
Zhai et al. Computational Social Networks (2015) 2:17
DOI s40649-015-0017-4

RESEARCH Open Access

Cascade source inference in networks: a
Markov chain Monte Carlo approach
Xuming Zhai2, Weili Wu1,2* and Wen Xu2

*Correspondence:
weiliwu@utdallas.edu
1College of Computer Science and
Technology, Taiyuan University of
Technology, Taiyuan 030024, China
2Department of Computer Science,
University of Texas at Dallas, 800 W.
Campbell Rd, Richardson, TX 75080,
USA

Abstract

Cascades of information, ideas, rumors, and viruses spread through networks.
Sometimes, it is desirable to find the source of a cascade given a snapshot of it. In this
paper, source inference problem is tackled under Independent Cascade (IC) model.
First, the #P-completeness of source inference problem is proven. Then, a Markov chain
Monte Carlo algorithm is proposed to find a solution. It is worth noting that our
algorithm is designed to handle large networks. In addition, the algorithm does not rely
on prior knowledge of when the cascade started. Finally, experiments on real social
network are conducted to evaluate the performance. Under all experimental settings,
our algorithm identified the true source with high probability.

Keywords: Social network; Source inference; Markov chain Monte Carlo

Introduction
Modern social and computer networks are common media for cascades of information,
ideas, rumors, and viruses. It is often desirable to identify the source of a cascade from a
snapshot of the cascade. For example, a good way to stop a rumor is to find out the person
that has fabricated it. Similarly, identifying the first computer infected by a virus provides
valuable information for catching the author. Therefore, given the network structure and
an observed cascade snapshot consisting only the set of infected/active nodes, solving the
source inference problem is very useful in many cases. Hereafter, we use infected/active
and infect/activate interchangeably.
In the seminal works [1] and [2], source inference problem under susceptible-infected

(SI) model is first studied, and a maximum likelihood estimator is proposed with theo-
retical performance bound when the network is a tree. Based on the same model, many
works solve this problemwith different extensions.With a priori knowledge of a candidate
source set, reference [3] infers the source node using a maximum a posteriori estimator.
Wang et al. [4] utilizes multiple independent epidemic observations to single out their
common source. Karamchandani and Franceschetti [5] study the case where infected
nodes reveal their infection with a probability. When multiple sources are involved, algo-
rithms are proposed in [6] and [7] to find out all of them. The works mentioned above,
except [7], are all based on tree networks, while some of them are applicable to general
graphs by constructing breadth-first-search trees. More importantly, all of them use SI
model, where an infected node will certainly infect a susceptible neighbor after a random

© 2015 Zhai et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=s40649-015-0017-4-x&domain=pdf
mailto: weiliwu@utdallas.edu
http://creativecommons.org/licenses/by/4.0/

Zhai et al. Computational Social Networks (2015) 2:17 Page 2 of 17

period of time. Our work, however, is based on Independent Cascade (IC) model. In the
IC model, an active node activates its successor with a certain probability determined by
the edge weight.
Although SI model is popular in epidemiological researches because it catches the pat-

tern of epidemics, the IC model is arguably more suitable to depict cascades in social
networks, where relationship between peers plays a more important role than time of
infection. As an example, suppose Alice bought a new hat, her classmates may or may
not imitate the purchase depending on how they agree with her taste. Those who do not
appreciate her taste are unlikely to change their minds even Alice wears her hat every day.
These people are now immune from the influence of Alice’s new hat, though they may
still be persuaded by someone they appreciate more.
Although the IC model is popular in social network researches, finding source in the IC

model is rarely studied. Using a model similar to the IC with identical edge weight, refer-
ence[8] studies the problem of inferring both links and sources given multiple observed
cascades. Under the ICmodel, reference [9] solves the problem of finding sources that are
expected to generate cascades most similar to the observation. Surprisingly, this problem
is fundamentally different from source inference problem, which finds the source that
most likely has started the observed cascade. For example, when a cascade that infects all
nodes is observed in the simple linear network in Fig. 1, node c is the optimal result for the
problem defined in [9] because it is expected to generate a cascade with least difference
from the observed one. However, it is obvious that c cannot be responsible for a cascade
that spreads through all three nodes.
In this paper, we work on the problem of detecting the source node that is responsible

for a given cascade. We first formulate the source inference problem in the IC model
and prove its #P-completeness. Then, a Markov chain Monte Carlo (MCMC) algorithm
is proposed to solve the inference problem. It is worth noting that our algorithm scales
with observed cascade size rather than network size, which is very important due to the
huge size of social networks nowadays. Another advantage of our algorithm is that it is
designed to deal with snapshot of cascades taken either before or after termination. More
importantly, our algorithm does not require prior knowledge of the starting time of the
cascade, which is usually unknown in practical scenarios. To evaluate the performance of
our algorithm, experiments are done in a real network. Experimental results demonstrate
the effectiveness of our algorithm.

Problem formulation
Propagation model

In this work, we model a social network as a weighted directed graph G(V ,E) with
weights wi,j ∈ (0, 1] associated with each edge (i, j) ∈ E representing the probability

Fig. 1 Example of a simple case of source inference problem: if all three nodes are found active, then node a
must be the source

Zhai et al. Computational Social Networks (2015) 2:17 Page 3 of 17

of i successfully influencing j. The propagation procedure of a cascade in the network
is depicted by the well-known IC model [10]. The cascade starts with all nodes inactive
except a source node s, which we assume is activated at time τ0. At every time step τ > τ0,
every node i that was activated at τ − 1 has a single chance to influence each of its inac-
tive successors through the directed edge with success probability specified by the weight
of the edge. If the influence is successful, then the successor is activated at time τ and will
be able to influence its inactive successors at the next time step. The process terminates
when no new node is activated.
An important fact about the IC model is that each active node has only one chance of

influencing each of its neighbors. To put it another way, there is only one chance for each
edge to participate in the propagation with success rate specified by the weight. Since
edge weights are fixed and independent of the cascade, we can flip the biased coins even
before the cascade starts to determine whether each edge will help the propagation. This
gives an alternative process consisting of two steps that also simulates the IC model. First,
a subgraph G′ of the original network G is taken by 1) keeping all vertices and 2) filtering
edges according to their weights, i.e.,

∀v ∈ G, v ∈ G′,
∀(i, j) ∈ G, Pr ((i, j) ∈ G′) = wi,j.

(1)

Then, every node i reachable from source s in G′ is active, with its activation time set to
τ + dG′(s, i), where dG′(s, i) is the distance, i.e., number of edges in the directed shortest
path, from s to i in G′.
It is easy to verify that the alternative process is equivalent to the previous one. More-

over, the alternative view builds the equivalence between sampling subgraphs of network
and simulating cascades on it. Due to this convenience, we extensively use the alternative
view in the following sections.

Source inference problem

Suppose in a given networkG, an unnoticed cascade starts from an unknown source node
s∗ at time τ0. Later at time τ0 + τ , the cascade is discovered and the set of active nodes Aτ

is identified without knowing their corresponding activation time. Note that Aτ can be
viewed as a snapshot of the cascade at time τ . Now, we want to find the node ŝ that most
likely had started the cascade. Thus,

ŝ = argmax
s

Pr (Aτ |G, s, τ), (2)

where Pr (Aτ |G, s, τ) denotes the probability of a cascade on G starting from s having
snapshot Aτ at time τ . According to the alternative view of the IC model defined in
the ‘Propagation model’ section and suppose G′ is sampled according to (1), we have

Pr (Aτ |G, s, τ) = Pr (Aτ = {i | dG′(s, i) ≤ τ }). (3)

The following theorem shows the intractability of source inference problem, i.e., solving
(2) given G, τ , and Aτ .

Theorem 1. Source inference problem is #P-complete.

Zhai et al. Computational Social Networks (2015) 2:17 Page 4 of 17

This theorem is proven by constructing a polynomial-time Turing reduction from s-t
connectedness problem [11] to source inference problem. Please refer to Appendix 1 for
the detailed proof.

Source inference algorithm
Basic algorithm

We useR(G′, s, τ) to denote the set of nodes inG′ reachable from s within distance τ , i.e.,

R(G′, s, τ) = {i | dG′(s, i) ≤ τ }.
Then, the probability shown in (3) can also be written as

Pr (Aτ |G, s, τ) =
∑
G′⊆G

PrG(G′)I(Aτ = R(G′, s, τ)) (4)

= EG′∼G[I(Aτ = R(G′, s, τ))] , (5)

where G represents the distribution of subgraphs of G defined by (1), PrG(G′) denotes the
probability mass function (PMF) of G′ in distribution G, i.e.,

PrG(G′) =
∏

(i,j)∈G
wI((i,j)∈G′)
i,j (1 − wi,j)

I((i,j)/∈G′) (6)

and I is an indicator function defined as

I(c) =
{
1 if condition c is true,
0 otherwise.

Because of the #P-completeness of source inference problem, calculating exact value of
(4) is #P-hard.
A trivial method to approximate the value is to estimate the expectation in (2) by ran-

domly sampling graphs in G. But this method is still impractical. To show this, we define
S = {G′ | G′ ⊆ G} as the set of all subgraphs of G, which is also the support of G. Then, a
subset of S is defined as

S ′ = {G′ | G′ ⊆ G, ∃s, s � Aτ ⊆ G′},
where s � Aτ ⊆ G′ denotes “every node in Aτ is reachable from s in G′”. Now, notice
that Aτ = R(G′, s, τ) =⇒ G′ ∈ S ′ and that the ratio |S|/|S ′| can be exponential to
|G|, which means almost all subgraphs of G will make the indicator function in equals
0. As an example, consider a linear graph GL(VL,EL) where VL = {v1, v2, . . . , vn} and
EL = {(vk , vk+1) | 1 ≤ k < n}. Suppose Aτ = VL and τ = n, then |S| = 2n−1 whereas
s � Aτ ⊆ G′ only if G′

L = GL and s = v1.
To overcome this problem, we want to sample G′ from set S ′ rather than S . On set S ′,

we define a new sampling distribution, denoted as G ′, whose PMF is

PrG′(G′) =
{
PrG′(G′)/Z if G′ ∈ S ′,
0 otherwise,

Z =
∑
G′∈S ′

PrG′(G′).
(7)

Notice that set S ′ is independent of any candidate source node, so is the normalization
factor Z. Therefore, with (7), we have

EG′∼G[I(Aτ = R(G′, s, τ))]∝ EG′∼G′ [I(Aτ = R(G′, s, τ))] .

Zhai et al. Computational Social Networks (2015) 2:17 Page 5 of 17

Consequently, we can solve source inference problem (2) by solving

ŝ = argmax
s

EG′∼G′ [I(Aτ = R(G′, s, τ))] . (8)

Now the problem is how to sample from S ′ with probability defined in (7). However, one
can easily show that calculating factor Z is #P-hard, which makes calculating (7) imprac-
tical. Therefore, it is unlikely to be possible to directly sample from set S ′. Fortunately,
the probability ratio between any two subgraphs is easy to compute; thus, we can use
Metropolis algorithm to sample distribution G ′ in a Markov chain Monte Carlo.

Algorithm 1: Local move
Input: G′

k , G, w, Aτ

Output: G′
k+1

1 choose (i, j) ∈ G uniformly randomly;
2 if (i, j) ∈ G′

k then // remove edge

3 G′
k+1 = G′

k \ {(i, j)};
4 p = (1 − wi,j)/wi,j;
5 else // add edge

6 G′
k+1 = G′

k ∪ {(i, j)};
7 p = wi,j/(1 − wi,j);

8 if ∃i, i � Aτ ⊆ G′
k+1 then

9 p = min{p, 1};
10 else
11 p = 0;

12 with probability 1 − p, set G′
k+1 = G′

k ; // reject

13 return G′
k+1;

Algorithm 1 describes a local move from a subgraph in S ′ to another. Each local move
will add/remove an edge to/from the previous subgraph G′

k . The new subgraph G′
k+1

is either accepted or rejected depending on the probability ratio PrG′(G′
k+1)/PrG′(G′

k)

defined in G′. Starting from any subgraph in S ′, running Algorithm 1 iteratively will
produce a Markov chain whose states represent subgraphs in S ′ and whose stationary
distribution is exactly the same as (7).
With the help of local move in Algorithm 1, Algorithm 2 infers the most likely source

node responsible for the cascade snapshot Aτ taken at time τ . Input parameter K is
used to indicate the number of samples to take by this algorithm. With line 3, the algo-
rithm starts with whole graph G as the initial sample, which is obviously in S ′. During
every iteration of the while-loop, a subgraph in S ′ is sampled, and all possible source ver-
tices are found and recorded. After the while-loop ends, count[i] /K is the estimation of
EG′∼G′ [I(Aτ = R(G′, i, τ))]. Hence, the returned value of Algorithm 2 is an approximate
solution of (8).

Amore practical approach

Algorithm 2 has some drawbacks in practical scenarios. First, the whole network may be
orders of magnitude larger than the cascade snapshot in question. However, Algorithm 2

Zhai et al. Computational Social Networks (2015) 2:17 Page 6 of 17

Algorithm 2: Basic source inference algorithm
Input: instance: G, w, Aτ , τ ; parameter: K
Output: s

1 create new array count with size |V | and default value 0;
2 k = 0;
3 G′

k = G ; // initial sample in S ′

4 while k < K do
5 C = {i | R(G′

k , i, τ) = Aτ };
6 for i ∈ C do
7 if Aτ == R(G′

k , i, τ) then
8 count[i]= count[i]+1;

9 run Algorithm 1 with G′
k G, w, Aτ to get G′

k+1;
10 k = k + 1;

11 s = argmaxi count[i];
12 return s;

scales with the size of full network rather than the snapshot, which is unfavorable here.
Second, when the source node of a cascade is unknown, the starting time of the cascade
is usually also absent. In these cases, inferring source node without knowing τ is desired.
In this section, we will handle these two problems.
Based on the cascade snapshot Aτ , we can classify edges in E into three disjoint subsets

E1 = {(i, j) | (i, j) ∈ E, i, j ∈ Aτ }, (9)

E2 = {(i, j) | (i, j) ∈ E, i ∈ Aτ , j /∈ Aτ },
E3 = {(i, j) | (i, j) ∈ E, i /∈ Aτ }.

And E2 can be further split into subsets according to the source node of edges:

E2,u = {(i, j) | (i, j) ∈ E2, i = u}.
Then we define three subgraphs of G(V ,E) accordingly: G1(Aτ ,E1), G2(V ,E2), and

G3(V ,E3). Note that G1 only contains nodes in Aτ because edges in G1 are all between
nodes in Aτ . Furthermore, we partition each sampled subgraph G′ into G′

1, G′
2 and G′

3,
where G′

k = G′ ∩ Gk . With these definitions, we have the following lemma.

Lemma 1. If we define subgraph G1(Aτ ,E1) consisting of only edges between nodes in Aτ ,
the condition

Aτ = R(G′, s, τ) (10)

is equivalent to the combination of
Aτ = R(G′

1, s, τ) (11)

and
∀i ∈ Aτ , dG′

1
(s, i) = τ ∨ E2,i ∩ E′ = ∅, (12)

where G′
1 = G′ ∩ G1.

Zhai et al. Computational Social Networks (2015) 2:17 Page 7 of 17

Proof. Eq. 10 can be split to 1) any node in Aτ must be within distance τ from s, i.e.,

Aτ ⊆ R(G′, s, τ), (13)

and 2) any node outside Aτ must have distance from s larger than τ , i.e.,

R(G′, s, τ) \ Aτ = ∅. (14)

Hence, the shortest path from s to any node i ∈ Aτ is within G1, which implies ∀i ∈ Aτ ,
dG′(s, i) = dG′

1
(s, i) and thus (11). Further, (12) means any node i with dG′(s, i) < τ must

not be able to activate its neighbors outside Aτ , which is necessary to ensure (14).
On the other hand, (11) guarantees (13) and (12) ensures ∀i /∈ Aτ , dG′(s, i) > τ which

leads to (14).

From Lemma 1, it is straightforward to get the following corollaries.

Corollary 1. The indicator function in (4) is equivalent to

I(Aτ = R(G′, s, τ)) =I(Aτ = R(G′
1, s, τ))

·
∏

(i,j)∈G′
2

I(dG′
1
(s, i) = τ).

Corollary 2. I(Aτ = R(G′, s, τ)) is independent of G′
3.

In addition, because G′ = G′
1 ∪ G′

2 ∪ G′
3 and edge sets in G′

k are disjoint, (6) can be
rewritten as the product of three terms

PrG(G′) =
∏

(i,j)∈G
wI((i,j)∈G′)
i,j (1 − wi,j)

I((i,j)/∈G′)

=
3∏

k=1
PrGk(G′

k),
(15)

where

PrGk (G
′
k) =

∏
(i,j)∈Gk

wI((i,j)∈G′
k)

i,j (1 − wi,j)
I((i,j)/∈G′

k). (16)

Now we have Theorem 2 that speedup the algorithm.

Theorem 2. Define distribution G′
1 of graphs in S ′

1 = {G′
1 | G′

1 ⊆ G1, ∃s, s � Aτ ⊆ G′
1}

with PMF proportional to PrG1(G′
1). Then, we have

Pr (Aτ |G, s, τ) ∝ EG′
1∼G′

1
[f (G′

1, s, τ)] , (17)

where
f (G′

1, s, τ) = I(Aτ = R(G′
1, s, τ))

∏
(i,j)∈G2

dG′
1
(s,i)<τ

(1 − wi,j). (18)

The proof of Theorem 2 is shown in Appendix 2.
Theorem 2 shows that sampling subgraphs of G1, rather than the whole network G, is

sufficient to infer the cascade source, which greatly accelerates the algorithm when the
whole network is much larger than the cascade snapshot Aτ .

Zhai et al. Computational Social Networks (2015) 2:17 Page 8 of 17

Next, we deal with unknown cascade starting time, i.e., unknown τ . First, due to the
fact that node set in G1 is Aτ ,

Aτ = R(G′
1, s, τ) ⇐⇒ Aτ ⊆ R(G′

1, s, τ)

⇐⇒ s � Aτ ⊆ G′
1 ∧ τ ≥ εG′

1
(s),

where εG′
1
(s) is the eccentricity of node s in G′

1, defined as

εG′
1
(s) = max

i∈G′
1

dG′
1
(s, i). (19)

As a result, for any given G′
1 and s such that s � Aτ ⊆ G′

1, there are three possible values
for function f (G′, s, τ) in (18):

f (G′, s, τ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, τ < εG′
1
(s),∏

(i,j)∈G2
dG′

1
(s,i)<εG′

1
(s)

(1 − wi,j), τ = εG′
1
(s),

∏
(i,j)∈G2

(1 − wi,j), τ > εG′
1
(s).

(20)

Here, the values for all three cases are independent of τ . Then, we have Theorem 3 that
deals with unknown cascade starting time.

Theorem 3. Suppose samples G′
1,k, k = 1, 2, . . . ,K are taken with distribution G ′

1, then
we can approximate (17) by

EG′
1∼G′

1
[f (G′

1, s, τ)]≈ 1
K

(
A(s, τ) + W ·

∑
τ ′<τ

C(s, τ ′)
)
,

where

A(s, τ) =
∑

k:τ=εG′
1,k

(s)

∏
(i,j)∈G2

dG′
1,k

(s,i)<εG′
1,k

(s)

(1 − wi,j),

W =
∏

(i,j)∈G2

(1 − wi,j), (21)

C(s, τ ′) =
∑

k:τ ′=εG′
1,k

(s)
1.

Proof. Because samples G′
1,k are taken with distribution G′

1, we have

EG′
1∼G′

1
[f (G′

1, s, τ)]≈ 1
K

K∑
k=1

f (G′
1,k , s, τ). (22)

Substituting (20) into the summation of (22) proves the theorem.

With both Theorems 2 and 3, Algorithm 2 can be improved to Algorithm 3 which
overcomes problems of large network and unknown τ .
In Algorithm 3, we only consider τ ′ ranging from 1 to |Aτ | because 1) εG′

1,k
(s) ranges

from 1 to |Aτ | − 1 given |Aτ | > 1 and s � Aτ ⊆ G′
1,k ; 2) if τ >= |Aτ |, the cascade

must have terminated, thus ∀τ > |Aτ |, Pr(Aτ |G, s, τ) = Pr(Aτ |G, s, |Aτ |). The input time
range [τl, τu] represents limited knowledge of τ . If the exact starting time of the cascade

Zhai et al. Computational Social Networks (2015) 2:17 Page 9 of 17

Algorithm 3: Advanced source inference algorithm
Input: instance: G, w, Aτ ; time range [τl, τu]; parameter: K
Output: s

1 create new tables accu, count and result with size |Aτ | × |Aτ | and default value 0;
2 create graph G1(Aτ ,E1) according to (9);
3 k = 0;
4 G′

1,k = G′
1;

5 calculateW by (21);
6 for i ∈ Aτ do
7 Wi = ∏

j∈V\Aτ :(i,j)∈G(1 − wi,j);

8 while k < K do
9 C = {i | i � Aτ ⊆ G′

1,k};
10 for i ∈ C do
11 τ ′ = εG′

1,k
(i) by (19);

12 w′ = W ;
13 for j ∈ Aτ , dG′

1,k
(i, j) == τ ′ do

14 w′ = w′/Wj;

15 accu[i] [τ ′]= accu[i] [τ ′]+w′;
16 count[i] [τ ′]= count[i] [τ ′]+1;

17 run Algorithm 1 with G′
1,k G1, w, Aτ to get G′

1,k+1;
18 k = k + 1;

19 for i ∈ Aτ do
20 c = 0;
21 for τ ′ = 1, . . . , |Aτ | do
22 result[i] [τ ′]= accu[i] [τ ′]+W × c;
23 c = c + count[i] [τ ′];

24 s = argmaxi
∑τu

τ ′=τl
result[i] [τ ′];

25 return s;

is known, we can use τl = τu = τ . On the contrary, if nothing at all is known about τ ,
τl = mini εG′

1
(i) and τu = |Aτ | may be used instead.

It should be noted that for any sample G′
1, line 9 in Algorithm 3 can be done in O(|G′

1|)
time. First, condensation C(G′

1) is calculated, which needs linear time. Then, since C(G′
1)

is a directed acyclic graph, there is at least one strong component in C(G′
1) that has no

predecessor. If there is exactly one such component, it is the set C; if there is more than
one, C = ∅. This method also applies to line 8 in Algorithm 1 and line 5 in Algorithm 2.

Experimental results
In this section, we conduct experiments of our cascade source inference algorithm
(Algorithm 3, with K = 106) on real network dataset. The network used is from WikiV-
ote dataset ([12, 13]), which consists of all Wikipedia voting data from the inception of
Wikipedia till January 2008. The dataset has 7115 nodes and 103,689 directed unweighted

Zhai et al. Computational Social Networks (2015) 2:17 Page 10 of 17

edges. Each node represents a Wikipedia user participating in elections, while each
directed node (i, j) means user i voted for user j. We use this unweighted dataset because
we cannot find a social network dataset with influence probability available despite our
best effort. Since the dataset is unweighted, we use reciprocal of in-degree of the des-
tination node as the weight of an edge. With uniformly randomly chosen source nodes,
cascades are then generated on the network according to the IC model. To make the
experiment challenging, we discard cascades with less than 20 candidate sources. Here,
candidate source set is not active nodes set Aτ , but set of nodes from which all active
nodes are reachable in G1, i.e., {i | i � Aτ ⊆ G1}. We use 200 cascades in our experi-
ments. Figure 2a, b shows histograms of the number of active nodes and candidate sources
among these cascades.
To compare our proposed algorithm with existing algorithm, we also implement the

algorithm proposed by [9]. In that paper, they proposed three algorithms (“DP”, “Sort”,
and “OutDegree”) to find a set of k sources. In our case where single source generates the
cascade, their DP algorithm and Sort’ algorithm are equivalent. In the experiment below,
we use this algorithm and call it “Effector” algorithm.
First, we take snapshot at τ = |Aτ |, i.e., after cascades terminate and do the experiment

with exact knowledge of τ . Figure 3a shows the distribution of error distances, which
is defined as the distance between inferred source node and true source node assuming
edges are undirected. To compare with, the error distance of random guess among Aτ is
also shown in Fig. 1c. It is clear that all source nodes inferred by our algorithm are within
two hops around the source node, and 24 % of the inferred nodes are true sources. In
comparison, the Effector algorithm has fewer results with 0 or 1 error distance. To further
evaluate the algorithm, we make the algorithms output a list of candidate source nodes
sorted in descending order of likelihood, rather than merely the most likely source node.
This output is sometimes more useful because it answers queries like “what’s the 5 most

Fig. 2 Statistics of cascades used in experiments. a Histogram of number of active nodes. b Histogram of
number of candidate sources. c Histogram of error distance by random guess

Zhai et al. Computational Social Networks (2015) 2:17 Page 11 of 17

Fig. 3 Experimental result: τ = |Aτ |, τ known. a Histogram of error distance. b Histogram of rank of true
source. c Histogram of relative rank of true source

likely source of the cascade”. Figure 3b shows the distribution of rank of the true source
node in the ordered list. In more than half of total experiments, the true source is among
top 4 candidates output by our algorithm. The Effector algorithm, however, has a much
heavier tail with far less results with lower ranks. In fact, there are 15 % of the results with
a rank higher than 60 which is not shown in the figure. Figure 3c shows distribution of
relative ranks, i.e., rank divided by candidate set size. Only our algorithm is shown in this
figure because the Effector algorithm does not calculate candidate set and their output list
include many nodes not in the candidate set due to the reason explained by Fig. 1 in the
‘Introduction’ section. In more than 50 % of the experiments, our output that has relative
rank of the true source is less than or equal to 0.1.
Then, we do experiments with snapshots taken at τ = 8, when most of the cascades

are yet to terminate. The results are shown in Fig. 4. Similarly, our proposed algorithm
performs better than the Effector algorithm. In 55 % of the experiments, our algorithm
has true source node among top 4 candidates, and in half of experiments, we have true
source node with relative rank no larger than 0.1.
To evaluate the performance of our source inference algorithm when exact cascade

starting time is absent, we conduct another experiment on the snapshot taken at τ = 8
with input time range [0, 16]. As shown in Fig. 5, our algorithm effectively infers the
source nodes even without exact knowledge of cascade starting time. In the experiment,
57 % of the true source nodes are among top 4 candidates, and in half of the cases, the
true source ranked top 10 % in the output list.

Conclusion
We considered cascade source inference problem in the IC model. First the #P-
completeness of this problem was proven. Then, a Markov chain Monte Carlo algorithm
was proposed to approximate the solution. Our algorithm was designed with two major

Zhai et al. Computational Social Networks (2015) 2:17 Page 12 of 17

Fig. 4 Experimental result: τ = 8, τ known. a Histogram of error distance. b Histogram of rank of true source.
c Histogram of relative rank of true source

advantages: 1) it scales with the observed cascade snapshot rather than the whole net-
work and thus is applicable to enormous modern social networks and 2) it does not
require any knowledge about the starting time of the cascade, which is a common and
practical scenario in cascade source inference problem. To demonstrate the performance
of our algorithm, experiments on real social network were conducted. As shown above,
our algorithm performs well no matter when the cascade snapshot is taken or whether
the cascade starting time is known. In all these experiments, around 25 % of the true
sources are correctly identified, about half of them are among the top 4 or top 10 % of the
candidates.

Fig. 5 Experimental result: τ = 8, τ unknown, τl = 0, τu = 16. a Histogram of error distance. b Histogram of
rank of true source. c Histogram of relative rank of true source

Zhai et al. Computational Social Networks (2015) 2:17 Page 13 of 17

Fig. 6 Example of Algorithm 4. a Input instance of s-t connectedness problem. b Output graph of source
inference problem

Appendix 1
Proof of Theorem 1

We will prove Theorem 1 by constructing a polynomial-time Turing reduction from s-t
connectedness problem to source inference problem. S-t connectedness problem is given
a directed graph Ĝ(V̂ , Ê) and two nodes s, t ∈ V̂ , output the number of subgraphs of Ĝ in
which there is a path from s to t, i.e. , Connectedness(Ĝ, s, t) = |{Ê′ ⊆ Ê | |s � t ⊆ Ê′}.
This problem is known to be #P-complete [11].
A key part of the proof is Algorithm 4 which converts an instance of s-t connectedness

problem to an instance of source inference problem with properties listed in Lemma 2.
An simple example of this algorithm is shown in Fig. 6.

Algorithm 4: Conversion from an instance of s-t connectedness problem to an
instance of source inference problem
Input: Parameter p ∈ (0, 1]; instance Ĝ(V̂ , Ê), s, t ∈ V̂ .
Output: G(V ,E), w, Aτ , τ .

1 V = V̂ ∪ {u, v},u, v /∈ V̂ ;
2 E = Ê ∪ {(v,u), (u, s), (t, v)} ∪ {(v, j) | ∀j ∈ V̂ };
3 wv,u = p, wu,s = 1, wt,v = 1;
4 wv,j = 1,∀j ∈ V̂ ;
5 wi,j = 0.5,∀(i, j) ∈ Ê;
6 Aτ = V ;
7 τ = |V |;
8 return G(V ,E), w, Aτ , τ ;

Zhai et al. Computational Social Networks (2015) 2:17 Page 14 of 17

Lemma 2. Given input parameter p and instance Ĝ(V̂ , Ê), s, t ∈ V̂ , the output instance
G(V ,E), w, Aτ , τ of Algorithm 4 has the following properties:

1. Pr (At|G, v, τ) = Pr (At|G, t, τ) = p;
2. Pr (At|G, i, τ < p,∀i ∈ V̂ , i �= t;
3. Pr (At|G,u, τ) = Connectedness(Ĝ, s, t) · 0.5|Ê|.

Proof. In this proof, we use i � j ⊆ G to denote the existence of a path from i to j in
graph G. In addition, i � V ⊆ Gmeans ∀j ∈ V , j �= i, i � j ⊆ G.
According to the algorithm, output snapshot Aτ contains all vertices, and τ = |V |

guarantees that dG′(i, j) < τ if i � j ⊆ G′. Therefore, due to (3), the output instance has

Pr (Aτ |G, i, τ = Pr (i � V ⊆ G′),

which means considering reachability rather than distance is sufficient in the remaining
part of the proof.
Now, due to line 4 in Algorithm 4, every node in V̂ is reachable from v in every subgraph

G′ sampled via (1). And because wt,v = 1 (by line 3), for any subgraph G′,

t � V̂ ⊆ G′,
v � V̂ ⊆ G′,
∀i ∈ V , i � t ⊆ G′ ⇐⇒ i � v ⊆ G′ ⇐⇒ i � V̂ ⊆ G′. (23)

Thus property 1 is straightforward:

Pr(At|G, t, τ) = Pr (At|G, v, τ)

= Pr (v � V ⊆ G′)
= Pr (v � u ⊆ G′)
= p.

On the other hand, since the new node u has only one incoming edge (v,u), we have
∀i ∈ V̂ , i �= t, i � u ⊆ G′ implies i � t ⊆ G′. Therefore, we have the proof for property 2:
for any i ∈ V̂ , i �= t,

Pr(At|G, i, τ) = Pr (i � V ⊆ G′)
= Pr (i � t ⊆ G′) · p
< p,

where the last inequality is because every incoming edge of t has weight 0.5 according to
line 5 in Algorithm 4.
To prove property 3, we first note that s is the only successor of u and wu,s = 1, with

(23), we have

u � V ⊆ G′ ⇐⇒ s � t ⊆ G′.

And therefore,

Pr (At|G,u, τ) = Pr (u � V ⊆ G′) = Pr (s � t ⊆ G′). (24)

Because Ĝ ⊂ G, sampling subgraphs G′ of G can be viewed as sampling subsets of Ê
followed by sampling subsets of E \ Ê. Since any path from s to t consists only edges in Ê,
Pr (s � t ⊆ G′) is fully determined by sampling Ê, or equivalently, sampling subgraphs of
Ĝ. As a result,

Zhai et al. Computational Social Networks (2015) 2:17 Page 15 of 17

Pr (s � t ⊆ G′) = Connectedness(Ĝ, s, t) · 0.5|Ê|, (25)

because every subset of Ê has probability 0.5|Ê| to be selected via (1) according to line 5 in
Algorithm 4. Now property 3 follows from (24) and (25).

Proof. First, to show source inference problem is in #P, we note that calculating
Pr(At|G, i, τ) is in #P since it is the sum of probabilities of all subgraphs of G with
i � V ⊆ G. So source inference problem, i.e., finding node i that maximize Pr(At|G, i, τ),
is also in #P.
Since graph Ĝ has 2|Ê| subgraphs, ConnectednessĜ, s, t must be an integer in range

[0, 2|Ê|]. Therefore, Pr (At|G,u, τ) of the output instance of Algorithm 4 must be in set
{k · 0.5|Ê| | k ∈ N, k ≤ 2|Ê|}. A binary search algorithm, i.e., Algorithm 5, can solve s-t
connectedness problem by solving source inference problem.

Algorithm 5: Solution of s-t connectedness problem with oracle for source inference
problem
Input: Ĝ(V̂ , Ê), s, t ∈ V̂ .
Output: k = ConnectednessĜ, s, t

1 if t is not reachable from s then
2 return 0;

3 m = 2|Ê|, n = 1;
4 whilem �= n do
5 p = (m + n)/2 · 0.5|Ê|;
6 run Algorithm 4 with p, Ĝ, s, t to get G,w,Aτ , τ ;
7 solve source inference problem G,w,Aτ , τ to get x;
8 if x == u then
9 n = (m + n + 1)/2;

10 else
11 m = (m + n − 1)/2;

12 returnm;

In Algorithm 5, there will be |Ê| iterations of while-loop. Hence, only polynomial
number of queries to the oracle will be made. All other operations can be done in
polynomial time. Therefore, this algorithm shows a polynomial-time Turing reduction
from s-t connectedness problem to source inference problem. Since s-t connected-
ness problem is #P-complete and source inference problem is in #P, Theorem 1 is
proven.

Appendix 2
Proof of Theorem 2

The proof is shown from Eqs. (26) to (33). Here, Eq. (27) follows from (15); (28) is due to
the equivalence between sampling G′ ⊆ G and sampling G′

k ⊆ Gk , k = 1, 2, 3, separately;

Zhai et al. Computational Social Networks (2015) 2:17 Page 16 of 17

(29) results from Corollary 2 and the fact that PrGk (G′
k) depends only on G′

k respectively;
(30) is simply due to

∑
G′
3⊆G3 PrG3(G′

3) = 1; (31) is by Corollary 1.
To further transform the (32), we split G2 to G2,τ (V ,E2,τ) and G2,τ̂ (V ,E2,τ̂), where

E2,τ =
⋃
i∈Aτ

dG′
1
(s,i)=τ

E2,i,

E2,τ̂ =
⋃
i∈Aτ

dG′
1
(s,i)<τ

E2,i.

Then, with given subgraph G′
1 ⊆ G1, sampling subgraph G′

2 ⊆ G2 is essentially sampling
G′
2,τ ⊆ G2,τ and G′

2,τ̂ ⊆ G2,τ̂ , which leads to (34). Since the first summation in (34) is
the sum probability of all possible subgraphs of G2,τ , which is 1, we have (35). Because
only one specific subgraph G′

2,τ̂ ⊆ G2,τ̂ , namely, G′
2,τ̂ = G2,τ̂ , satisfies ∀(i, j) ∈ G2,τ̂ ,

I((i, j) /∈ G′
2,τ̂) > 0, we have (36). Then, substituting (36) into (31) gives (32). According

to the definition of distribution G′
1, we have (33) and prove Theorem 2.

Pr (Aτ |G, s, τ) =
∑
G′⊆G

PrG(G′)I(Aτ = R(G′, s, τ)) (26)

=
∑
G′⊆G

3∏
k=1

PrGk (G
′
k)I(Aτ = R(G′, s, τ)) (27)

=
∑

G′
1⊆G1

∑
G′
2⊆G2

∑
G′
3⊆G3

3∏
k=1

PrGk (G
′
k)I(Aτ = R(G′, s, τ)) (28)

=
∑

G′
1⊆G1

⎡
⎣PrG1 (G

′
1) ·

∑
G′
2⊆G2

⎡
⎣PrG2 (G

′
2)I(Aτ = R(G′, s, τ)) ·

∑
G′
3⊆G3

[
PrG3 (G

′
3)

]⎤⎦
⎤
⎦
(29)

=
∑

G′
1⊆G1

⎡
⎣PrG1 (G

′
1) ·

∑
G′
2⊆G2

[
PrG2 (G

′
2)I(Aτ = R(G′, s, τ))

]⎤⎦ (30)

=
∑

G′
1⊆G1

⎡
⎣PrG1 (G

′
1)I(Aτ = R(G′

1, s, τ)) ·
∑

G′
2⊆G2

⎡
⎣PrG2 (G

′
2)

∏
(i,j)∈G′

2

I(dG′
1
(s, i) = τ)

⎤
⎦
⎤
⎦
(31)

=
∑

G′
1⊆G1

⎡
⎢⎢⎢⎢⎣PrG1 (G

′
1)I(Aτ = R(G′

1, s, τ)) ·
∏

(i,j)∈G2
dG′

1
(s,i)<τ

(1 − wi,j)

⎤
⎥⎥⎥⎥⎦ (32)

∝ EG′
1∼G′

1

⎡
⎢⎢⎢⎢⎣I(Aτ = R(G′

1, s, τ)) ·
∏

(i,j)∈G2
dG′

1
(s,i)<τ

(1 − wi,j)

⎤
⎥⎥⎥⎥⎦ , (33)

where (32) is due to

Zhai et al. Computational Social Networks (2015) 2:17 Page 17 of 17

∑
G′
2⊆G2

⎡
⎣PrG2 (G

′
2)

∏
(i,j)∈G′

2

I(dG′
1
(s, i) = τ)

⎤
⎦

=
∑

G′
2⊆G2

⎡
⎢⎢⎢⎢⎣

∏
(i,j)∈G2

wI((i,j)∈G′
2)

i,j (1 − wi,j)
I((i,j)/∈G′

2) ·
∏

(i,j)∈G2
dG′

1
(s,i)<τ

I((i, j) /∈ G′
2)

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ (by (16))

=
∑

G′
2⊆G2

⎡
⎢⎢⎢⎢⎣

∏
(i,j)∈G2

dG′
1
(s,i)=τ

wI((i,j)∈G′
2)

i,j (1 − wi,j)
I((i,j)/∈G′

2) ·
∏

(i,j)∈G2
dG′

1
(s,i)<τ

(1 − wi,j)I((i, j) /∈ G′
2)

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

=
∑

G′
2,τ ⊆G2,τ

⎡
⎣ ∏

(i,j)∈G2,τ

w
I((i,j)∈G′

2,τ)

i,j (1 − wi,j)
I((i,j)/∈G′

2,τ)

⎤
⎦·

∑
G′
2,τ̂ ⊆G2,τ̂

⎡
⎣ ∏

(i,j)∈G2,τ̂

(1−wi,j)I((i, j) /∈ G′
2,τ̂)

⎤
⎦

(34)

=
∑

G′
2,τ̂ ⊆G2,τ̂

⎡
⎣ ∏

(i,j)∈G2,τ̂

(1 − wi,j)I((i, j) /∈ G′
2,τ̂)

⎤
⎦ (35)

=
∏

(i,j)∈G2,τ̂

(1 − wi,j). (36)

Authors’ contributions
XZ proved the theorems and did the algorithm design and experiment. WW and WX contributed to the problem
formulation and organized this research. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was supported in part by the China National Science Foundation (CNSF) under Grant No. F020809.

Received: 12 December 2014 Accepted: 26 May 2015

References
1. Shah, D, Zaman, T: Rumors in a network: who’s the culprit? IEEE Trans. Inf. Theory. 57(8), 5163–5181 (2011)
2. Shah, D, Zaman, T: Rumor centrality: a universal source detector. In: Proceedings of the 12th ACM

SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems,
pp. 199–210. ACM, New York, (2012)

3. Dong, W, Zhang, W, Tan, CW: Rooting out the rumor culprit from suspects. In: 2013 IEEE International Symposium on
Information Theory, pp. 2671–2675. IEEE, New York, (2013)

4. Wang, Z, Dong, W, Zhang, W, Tan, CW: Rumor source detection with multiple observations: fundamental limits and
algorithms. In: Proceedings of the 2014 ACM International Conference on Measurement and Modeling of Computer
Systems - SIGMETRICS ‘14, pp. 1–13. ACM, New York, (2014)

5. Karamchandani, N, Franceschetti, M: Rumor source detection under probabilistic sampling. In: 2013 IEEE
International Symposium on Information Theory, pp. 2184–2188. IEEE, New York, (2013)

6. Luo, W, Tay, WP, Leng, M: Identifying infection sources and regions in large networks. IEEE Trans. Signal Process.
61(11), 2850–2865 (2013)

7. Prakash, BA, Vreeken, J, Faloutsos, C: Spotting culprits in epidemics: how many and which ones? In: 2012 IEEE 12th
International Conference on Data Mining, pp. 11–20. IEEE, New York, (2012)

8. Mannila, H, Terzi, E: Finding links and initiators: a graph-reconstruction problem. In: Proceedings of the 2009 SIAM
International Conference on Data Mining - SDM’09, pp. 1209–1219. SIAM, Philadelphia, (2009)

9. Lappas, T, Terzi, E, Gunopulos, D, Mannila, H: Finding effectors in social networks. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ‘10, pp. 1059–1068. ACM, New
York, (2010)

10. Kempe, D, Kleinberg, J, Tardos, E: Maximizing the spread of influence through a social network. In: Proceedings of
the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ‘03, pp. 137–146.
ACM, New York, (2003)

11. Valiant, LG: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)
12. Leskovec, J, Huttenlocher, D, Kleinberg, J: Predicting positive and negative links in online social networks. In:

Proceedings of the 19th International Conference on World Wide Web - WWW ‘10, p. 641. ACM, New York, (2010)
13. Leskovec, J, Huttenlocher, D, Kleinberg, J: Signed networks in social media. In: Proceedings of the 28th International

Conference on Human Factors in Computing Systems - CHI ‘10, p. 1361, New York, NY, USA, (2010)

	Abstract
	Keywords

	Introduction
	Problem formulation
	Propagation model
	Source inference problem

	Source inference algorithm
	Basic algorithm
	A more practical approach

	Experimental results
	Conclusion
	Appendix 1
	Proof of Theorem 1

	Appendix 2
	Proof of Theorem 2

	Authors' contributions
	Competing interests
	Acknowledgements
	References

