
Jia et al. Computational Social Networks (2015) 2:5
DOI 10.1186/s40649-015-0014-7

RESEARCH Open Access

Handling big data of online social networks on
a small machine
Ming Jia*, Hualiang Xu, Jingwen Wang, Yiqi Bai, Benyuan Liu and Jie Wang

*Correspondence: mjia@cs.uml.edu
Department of Computer Science,
University of Massachusetts, Lowell,
MA 01854, USA

Abstract

Dealing with big data in computational social networks may require powerful
machines, big storage, and high bandwidth, which may seem beyond the capacity of
small labs. We demonstrate that researchers with limited resources may still be able to
conduct big-data research by focusing on a specific type of data. In particular, we
present a system called MPT (Microblog Processing Toolkit) for handling big volume of
microblog posts with commodity computers, which can handle tens of millions of
micro posts a day. MPT supports fast search on multiple keywords and returns
statistical results. We describe in this paper the architecture of MPT for data collection
and phrase search for returning search results with statistical analysis. We then present
different indexing mechanisms and compare them on the microblog posts we
collected from popular online social network sites in mainland China.

Keywords: Microblog posts; Phrase search; Nextword indexing; Lucene-based
indexing; Mongo DB; Statistical analysis; Precision rate; Recall rate

Introduction
Dealing with big data in computational social networksmay require bigmachines with big
storage. This may seem that only large companies or organizations with lucrative budgets
can afford big-data research.We show that, by focusing on a specific type of data, it is pos-
sible to carry out big-data research on online social networks (OSNs) using commodity
computers in a small lab environment. In particular, we present a system for handling big
volume ofmicroblog posts (MBPs).Our system is calledMPT, which stands forMicroblog
Processing Toolkit.
MPT collects MBPs from popular OSN sites in mainland China, identifies interest-

ing topics from MBPs, and carries out statistical analysis on each topic. The statistical
analysis includes gender and location distributions, frequent words, and trends. We have
collected on average approximately 4.5 million (sometimes over 10 million) MBPs a day
since September 2012. We stored these MBPs in Mongo DB running on a commodity
computer.
To make use of these data, MPT is required to support, among other things, phrase

search that will quickly return the set of MBPs that contain a set of words entered by the
user and the statistical results of these posts displayed in various graphs. For this purpose,
we would need to create an appropriate indexing mechanism and update the indexing

© 2015 Jia et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: mjia@cs.uml.edu
http://creativecommons.org/licenses/by/4.0

Jia et al. Computational Social Networks (2015) 2:5 Page 2 of 12

content regularly. In addition, we also want to retrieve MBPs in real time while we are
collecting them, so that we may detect unexpected social events and perform other tasks.
In this paper, we present three indexing methods deployed on commodity computers.

Without using clusters of computers, we were able to build a system suitable for imple-
menting a fast search engine and carrying out topic modeling and statistical analysis on
large volume of MBPs.
The rest of the paper is organized as follows: In the ‘Data collection’ section, we will

describe the data source and the API (Application Programming Interface) we used to
collect MBPs. In the ‘Database’ section, we will introduce the database we use to store
the data and describe some of the problems we encountered when storing MBPs. In the
‘Data retrieval’ section, we will describe a number of indexing mechanisms, including
the default Mongo DB queries using regular expressions, our own implementation of the
nextword indexing [1], and an indexing system we built based on Lucene [2]. In partic-
ular, we will describe the structures of the systems for indexing, searching, and carrying
out statistical analysis. In the ‘Statistical analysis’ section, we will compare the speed of
querying, the speed of performing statistical analysis, and the accuracy of each method
on real data sets. We conclude the paper in the ‘Experiments’ section.

Data collection
We have collected MBPs continuously since September 2012 from popular OSN sites in
mainland China, including Sina, Tencent, and Renren. Both Sina and Tencent provide
open API to developers. They provided different APIs for different purposes. Since we
were focusing on discovering topics from daily MBPs with statistical analysis, rather than
on a specific user or a specific topic, we used the public-timeline interface [3] to collect
MBPs (see Figure 1 for an example of such interface).
Under the restriction of the user privilege given to us, we collected on average about 4.5

million (sometimes over 10 million) MBPs a day from these OSN sites. These MBPs were
semi-structured JSON style records.

Database
To handle unstructured MBPs in large quantity, we would need a high-performance,
steady, and flexible database system. Because MBPs are unstructured, we chose Mongo
DB [4] for this purpose, which is a common choice for storing unstructured data.
Different MBPs from different sources use different data structures. With Mongo DB,

we can store data in different data structures in the same collection. This makes it
convenient to manage the data. Moreover, Mongo DB is a database scheme with high
performance on the operations of both read and write, whichmeets our need of intensive
writing and querying MBPs.
Initially, we stored in one collection the MBPs posted on the same date and stored all

the collections in the same database. After running the system for a few weeks, we expe-
rienced unexpected system crashes. The reason was that Mongo DB would write data in
the same database into the same file and load all the files that are accessed frequently into
the main memory. As more MBPs were stored in the same database, the file grew larger
quickly, causing Mongo DB to consume almost all the RAM and crashing the system. To
solve this problem, we divide the collections of MBPs according to a fixed time interval of
1 week into different databases. Because writing to the database was the main operation

Jia et al. Computational Social Networks (2015) 2:5 Page 3 of 12

Figure 1 JSON example of public-timeline API.

of the system and the system only collected real-time data, Mongo DB would load the file
of the most recent week into RAM and thus consume much less RAM than before. The
system has never crashed after we made this change.
We note that we may also consider using an SQL-based database for reliability.

Data retrieval
Our Microblog Processing Toolkit performs the following three types of search:

1. Given a keyword, retrieve all MBPs that contain the keyword.
2. Given a set of keywords, retrieve all MBPs that contain at least one of these

keywords (this is the logical OR operation).

Jia et al. Computational Social Networks (2015) 2:5 Page 4 of 12

3. Given a set of keywords, retrieve all MBPs that contain all of the keywords (this is
the logical AND operation).

We approached these tasks using the following three methods.

Mongo DB regular expressions

Mongo DB provides a built-in regular expression searching method. Given the regular
expression we want the text to match, Mongo DB returns all the records that match the
regular expression. Then, the system will go over all the MBPs and count MBPs for each
statistical feature we are interested in, such as gender, location, and sentiment. This search
method, however, is inefficient and does not meet our needs. To speed up the search
process, we developed an indexing system based on the nextword indexing scheme [5].

Nextword indexing

The nextword index consists of a vocabulary of distinct words and, for each wordw in the
vocabulary, a nextword list and the position list. The nextword list consists of each word
s that succeeds w in an MBP in the database. For each triple of (w, s,M), where M is an
MBP that contains the phrase ws, the position list consists of the list of positions where
the phrase ws appears in the MBPM and a pointer that links (w, s) toM. We also store in
the position list the necessary information of each statistical feature. This structure will
be used in the statistical analysis component of the system. Figure 2 depicts an example of
the nextword structure of MBPs with the gender value, where ‘female’ in a triple (w, s,M)

means thatM was posted by a female user.
Based on the nextword indexing, we built a system consisting of two parts: (1) an index

server and (2) a search server. The index server indexes in real time the collected MBPs.
In particular, we store the word pair list in the main memory and the information of each

Figure 2 Nextword index structure.

Jia et al. Computational Social Networks (2015) 2:5 Page 5 of 12

word pair in the database. This list contains the position of the word pair in the text and
the information of the MBPs. The position of the word pair (w, s) inM is the same as the
position of w inM.
Our early version of the system stored each word pair in RAM. We observed that, for

less frequent words w, if we only stored the word-pair position of w in RAM but not the
word pairs (w, s), then the search speed would only bemildly affected, while the consump-
tion of RAMwould drop tremendously. Because retrieving a word pair (w, s) not stored in
RAMwill incur more time, to balance between the search speed and the RAM occupancy
by the nextword indexing, we set a threshold value on word-pair counts, so that the sys-
tem only stores in RAM the nextword list of words with frequencies over the threshold.
This measure cuts down the RAM usage significantly.
After several weeks of running the system, we encountered another problem of data

explosion: The number of MBPs provided through the APIs suddenly increased signifi-
cantly, more than twice the size of the data we normally collected in 1 day. Likewise, the
index size was also increased to occupy about 5 GB of RAM. Since we deployed the sys-
tem on a commodity computer, we could not afford such RAM usage. This motivated us
to devise a low-cost RAM solution. We accomplished this using Apache Lucene.

Lucene-based indexing

Apache Lucene is a library for a high-performance, full-featured text search engine, which
performs indexing and searching using small RAM, and generates an index file with rea-
sonable size. We customized the Lucene core and built a data retrieval system that solved
the problem of memory blowup. Our system consisted of two parts: (1) a real-time index
server and (2) a search server. The real-time index server refreshes the database frequently
and indexes dynamically the newly collected MBPs on the fly. The search server returns
the MBPs that contain all the keywords entered by the user. These two parts may work
simultaneously without conflicting each other, and so the search server can return real-
time posts the system collects. Figure 3 shows the structure of our Lucene-based indexing
structure.

Figure 3 Lucene-based index structure.

Jia et al. Computational Social Networks (2015) 2:5 Page 6 of 12

For convenience, we will call a person who authors or retransmits an MBP a sender. For
eachMBP, we will include in one string its sender’s location and gender, the posting time,
and the OSN this MBP is transmitting within. This string is used as the indexing key of
the MBP.

Statistical analysis
In addition to returning the MBPs, the Microblog Processing Toolkit also returns a num-
ber of statistical results of theseMBPs, including the proportion of genders, the provinces
of the senders, the sources of the MBPs, and the distribution of the posting time. More-
over, hot words (i.e., words with high frequencies) are generated while returning the
MBPs.
To carry out statistical analysis on the MBPs we have collected, we group them accord-

ing to the following three attributes: 1) posting time, 2) sender’s gender, and 3) sender’s
location.
Using the built-in regular expressions of Mongo DB, we would only need to traverse all

the MBPs the database returned and then carry out the statistical analysis. This process,
however, is extremely time consuming.
Using the nextword indexing, we could complete the statistical analysis in just a few

steps. Since the nextword index file contains the position of each word pair and the
required statistical features, the system can carry out statistical analysis by traversing the
position list for the given input phrase to be searched for without querying the entire
database.
We need to customize our own statistical features. As mentioned earlier, for each MBP,

we include in the index its sender’s location, gender, and posting time in one string.We set
this string as the key of the MBP. This means that for two MBPs posted during the same
hour, at the same location, and by the senders of the same gender, they will share the same
key. When indexing the MBP, we include this key in the index. When searching for the
data, we first carry out the group search by the key. After obtaining the groups with the
same key, we traverse each group and perform the statistical analysis in the group (details
of statistical analysis are not included in this paper).
We constructed a website [6] to perform opinion analysis using our MPT toolkit. For

example, Figure 4 is a snapshot of the website after a keyword (or a keyword phrase) is
entered to be searched. As marked in the graph, Part 1 is a navigation bar of the page,
Part 2 is an introduction of the website, Part 3 shows recent hot topics, Part 4 shows a
short summary of the statistical result which includes the gender distribution and senti-
ment distribution of the posts, Part 5 shows the trending of the topic, Part 6 shows the
sentiment-gender distribution, Part 7 is a frequent relevant-keyword bar graph, Part 8
shows active users, Part 9 is a map of China that shows the location distribution of the
MBPs containing the input keyword or keyword phrase, Part 10 is a pie chart of gender
distribution, Part 11 shows statistical analysis detecting water-army, and Part 12 shows a
list of hot posts. Figure 5 shows some of the statistical results, including a trending graph,
a frequent relevant-keyword bar graph, a frequent-sender bar graph, a pie chart of gen-
der distribution, and a map of China that shows the location distribution of the MBPs
containing the input keyword or keyword phrase. The trending graph shows n lines, on a
given set of n input keywordsw1,w2, · · · ,wn, such that the ith line displays the number of
the MBPs containing keyword wi at a given time from a starting time to an ending time.

Jia et al. Computational Social Networks (2015) 2:5 Page 7 of 12

Figure 4 A website built with our system.

Jia et al. Computational Social Networks (2015) 2:5 Page 8 of 12

Figure 5 Sample of statistical analysis result.

Let w be the keyword or a keyword phrase to be searched. The frequent relevant-keyword
bar graph shows the ten most frequent keywords (not equal to w) in the MBPs that con-
tain w. These keywords are called hot words (with respect to w). The frequent-sender bar
graph shows the ten most active senders who post the most MBPs containing w. These
senders are referred to as top senders.
The trending graph, gender distribution, location distribution, and source OSNs can

be easily calculated by a simple traversal of the the MBPs in each group. However, the
hot words and the top senders cannot be obtained this way since each MBP may have its
unique top tf-idf words. Instead,MPT traverses all theMBPs contained in each group and
adds all the keywords and senders to two different maps. It then analyzes these two maps
to obtain the list of hot words and the list of top senders.

Experiments
We designed an experiment to test the efficiency and accuracy of the three methods for
data retrieval and statistical analysis mentioned in the previous sections. For convenience,
we will refer to these methods of Mongo DB’s built-in regular expressions, nextword
indexing, and Lucene-based indexing as, respectively, Mongo, Nextword, and Lucene.
We used the MBPs we collected in 1 day (the day was randomly chosen) from Sina and
Tencent as the data set for comparing the three different methods. There were about 4.3
million MBPs in this 1-day collection. All experiments were executed on a commodity
computer with a quad-core CPU and 16-GB RAM.
In practice, the system is designed to handle the posts of multiple days with volume

much larger than the data used in the experiment. For a dataset of very large scale, our
systemwill slice the dataset into multiple subsets. In particular, for a dataset that contains
posts in multiple days, the system will slice the dataset into multiple subsets such that
each subset contains the posts of the same day. Thus, our experiment does indicate the
fundamental performance. We repeated the experiment on datasets from different dates
with similar results.

Jia et al. Computational Social Networks (2015) 2:5 Page 9 of 12

The experiment consisted of two parts. In the first part, we examined how fast each
method responded to user queries, as well as how fast the method carried out statistical
analysis and returned the results. In the second part, we compared the accuracy of each
method.
To run the experiment, we pre-counted all the keyword phrases in the data set and

randomly selected a number of keyword phrases as our testing phrases, such that these
phrases were made up of two or three keywords and appeared in the test data set for more
than 100 times.
For each phrase we selected, we executed a query with each method. We recorded the

time that each method incurred to respond to the query and finished up the statistical
analysis. We tested Mongo, Nextword, and Lucene separately. For each test, we repeated
the process twice and calculated the average time. The results are shown in Figures 6
and 7.
First, we compared the responding time of eachmethod. The horizontal axis represents

the actual frequency of keywords, and the vertical axis represents the running time of
returning the MBPs that contain the keywords.
From Figure 6 , we can conclude the following:

1. Lucene offers the fastest responding time, and the responding time will increase as
the phrase frequency increases.

2. Nextword is faster, which is slower but close to Lucene, but its time complexity is
not as steady as Lucene.

3. Mongo is the slowest, which does not meet the real-time search requirement.

We then compare the speed of carrying out statistical analysis for each method. From
Figure 7 , we can see that Lucene is still the fastest, Nextword is slower than Lucene, while
Mongo is substantially slower. The time interval between responding to the search query

Figure 6 Responding time.

Jia et al. Computational Social Networks (2015) 2:5 Page 10 of 12

Figure 7 Statistical analysis time.

and finishing up statistical analysis is quite short for Lucene and is much longer for the
other two methods. We note that the mechanism for carrying out the statistical analysis
of each method is different. By querying Mongo, we would need to traverse all the MBPs
returned on the query, which would incur significant computing time when the returning
data set is large. The nextword indexing is a well-structured indexing mechanism, where
no traverse is needed to perform statistical analysis, and so it can finish the statistical
analysis quickly. Lucene finishes statistical analysis by traversing all the groups instead of
all the posts.
We can see from Figure 7 that the time complexity of Mongo search does not increase

much when the frequency of the keywords is increased, while the time complexity
of Nextword search and the Lucene search is clearly related to the frequency of the
keywords.
Finally, we compared the accuracy of each method (see Figure 8). The horizontal axis

represents the actual frequency of the phrase, and the vertical axis represents the counts
of the returning results.
From Figure 8, we can see that the accuracy of each method differs from each other,

where Mongo is 100% accurate. In other words, its precision and recall rates are both
equal to 1.
Nextword may miss some MBPs. The main reason of missing MBPs is due to the seg-

mentation error of the keywords in the Chinese language. The keyword segmentation
in the Chinese language is different from that of English, for the standard Chinese writ-
ing contains no space between characters. Thus, different segmentation tools may return
different segmentation results. Even for the same keyword using the same segmentation
tool, the results may still be different with different text. For the keywords we queried in
the experiments, the segmentation result in the MBPs could differ from that in the search
query. The MBPs with different segmentation results would be missed.

Jia et al. Computational Social Networks (2015) 2:5 Page 11 of 12

Figure 8 Accuracy.

Lucene, on the other hand, seems to have the worst precision and recall rates, where
the number of returned MBPs is usually larger than the actual number that contains the
phrase. This is caused by the Lucene indexing structure, where all theMBPs that contain a
subset of the search keywords are returned. For example, if phrase X is made up of words
A and B, when querying X, Lucene will return all the posts that contain A or B. So, the
returning result usually has a larger-than-actual count.
Table 1 shows the precision and recall rates of the search results using the three dif-

ferent methods. We can see from the table that Mongo performs well on accuracy. Both
Mongo and Nextword have a value of 1 on the precision rate, whichmeans that the MBPs
Mongo returned were exactly those that contain the search phrase. Since Nextword may
miss some MBPs, this affected negatively its recall value. Lucene suffers precision loss
compared to the other two methods. But it offers better performance in the recall value
than Nextword, which means that it may miss fewer MBPs than Nextword.
From our experiment, we can see that each method has its pros and cons. In particu-

lar, Mongo provides the regular expression searching method with the perfect accuracy.
But it is too slow to meet the needs of real-time querying and stat analysis. Nextword has
the best performance in statistical analysis, and the responding time can meet the need
of real-time search. But its memory consumption is high, which cannot meet the increas-
ing data requirement. Lucene, on the other hand, has the fastest responding time and
the fastest statistical analysis time, but it incurs low accuracy. This method is good for
building a fast search engine but may not meet the requirement of high accuracy.

Table 1 Experimental results on precision and recall rates

Method Precision Recall

Mongo 1 1

Nextword 1 0.72

Lucene 0.53 0.81

Jia et al. Computational Social Networks (2015) 2:5 Page 12 of 12

We note that the statistical result returned by the system is in a tree-structured JSON
format, which contains the information we are interested in. Such information is straight-
forward to obtain with little extra time. For example, for MBPs of a particular topic, it is
easy to obtain from the statistical result the number of postings by users of a particular
gender throughout a particular period of time of the day.

Conclusion
In this paper, we described and compared three methods we used to analyze big volume
of microblog posts. We conclude the paper by summarizing our findings as follows:

1. Mongo is good for storing data but not suitable for carrying out search on big data.
2. Nextword offers good performance on real-time search with fast response time and

statistical analysis time. But it would take up too much RAM. Nextword would be a
good choice for analyzing moderate-size data (e.g., less than 3 million MBPs) with
high requirement on statistical analysis.

3. Lucene is a low RAM-consumption and stable system. But it has the worst
performance on precision and recall. For those who need to analyze big volume of
data but do not require exact statistical results, Lucene would be a better choice.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
This project was directed by JW and co-directed by BL. MJ and JW designed the indexing mechanisms and drafted the
manuscript. MJ implemented the indexing mechanisms and carried out numerical comparisons. HX and YB wrote and
maintained the program to collect microblog posts. JWW developed the website and implemented the graphs. All
authors read and approved the final manuscript.

Authors’ contributions
JW is Professor and Chair at the Department of Computer Science at the University of Massachusetts Lowell (UMass
Lowell), who received his PhD in Computer Science from Boston University in 1991. BL is Associate Professor at the
Department of Computer Science at UMass Lowell, who received his PhD in Computer Science from the University of
Massachusetts Amherst in 2003. MJ, JWW, and YB are PhD candidates at the Department of Computer Science at UMass
Lowell under the supervision of JW. HX is Senior Software Engineer at EMC, who received his MS degree in Computer
Science at UMass Lowell under the supervision of JW.

Acknowledgements
The authors were supported in part by the NSF under grants CNS-0953620, CNS-1018422, and CNS-1247875. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF. The authors thank Peng Xia and Liqun Shao for participating in various
discussions of the project.

Received: 2 November 2014 Accepted: 24 February 2015

References
1. Williams, HE, Zobel, J, Anderson, P: What’s next? Index structures for efficient phrase querying. In: Australasian

Database Conference, pp. 141–152, Auckland, New Zealand, (18-21/1/1999)
2. The Apache Software Foundation: Apache Lucene (2/1/2015). https://lucene.apache.org/
3. Sina corporation: Open Documentfor Sina Micro-blog API (2/1/2015). http://open.weibo.com/wiki/Statuses/

public_timeline/en
4. MongoDB, Inc: MongoDB (2/1/2015). http://www.mongodb.org/
5. Bahle, D, Williams, H, Zobel, J: Compaction techniques for nextword indexes. In: International Symposium on String

Processing and Information Retrieval, pp. 0033–0033, Laguna de San Rafael, Chile, (13-15/11/2001)
6. Wantology Corporation: Wocson (2/1/2015). http://www.wocson.net/

https://lucene.apache.org/
http://open.weibo.com/wiki/Statuses/public_timeline/en
http://open.weibo.com/wiki/Statuses/public_timeline/en
http://www.mongodb.org/
http://www.wocson.net/

	Abstract
	Keywords

	Introduction
	Data collection
	Database
	Data retrieval
	Mongo DB regular expressions
	Nextword indexing
	Lucene-based indexing

	Statistical analysis
	Experiments
	Conclusion
	Competing interests
	Authors' contributions
	Authors' contributions
	Acknowledgements
	References

