inside it. Instead, the discrete 
space is represented by a directed network of agents. In so doing, agents play the PD with their 
neighbors: (a) in the continuous space, neighbors are computed by an Euclidean distance-
based rule [31], whereas (b) in the discrete space, each agent has as neighbors those connected 
by an arrow (starting from the considered agent). It is worth to emphasize that, since we are 
dealing we a directed network, for each pair of agents—say A and B, there is a reciprocal inter-
action only if there are two arrows: one from A to B, and one from B to A. Therefore, if there is 
only one arrow between A and B, e.g., from A to B, the B agent is a neighbor of A, but A is not 
considered a neighbor of B. These relations appear clear considering that the related adjacency 
matrix, i.e., the matrix containing all the information about the connections, is not symmetric 
as for undirected networks (e.g., friendship networks and collaborator networks [7]). In prin-
ciple, the PD is a very simple game where agents may behave as cooperators or as defectors, 
then in accordance with a payoff matrix, they increase or decrease their payoff when they face 
each other. In particular, depending on their behavior and on that of their opponents, agents 
compute their gain at each interaction. Moreover, it is worth to note that, in this context, to 
behave as a cooperator means to adopt a cooperation strategy and, in the same way, to behave 
as a defector means to play with a defection strategy. The way agents update their payoff, in 
accordance with their behavior (i.e., strategy), is described in the following payoff matrix:

(1)C
D

C D
(

1 s
T 0
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The set of strategies is � = {C ,D}, where C stands for ‘Cooperator’ and D for ‘Defector’. In 
the matrix 1, T represents the Temptation, i.e., the payoff that an agent gains if it defects 
while its opponent cooperates, while S the Sucker’s payoff, i.e., the gain achieved by a 
cooperator while the opponent defects. In the PD, game values of T and S are in the fol-
lowing range: 1 ≤ T ≤ 2 and −1 ≤ S ≤ 0. As discussed before, the TS-plane is a relevant 
tool while studying the system because, as we can see in matrix 1, the PD can be played 
with different values of S and T, having different meanings. For instance, a low value of T 
entails defectors have a small increase of their payoff when they play against cooperators, 
whereas a high value of S entails small losses for cooperators which play against defectors. 
Therefore, it is interesting to investigate whether a cooperative behavior emerges, in the 
agent population, on varying the values of described parameters (i.e., T and S). In gen-
eral, the evolution of a population can be simulated in two different ways: synchronous 
dynamics or asynchronous dynamics. The former entails that at each time step, all agents 
interact (i.e., they play the PD with their neighbors). Instead, the latter entails that at each 
time step only one agent is considered, i.e., it computes its neighbors and faces them play-
ing the PD. Remarkably, in this work, simulations have been implemented by the asyn-
chronous dynamics. To summarize, the main steps of the proposed model are:

1.	 A randomly chosen agent, say the jth agent, computes the set of its neighbors in 
accordance with the interaction radius r (or with the network structure in the discrete 
space);

2.	 The jth agent faces its neighbors (note that each single challenge involves only two 
agents at time);

3.	 All agents, playing at this step (i.e., the jth agents and its neighbors), compute their 
new payoff;

4.	 The jth agent updates its strategy according to a revision rule.

In doing so, each agent involved in the game obtains a payoff in accordance with its 
strategy (i.e., cooperation or defection), considering the payoff matrix 1. Now, let σj(t) 
be a vector giving the strategy profile of the jth agent at time t with C = (1, 0) and 
D = (0, 1), and let M be the payoff matrix discussed above. The payoff collected by the 
jth agent, at time t, can be computed as

In the proposed model, we adopted the strategy revision rule called ‘imitation of the 
best’: the jth agent compares its payoff (Pj) with those of its neighbors, and it adopts 
the strategy of the neighbor having the highest payoff if it is greater than Pj . As a conse-
quence, agents can vary their strategy several times during the evolution of the system. 
Since some parameters of the proposed model depend on the considered domain (i.e., 
continuous and discrete), we illustrate both cases with more detail.

Continuous space

As shown in [32], using low values of T and high values of S, cooperation among agents 
emerges only under particular conditions, i.e., when agents randomly move over time. 

(2)
�j(t) =

∑

i∈Nj

σj(t)Mσ⊤
i (t)

.
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It is worth to highlight that in [32], all agents have the same radius to compute the set 
of their neighbors. Furthermore, this radius depends on the average number of oppo-
nents agents face. Here, we consider the same geometrical framework (i.e., that defined 
in [32]) to implement the proposed model on continuous spaces, with two main differ-
ences: (1) agents are fixed (i.e., they cannot move) and (2) agents can vary their radius. 
Notably, agents have an interaction radius whose length depends on gained payoff: as 
their payoff increases/decreases their radius increases/decreases. Hence, agents with 
high payoff become more competitive and, as result, they face a higher number of oppo-
nents than agents with a small payoff. At time t = 0, all agents have the same radius 
computed according to the average number of opponents they can face (if selected). 
In particular, the radius r(t = 0) is computed as r(0) =

√

¯k(0)/(πN ). Then, consid-
ering that each radius varies in accordance with agent’s payoff, and that agents face a 
number of opponents in the range [1,N − 1], the radius is computed as r = αr0, where 
(

√

1/k̄) ≤ α ≤
√
(N/k̄). Thus, at t = 0, the value of α is α0 = 1. In general, after n time 

steps, each agent plays an average number of times equal to n̄ = n/N . Since best agents 
(i.e., those with high payoff) should get the maximum radius in n̄ steps, every time agents 
play, their value of α increases to δα = (αmax − α0)/n̄. Hence, the radius is modified to 
±δr, where δr = r0δα, depending on which the considered agent obtains a positive or a 
negative payoff.

Discrete space

The discrete space is implemented by a directed network, i.e., a network whose connec-
tions can be represented by arrows. In the proposed model, an arrow from one agent to 
another one represents the challenger agent (i.e., the one that faces someone else) and 
the faced agent (i.e., agent identified as neighbor of the challenger one). In directed net-
works, the definition of neighbors is not immediate as for undirected networks, where 
connections can be represented by simple lines. Notably, arrows represent links (or 
edges) and their direction represents the meaning of the relation. For instance, an arrow 
starting from node A, and ending to node B, codifies a relation from A to B, and not vice 
versa. Thus, neighbors of the jth node are those nodes connected to it by arrows start-
ing from the jth node itself. In doing so, an arrow starts from the challenger and it ends 
on the faced agent. To analyze the structure of these networks, using the degree distri-
bution, we have to consider both the “in-degree” distribution and the “out-degree” dis-
tribution. The former represents the distribution of links ending in nodes, whereas the 
latter those of links starting from nodes. Then, competitiveness can be mapped to the 
out-degree of each node. As for the continuous space, at t = 0 all agents begin to play 
in the same conditions, i.e., all nodes have the same out-degree and the same in-degree. 
On the other hand, as the population evolves (i.e., agents play the PD over time), win-
ning agents increase their out-degree (randomly selecting new opponents) and loosing 
agents do the opposite, i.e., they reduce their out-degree (randomly selecting nodes to 
remove from their neighborhood). As before, the increment/reduction of the out-degree 
has as constraint that each agent cannot play with more than N − 1 agents nor less then 
1 agent. Furthermore, the increasing and the decreasing is unitary, i.e., the kout can vary 
at each time step of ±1. Finally, we recall that in both domains we adopted the ‘imita-
tion of the best’ strategy revision rule, and in all simulations we consider an equal initial 
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distribution of strategies, i.e., at the beginning the 50% of the population is composed of 
cooperators and the remaining 50% of defectors.

Results
We performed many numerical simulations to study the evolution of the system and, 
moreover, we highlight that each presented result has been obtained by averaging over 
50 different simulation runs. In particular, we investigated the following cases:

• • Mean-field approximation
• • Continuous spaces
• • Discrete spaces

The first case represents a classical generalization of the studied system, as we intro-
duce the trivial hypothesis that all agents interact with all the others, at each time step. 
In terms of networks theory, this scenario corresponds to a fully connected network, 
hence complex interaction patterns are not considered nor the competitiveness is rep-
resented. Notably, competitiveness is mapped to the number of opponents each agent 
faces; therefore, in the event everyone faces everyone, competitiveness vanishes. Any-
way, when studying complex systems, before focusing on complex scenarios it is often 
useful to analyze results coming from simple or trivial configurations. Then, once we 
performed the first analysis, we proceed on analyzing results related to the continuous 
space and to the discrete space.

Mean‑field approximation

Here, we consider a simple fully connected network structure to arrange agents. We 
observe that this kind of configuration can be studied also in a continuous domain, 
making the assumption that every agent is provided with an interaction radius long 
enough to include in its social circle all the other agents. Both implementations, of the 
mean-field approximation, are equivalent as both produce the same effects on agents. 
As shown in Figure 1, in the event agents interact with all the population, at the same 
time and without considering particular characters as the competitiveness, the popula-
tion reaches always the same final defection phase, i.e., all agents behave as defectors 
for every value of T and S. Only for very high values of S and for low values of T, a small 
amount of cooperative agents survives.

Anyway, it is possible that, if we observe the evolution for a time longer than 104 time 
steps, all agents of the population become defectors. In general, this first result confirms 
that in absence of particular behaviors (e.g., movements and social characters) the defec-
tion strategy dominates, according to the expected Nash equilibrium. Hence, we can go 
ahead studying the population by introducing the competitiveness.

Simulations on the continuous space

We recall that the continuous space is represented by a bidimensional square of side 
L = 1. In this geometrical configuration, we spread N = 100 agents by two different 
ways: uniform distribution and regular lattice distribution. The former entails the distri-
bution is completely random in the space, whereas the latter entails agents can occupy 
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specific positions, forming a bidimensional lattice. We consider two different conditions 
related to the initial average degree: ¯k(0) = 4 and ¯k(0) = 8. Then, we provide agents with 

a radius r0 =
√

¯k(0)/(πN ). In doing so, at the beginning all agents have the same radius. 
Results related to the uniform distribution are shown in Figure  2, while those related 
to the population arranged on a regular lattice (embedded in the continuous space) are 
shown in Figure 3.

Observations of these diagrams in Figures 2 and 3 let emerge that when agents have a 
higher initial average degree the final density of cooperators decreases. Furthermore, it 

Figure 1  Mean-field approximation. Cooperation frequencies in the TS-plane achieved by a population 
arranged on a fully connected network. This result is in full accordance with the expected Nash equilibrium 
for the PD. Parameter S indicates the payoff obtained by cooperators that face defectors, that in turn gain a 
payoff equal to T (when facing cooperators)—see matrix 1. Colors indicate the averaged degree of coopera-
tion achieved by the population. We recall that red indicates strong cooperation, while blue defection (i.e., no 
cooperation).

Figure 2  Continuous space: uniform distribution. Cooperation frequencies in the TS-plane. On the left, 
results achieved using agents provided with ¯k(0) = 4. On the right, results achieved using agents provided 
with ¯k(0) = 8. Parameter S indicates the payoff obtained by cooperators that face defectors, that in turn gain 
a payoff equal to T (when facing cooperators)—see matrix 1. Colors indicate the averaged degree of coopera-
tion achieved by the population. We recall that red indicates strong cooperation, while blue defection (i.e., no 
cooperation).
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is relevant to emphasize that by arranging agents in a regular lattice, with 4 and 8 neigh-
bors, when they increase/decrease their radius the variation of faced opponents is equal 
to their initial average degree, i.e., ±4 and ±8, respectively.

Simulations on the discrete space

We recall that the discrete space is represented by a directed network. Notably, we 
implemented this scenario using a regular lattice as initial configuration. In this case, 
we were able to consider a population with N = 1, 000 agents, comparing the case with 
agents having a fixed out-degree and variable out-degree. The former constitutes a sce-
nario equivalent to that given by agents with fixed radius in the continuous domain, 
whereas the latter corresponds to a variable radius (in the continuous domain). Further-
more, due to the increasing of kout over time for competitive agents (and to the decreas-
ing of the same parameter for non-competitive agents), we are dealing with adaptive 
networks (see [33]), i.e., networks whose structure varies over time. Results of simula-
tions are shown in Figure 4.

Then, we analyzed the degree distributions (both the in-degree and the out-degree 
distribution) of resulting networks, choosing representative points of the TS-plane. 
Figure 5 shows the degree distributions for a cooperation region (of the TS-plane), and 
Figure 6 shows degree distributions achieved in a defection region.

It is worth to see how the in-degree distributions vary much lesser than the out-degree 
distributions, although both are involved in the evolution of the system.

Discussion and conclusion
In this study, we aim to investigate if there are relations between two social behaviors, 
i.e., cooperation and competitiveness, when an agent population evolves playing the 
Prisoner’s Dilemma. In particular, we map the competitiveness to a parameter embed-
ded in the model, so that competitive agents face many opponents, whereas non-com-
petitive ones do the opposite. In the proposed model, becoming a non-competitive agent 

Figure 3  Continuous space: lattice distribution. Cooperation frequencies in the TS-plane. On the left, 
results achieved using agents provided with ¯k(0) = 4. On the right, results achieved using agents provided 
with ¯k(0) = 8. In both cases, ¯k(0) refers to ¯k(0)in and ¯k(0)out. Parameter S indicates the payoff obtained by 
cooperators that face defectors that in turn gain a payoff equal to T (when facing cooperators)—see matrix 1. 
Colors indicate the averaged degree of cooperation achieved by the population. We recall that red indicates 
strong cooperation, while blue defection (i.e., no cooperation).
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entails to loose challenges, while playing the Prisoner’s Dilemma. After performing a 
brief mean-field analysis of our model, where the population reached the expected Nash 
equilibrium, agents have been arranged in two different domains: a continuous space 
and a discrete space. The former is represented by a bidimensional square, whereas the 
latter has been modeled by a directed network. First of all, we highlight the main differ-
ences between our work and those performed by previous authors (e.g., [31, 32, 34]): we 
focus our attention on fixed agents and we provide them with a social character, i.e., the 
competitiveness. Due to the computational cost of our model, we were able to perform 
simulations up to t = 104 time steps, with N = 100 agents in the continuous space and 
with N = 1, 000 agents in the discrete space. In general, the main result of numerical 
simulations shows that competitiveness allows the emergence of cooperation areas in 
the TS-plane, in both domains. Moreover, in the continuous domain, we investigated the 
outcomes on varying the initial conditions: the spreading of agents in the bidimensional 
square (i.e, random vs regular lattice) and the average degree (i.e., ¯k(0) = 4 and ¯k(0) = 8).  
Notably, when agents are randomly spread, several intermediate phases are obtained, 
indicating an equal presence of cooperators and defectors, instead by an ordered distri-
bution (i.e., lattice) we found more neat areas of cooperation and defection. On the other 
hand, the initial average degree seems to have a strong influence on these dynamics, as 
for ¯k(0) = 4 the cooperation area in the TS-plane is greater than for ¯k(0) = 8, using the 
two spreading strategies. This difference can be explained by the fact that, as for each 
agent the number of neighbors increases (at t = 0), the probability that the related social 
circle be composed of cooperators (i.e., be a cluster of cooperative agents) reduces. In 
the discrete domain, the scenario is a bit different as only for very low T values and high 
S values, a full cooperation emerges. An analysis related to the influence of the initial 
arrangements of agents, in both domains, performed to understand why some of them 
appear more advantageous to obtain more cooperation is important and it will consti-
tute the argument for future investigations. Finally, we analyzed the degree distributions 

Figure 4  Discrete space. Cooperation frequencies in the TS-plane. On the left, results achieved using agents 
provided with constant out-degree, i.e., a scenario equivalent to ‘constant radius’ in the continuous domain. 
On the right, results achieved using agents provided with a variable out-degree (i.e., equivalent to variable 
radius)—see [30]. Parameter S indicates the payoff obtained by cooperators that face defectors that in turn 
gain a payoff equal to T (when facing cooperators)—see matrix 1. Colors indicate the averaged degree of 
cooperation achieved by the population. We recall that red indicates strong cooperation, while blue defection 
(i.e., no cooperation).
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(i.e., the in-degree and the out-degree distributions) of directed networks. This analysis 
is relevant as agents can vary their in-degree distribution and out-degree distribution 
as result of their behavior (more competitive or not). It is important to note that the in-
degree distribution has low variations over time, whereas the opposite happens for the 
out-degree distribution. Notably, this latter represents the competitive parameter, i.e., 
the number of opponents that competitive agents face as their payoff increases. Analyz-
ing networks related to cooperation areas, in the TS-plane, we found that the out-degree 
distribution is characterized by the presence of more hubs (i.e., many competitive agents 
appear, even if they tend to cooperate among themselves). On the other hand, consider-
ing networks-related non-cooperative areas, of the TS-plane, we found only few varia-
tions of the out-degree distribution. In our view, this difference between the two areas, 
considering the out-degree distributions, means that when agents cooperate the network 
loses its homogeneous structure (recall that at t = 0 all agents have the same values of kin 

Figure 5  Degree distributions achieved in networks of cooperative agents (selected according to the TS-
plane). In-degree distributions P(kin): a at t = 1, 000. b At t = 5, 000. c At t = 10, 000. Out-degree distributions 
P(kout): d at t = 1, 000. e At t = 5, 000. f At t = 10, 000.
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and kout); while when agents do not cooperate, the network structure has an exponential 
degree distribution (i.e., the homogeneous structure is conserved over time). In the light 
of these results, we can state that competitiveness strongly affects cooperation. There-
fore, it is important trying to explain the underlying mechanism that leads to this result. 
Let us consider first the continuous case, where agents are fixed and, according to previ-
ous works, should not cooperate. Now, if only few of them have many cooperative agents 
in their neighborhood, they increase their interaction radius. Hence, they face more 
agents during next time steps, having the opportunity to face other cooperative agents. 
Now, according to the matrix 1, clusters of cooperators strongly increase their payoff, 
while clusters of defectors do not increase it in absence of cooperators. Since coopera-
tors are randomly spread in the space, increasing the interaction radius the probability to 
find cooperators increases. On the other hand, defector agents, although never decrease 

Figure 6  Degree distributions achieved in networks of non-cooperative agents (selected according to the 
TS-plane). In-degree distributions P(kin): a at t = 1, 000. b At t = 5, 000. c At t = 10, 000. Out-degree distribu-
tions P(kout): d At t = 1, 000. e At t = 5, 000. f At t = 10, 000.
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their radius, may increase their payoff (and their radius) only for high values of T, other-
wise they will have a constant small radius and, as a consequence, a small degree of com-
petitiveness. Similar considerations hold also for the discrete domain, where defectors 
do not increase their out-degree, while cooperators have this opportunity. To conclude, 
we highlight that achieved results clearly indicate the existence of a relation between 
competitiveness, interpreted as an inclination to face many players, and the emergence 
of cooperation in the Prisoner’s Dilemma.
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