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Abstract

The problem of spreading information is a topic of considerable recent interest, but the
traditional influence maximization problem is inadequate for a typical viral marketer
who cannot access the entire network topology. To fix this flawed assumption that the
marketer can control any arbitrary k nodes in a network, we have developed a
decentralized version of the influential maximization problem by influencing k
neighbors rather than arbitrary users in the entire network. We present several practical
strategies and evaluate their performance with a real dataset collected from Twitter
during the 2010 UK election campaign. Our experimental results show that information
can be efficiently propagated in online social networks using neighbors with a high
propagation rate rather than those with a high number of neighbors. To examine the
importance of using real propagation rates, we additionally performed an experiment
under the same conditions except the use of synthetic propagation rates, which is
widely used in studying the influence maximization problem and found that their
results were significantly different from real-world experiences.

Keywords: Information diffusion; Information dissemination; Online social networks;
Viral marketing

Introduction
In the field of social network analysis, a fundamental problem is to develop an epidemi-
ological model for finding an efficient way to spread information through the model. It
seems natural that many people are often influenced by their friends’ opinions or recom-
mendations. This is called the ‘word of mouth’ effect and has for long been recognized as
a powerful force affecting product recommendation [1].
Recent advances in the network theory have provided us with the mathematical and

computational tools to understand them better. For example, in the Independent Cascade
(IC) model proposed by Goldenberg et al. [2], (1) some non-empty set of nodes are ini-
tially activated (or influenced); (2) at each successive step, the influence is propagated by
activated nodes, independently activating their inactive neighbors based on the propaga-
tion probabilities of the adjacent edges. Here, activated nodes mean the nodes that have
adopted the information or have been infected. This models how a piece of information
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will likely be spread through a network over time. It enables us to investigate what sort of
information diffusion scheme might be the most effective one under certain conditions.
This model is also highly relevant to security. For example, cyberstalkers might be inter-

ested in spreading rumors, gossips, news, or pictures through social networks to damage
their victims’ (e.g., celebrity, political party, company, or country) reputation. The same
model works in social media campaign where spammers and propagandists want to share
their advertisements on online social networks; fake accounts with automated bots are
often used to amplify advertising campaigns in social media [3-5].
Thus far, however, the models and analytic tools used to analyze epidemics have been

somewhat limited. Most previous studies [6,7] aimed to analyze the process of informa-
tion diffusion by choosing a set of arbitrary k nodes in a network as the initially activated
nodes from a bird’s eye perspective based on the full control of the entire network, which
may indeed be unacceptable in many real-life applications since there is no such central
entity (except the online social network service provider itself ).
From the point of view of an individual user (e.g., viral marketer) who wants to effi-

ciently spread a piece of information (or a rumor) through a network, a more reasonable
epidemiological model would not assume the knowledge of the entire network topology.
Kim and Yoneki [8] recently introduced the problem called Influential Neighbor Selection
(INS) where a spreader s spreads a piece of information through carefully chosen k neigh-
bors of hers instead of a set of any arbitrary k nodes in a network. Under this model,
each user can only communicate with the user’s immediate neighbors and has no knowl-
edge of the global network topology except for her own connections. However, their work
has two limitations: (1) it was simply assumed to use a constant propagation rate, despite
variations in user propagation rates in practice. For example, in real-world online social
network services such as Twitter or Facebook, each user has a distinct propagation rate
for her neighbors on spreading information according to the user’s reputation and/or
role, such as opinion formers, leaders, or followers [9]; (2) their experimental results were
limited to undirected graphs with parameter values chosen in a somewhat ad hocmanner.
Recently, Kim [10] extended this model by introducing several parameters (user prop-

agation weight, content interestingness, and decay factor) to provide a more general and
practical information diffusion model. This gives much finer granularity than the previ-
ous model [8]. However, their experiments still depended on synthetic parameters that
might significantly affect the information diffusion process.
With a real dataset (Twitter users and messages related to the 2010 UK election

campaign), we revisited the INS problem and evaluated the performance of four spread-
ing schemes from the simple random neighbor selection to a sophisticated neighbor
selection scheme using both the ‘number of friends’ and ‘user propagation rate’ each
neighbor has. To measure the performance of these schemes, we used the conventional
Independent Cascade (IC) model [2], which is widely used for the analysis of information
diffusion [2,7,11].
In particular, we demonstrated the importance of using real propagation rates by

comparing the simulation results with those using the randomly assigned synthetic
parameters which were often used in studying the influence maximization problem. Our
comparison results show that their results were significantly different, which indicate
that the use of such synthetic propagation rates might be undesirable to understand the
characteristics of information diffusion on a real-world social network (e.g., Twitter).
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We also performed a simulation with various parameters. Our experimental results
suggest that the scheme to select neighbors who wrote popular posts produced the best
overall results, even without consideration of the ‘number of friends’. Moreover, we found
that the information diffusion speed of some schemes (e.g., random neighbor selection)
in the previous study [10] was quite exaggerated and thus contributed to the reduction of
the performance gap between information diffusion schemes. For example, we observed
that the random selection scheme is not practically effective even with a high number k
initially activated nodes; this is quite different from previous studies [8,10], which showed
that the random selection scheme achieved reasonable performance when k ≥ 3.
The rest of this paper is organized as follows. Related work is discussed in

Section ‘Related work’. In Section ‘Influential neighbor selection problem’, we for-
mally define the INS problem and notations. Then, we present the four reason-
able neighbor selection schemes in Section ‘Neighbor selection schemes’. In Section
‘Experimental results’, we evaluate their performance through simulation with a real
dataset collected from Twitter and recommend the best neighbor selection scheme with
various conditions. We conclude in Section ‘Conclusions’.

Related work
Influential maximization (IM) problem has recently received increasing attention, given
the growing popularity of online social networks, such as Facebook and Twitter, which
have provided great opportunities for the diffusion of information, opinions, and adoption
of new products.
The IM problem was originally introduced for marketing purposes by Domingos and

Richardson [6]: The goal is to find a set of k initially activated nodes with the maximum
number of activated nodes after the time step t. Kempe et al. [7] formulated this prob-
lem under two basic stochastic influence cascade models: the Independent Cascade (IC)
model [2] and the Linear Threshold (LT) model [7]. In the IC model, each edge has a
propagation probability and influence is propagated by activated nodes independently
activating their inactive neighbors based on the edge propagation probabilities. In the LT
model, each edge has a weight, each node has a threshold chosen uniformly at random,
and a node becomes activated, if the weighted sum of its activated neighbors exceeds
its threshold. Kempe et al. [7] showed that the optimization problem of selecting the
most influential nodes in a graph is NP hard for both models and also proposed a greedy
algorithm that provides a good approximation ratio of 63% of the optimal solution. How-
ever, their greedy algorithm relies on the Monte Carlo simulation on influence cascade to
estimate the influence spread, which makes the algorithm slow and not scalable.
A number of papers in recent years have tried to overcome the inefficiency of this

greedy algorithm by improving the original algorithm [12,13] or proposing new algo-
rithms [13-15]. Leskovec et al. [12] proposed the cost-effective lazy forward (CELF)
scheme in selecting new seeds to reduce the number of influence spread evaluations,
but it is still slow and not scalable to large graphs, as demonstrated in [15]. Kimura and
Saito [14] proposed shortest-path-based heuristic algorithms to evaluate the influence
spread. Chen et al. [13] proposed two faster greedy algorithms called MixedGreedy and
DegreeDiscount for the IC model where the propagation probabilities on all edges are
the same; MixedGreedy removes the edges that have no contribution for propagating
influence, which can reduce the computation on the unnecessary edges; DegreeDiscount
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assumes that the influence spread increases with node degree. Chen et al. [15] proposed
the Maximum Influence Arborescence (MIA) heuristic based on local tree structures to
reduce computation costs. Wang et al. [16] proposed a community-based greedy algo-
rithm for identifying the most influential nodes. The main idea is to divide a social
network into communities and estimate the influence spread in each community instead
of the whole network topology.
As a variant of the conventional IM problem, Kim and Yoneki [8] introduced the

problem called Influential neighbor selection (INS) to select the most influential neigh-
bors of a node, rather than the most influential arbitrary nodes in a network. Kim [10]
extended this epidemiological model by introducing several parameters (user propagation
weight, content interestingness, and decay factor) to provide a more general and practi-
cal information diffusion model. However, they still used synthetic parameters that might
significantly affect the information diffusion process. More recently, Kim et al. [10] found
that the information diffusion speed of some schemes (e.g., propagation weight and
random) in the previous study [17] was quite overestimated. In this paper, we extend
their work by analyzing the effects of real propagation rates compared with the synthetic
propagation rates.
Many studies noted that the levels of information-sharing activity varied greatly

between users in social networks. Romero et al. [18] argued that a majority of Twitter
users might be passive, not engaging in creating and sharing information. Cha et al. [9]
found that users with many followers do not necessarily influence in terms of spawning
retweets or mentions – the Spearman’s rank correlation coefficient between the ‘ranking
by followers’ and ‘ranking by retweets’ for all users was 0.549. Zhou et al. [19] showed that
in Twitter, the content of a tweet might be an important factor in determining the ‘retweet
rate’ – the mean retweet rate was 0.0136 but standard deviation was as high as 0.0501.
Also, they observed that cascades tend to be wide and not too deep suggesting that the
retweet rate may decay as the cascades spread away from the source – the mean of decay
factors was about 0.2.

Influential neighbor selection problem
We begin with the definition of the Independent Cascade (IC) model [2] and then intro-
duce the Influential Neighbor Selection (INS) problem, which will be used in the rest of
the paper.
We model an influence network as a directed graph G = (V ,E) consisting of a set of

nodes V and a set of ordered pairs of nodes E called the edge set, representing the com-
munication channels between node pairs. A directed edge (u, v) from node u to node v of
G is associated with a propagation probability λu,v, which is the probability that v is acti-
vated by u through the edge in the next time step if u is activated. Here, v is said to be a
neighbor (or successor) of node u. For node u ∈ V , we use N(u) to denote the set of u’s
neighbors. The outdegree of node u is denoted as d(u) = |N(u)|, which could be used
simply in estimating the node u’s influence on information propagation.
In the IC model [2], we assume that the time during which a network is observed

is finite; without loss of generality, the time period is divided into fixed discrete steps
{1, . . . , t}. Let Si ⊆ V be the set of nodes that are activated at the time step i. We consider
the dynamic process of information diffusion starting from the set of nodes S0 ⊆ V that
are initially activated until the time step t as follows: At each time step i where 1 ≤ i ≤ t,
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every node u ∈ Si−1 activates its inactivated neighbors v ∈ V \ Si−1 with a propagation
probability λu,v. The process ends after the time step t with St . A conventional Influential
Maximization (IM) problem is to find a set S0 consisting of k nodes to maximize |St|.
The Influential Neighbor Selection (INS) problem [8] is a variant of the IM problem:

Given a spreader s ∈ V and a budget constraint k, we aim to maximize the number of
activated nodes in a network after the time step t by selecting s’s min(k, d(s)) neighbors
only (rather than any subset of k nodes), as the set of nodes S0 ⊆ V that are initially acti-
vated. Compared to the conventional IM problem, the INS problem has three additional
requirements: (1) each node only communicates with its immediate neighbors; (2) each
node has no knowledge about the entire network topology except for its own connections;
and (3) each message size is bounded to O(log |V |) bits (more intuitively, each message
can only contain the node identity and some constant values of the node properties).
However, the initial INS problem in [8] – every edge has the same propagation prob-

ability – is too simple to correctly reflect the characteristics of the information diffusion
process in real-world situations. Clearly, in the most popular online social network ser-
vices such as Twitter or Facebook, each user has a different propagation rate for her
neighbors on spreading information in a network according to the user’s reputation or
role such as opinion formers, leaders, or followers [9]. Figure 1 shows an example of the
INS problem where each user has a different propagation rate. In this figure, a number in
each node indicates the node’s propagation rate. Here, for example, the node g’s propaga-
tion rate is 0.4. Given this graph with the spreader node s, when k = 1, we might choose
g as an initially activated node to maximize the number of activated nodes in the future;
however, when every edge has the same propagation probability, the optimal choice might
be either f rather than g.
We used the three important parameters (user propagation weight ω, content inter-

estingness φ, and decay factor γ ) to establish a more general and practical information
propagation model. The details are as follows:

Figure 1 An example of the INS problem. Each node’s propagation rate is provided as a number in the
node. With the spreader node s, when k = 1, we should choose g as an initially activated node to maximize
|St|; however, when every edge has the same propagation probability, the optimal choice might be either f
rather than g.
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The user propagation weight ω represents each user’s average propagation rate to her
neighbors. Given a user u, ω(u) is defined as τ(u)/(ρ(u)/d(u)) where τ(u) and ρ(u) are
the number of u’s posts shared by u’s neighbors and the number of u’s all posts, respec-
tively. For example, if a user u with 1,000 neighbors wrote 10 posts and gets 100 shares,
ω(u) is 100/(10 · 1000) = 0.01.
The content interestingness φ(r) of information r represents a measure to determine

how much users want to share the information r with their neighbors. Naturally, higher
content interestingness φ of a piece of information may facilitate higher propagation
for the information through a network. Previous studies [19,20] showed that propaga-
tion probability λ can be greatly changed with the content of information (i.e., content
interestingness φ).
The decay factor γ at hopN represents the ratio between the propagation probability at

hop N and the propagation probability at hop N − 1. In practice, the propagation proba-
bility might decay exponentially as the cascades spread away from the information source.
Here, one possible explanation would be that the freshness of the information would drop
as the time goes on.
With these parameters, given an edge (u, v) ∈ E, a spreader s ∈ V and a piece of

information r, λ(u, v, s, r) is finally defined as follows [10]:

λ(u, v, s, r) = min
{
ω(u) · φ(r) · γ δ(u,s,r)−1, 1

}
(1)

where δ(u, s, r) is the number of times the information r is to be relayed from s to u.
For example, when φ(r) = 0.0136, δ(u, s, r) = 3, and γ = 0.2, a user u with ω(u) = 1

would activate his (or her) neighbor v with the probability of about 0.0005 (≈ 1 · 0.0136 ·
(0.2)2).
In this paper, we also use these parameters and the propagation probability equation.

We particularly performed experiments with a real dataset (Twitter users and messages
related to the 2010 UK election campaign) instead of using randomly generated synthetic
parameters to providemore realistic simulation results than the previous study [10] which
was not capable of considering the correlation between the number of neighbors and the
propagation rate that might significantly affect the information diffusion process.

Neighbor selection schemes
For the INS problem described in Section ‘Influential neighbor selection problem,’ we
basically use a greedy strategy to select the influential neighbors.
Assume that a spreader s ∈ V wants to spread a piece of information r through the

network G = (V ,E) by sharing r with its min(k, d(s)) neighbors at the initial step. Node
s first tries to assess the influence of information diffusion for each neighbor v ∈ N(s),
respectively, by collecting the information about v. We note that the neighbors’ influence
should be estimated based on s’s local information only, rather than the whole network.
Since online social networks, such as Facebook, typically provide APIs to obtain the
neighborhood information about the user, s can automatically collect the information
about her own neighbors. After estimating the neighbors’ influences, s selects the top
min(k, d(s)) nodes with the highest influence values from N(s); that is, for the IC model
in Section ‘Influential neighbor selection problem’, these nodes are selected as the set of
initially activated nodes S0 ⊆ V .
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For the purpose of influence estimation, we test the following four selection schemes
based on the ‘number of friends’ and ‘user propagation weight’ each user has:

• Random selection: Pickmin(k, d(s)) nodes randomly from N(s). This scheme is very
simple and easy to implement – the spreader s does not need any knowledge of the
network topology.

• Degree selection: Pick themin(k, d(s)) highest degree nodes from N(s). This
scheme requires the degree knowledge of neighbors.

• Propagation-weight selection: Pick themin(k, d(s)) highest user propagation
weight nodes from N(s). This scheme requires the user propagation weight
knowledge of the nodes. To calculate ω(v) for s’s neighbor v ∈ N(s), the information
about τ(v), ρ(v) and d(v) is required where τ(v) and ρ(v) are the number of v’s posts
shared by v’s neighbors and the number of v’s all posts, respectively.

• Hybrid selection: Pick themin(k, d(s)) nodes v ∈ V with the highest weighted node
degree ωd(v) which is defined as ωd(v) = ω(v) · d(v). At the first glance, this scheme
requires the knowledge of both the degree and the user propagation weight of
neighbors. In fact, however, this scheme can be simply implemented without the
knowledge about node degree since ω(v) · d(v) is calculated as τ(v)/ρ(v); d(v) is
automatically canceled in the calculation.

The algorithm of those schemes is commonly specified as follows:

1: procedure SELECT-k-NEIGHBORS(G, s, k, SCHEME)
2: S0 ← ∅ 	 initialize the set of initially activated nodes S0
3: N ← Find-Neighbor-Set(s) 	 find the node s’s neighbors
4: m ← min(k, |N |) 	 calculate min(k, d(s)) to determine the

number of selecting neighbors (i.e.,
|N | = d(s))

5: switch SCHEME do
6: case Random
7: Q ← Random-Shuffle(N) 	 construct a queue Q withm elements

randomly drawn from N
8: case Degree
9: Q ← Construct-Max-Queue(N) 	 construct a max-priority queue Q where the

key is the node degree d(v) for v ∈ N
10: case Propagation
11: Q ← Construct-Max-Queue(N) 	 construct a max-priority queue Q where the

key is the node propagation weight ω(v) for
v ∈ N

12: case Hybrid
13: Q ← Construct-Max-Queue(N) 	 construct a max-priority queue Q where the

key is the weighted node degree ωd(v) for
v ∈ N

14: for i ← 1,m do
15: v ← Extract-Max(Q) 	 get a node v with the maximum key (i.e., the

promising candidate in each greedy scheme
except for Random)

16: Insert(S0, v) 	 insert the selected node v into the set of
initially activated nodes S0

17: end for
18: end procedure
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The proposed algorithm runs inO(|N | +m log |N |) time – themaximum-priority queue
Q can be constructed bottom-up in O(|N |); the priority queue operations (extract-max)
can be performed in O(log |N |) in each ofm iterations. In practice, the term of ‘m log |N |’
can be simply ignored sincem is less than or equal to a constant k. That is, these schemes
can efficiently be performed.
Furthermore, we note that these schemes seem to be themost reasonable and promising

for the INS problem since we cannot calculate network centrality metrics, such as close-
ness and betweenness [21], which require the knowledge of the entire network topology.
Here, we do not consider the other metrics (e.g., [22]) to estimate node centrality based on
localized information alone since the previous work [8] already showed that these metrics
are ineffective for the INS problem compared with node degree.
The communication costs of all these schemes are O(d(s)) since the spreader s can

obtain d(v), ω(v), or ωd(v) through only direct communications with each neighbor
v ∈ N(s).

Experimental results
In this section, we analyze the performance of the selection schemes presented in
Section ‘Neighbor selection schemes.’ Our goal was to find the best neighbor selection
scheme to maximize information diffusion in Twitter through the experiments.
For experiments, we used the Twitter dataset [23] related to the 2010 UK general elec-

tion between the 5th and 12th of May since this dataset reflects typical behavior of
information diffusion in a political campaign.
To remove insignificant test cases, we filtered out users who did not either write any

posts or had any followers and constructed the Twitter follower graph for those users. In
this graph, each node represents a Twitter user and each edge represents a follow relation
as a directed edge going from the followed user to the follower; when a user u follows
another user v, we added an edge from v to u with a weight of ω(v) from the point of view
of information flow. Unlike previous studies that used network topology alone [8] or syn-
thetic datasets [10], we used real propagation rate ω(u) for each node u calculated from
the Twitter messages. That is, from the collected tweets, we counted the number of tweets
produced by u and the number of u’s tweets shared (i.e., retweeted) by u’s neighbors,
respectively, to calculate the user u’s propagation rate with those numbers.
The constructed graph consists of 45,179 nodes and 1,938,734 edges representing a

sub-network of Twitter. This graph has the following properties: (1) its average degree
is 42.91; (2) its number of strongly connected components is 4,559; and (3) the number
of weakly connected components is 18 (i.e., this graph is divided into 18 disconnected
components).
We used the IC model described in Section ‘Influential neighbor selection problem’

to evaluate the performance of the schemes presented in Section ‘Neighbor selection
schemes’, with varying the number of initially activated neighbors k. The propagation
probability λ(u, v, s, r) on an edge (u, v) ∈ E was defined with the spreader s ∈ V and a
piece of information r described in Section ‘Influential neighbor selection problem’.
In each simulation run, we randomly picked a spreader with a piece of informa-

tion r and then selected its k neighbors according to a selection criterion presented in
Section ‘Neighbor selection schemes’, where the content interestingness φ(r) was ran-
domly drawn from the normal distribution with the mean of 0.0136 and the standard
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deviation of 0.0501, according to real data [19]. We also set the decay factor γ = 0.2
according to the mean of decay factors observed in the same dataset.
For evaluation, we observed the changes in the number of activated nodes during the

200th time steps.With a fixed k, we repeated this 500 times tominimize the bias of the test
samples (randomly selected spreaders); we measured the ratio of the average number of
activated nodes per test sample to the total number of nodes in the network. To establish
a fair comparison, the parameter values were the same for all selection schemes in the ith
run. Figure 2 shows how these values are changed over time t with k = 1, 3, 5, or 7 under
the ICmodel.
From this figure, we can see that the hybrid selection scheme outperformed the other

selection schemes: When k = 1, in the hybrid selection scheme, the ratio of the average
number of activated nodes to the total number of nodes were over 0.002 (i.e., 2%) while the
ratios were below 0.002 in degree and propagation-weight selection schemes. As k
increased to 7, the gap between hybrid and other selection schemes was rather reduced
but still seemed significant. This shows that we can effectively spread information using
the hybrid scheme, even without consideration of the ‘number of friends’ information
since the node degree is not needed to use thehybrid scheme. Interestingly, the degree
selection was slightly better than the propagation-weight selection when k = 3, 5, or
7, while these schemes produced almost the same results when k = 1.

Figure 2 Changes in the ratio for real propagation rates. Changes in the ratio of the average number of
activated nodes to the total number of nodes in the network over time t for the real propagation rates.
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Paired one-tailed t-tests with α = 0.01 were used to compare the performance of the
neighbor selection schemes in a statistically significant manner. We tested whether the
distributions of the numbers of the activated nodes between schemes after the final time
step (i.e., the 200th) were statistically different. The test results show that the performance
of all the schemes appeared to be significantly different, except for the comparison of
propagation-weight and degree when k = 1 (p = 0.5202).
To examine the influence of real propagation rate, we performed additional experiments

using the above Twitter datasets, except the use of synthetic propagation rate parame-
ters. As for synthetic propagation rates, the distribution of nodes’ propagation rates were
obtained by randomly shuffling the associations between nodes and propagation rates
(i.e., we randomly permute user propagation rates and sequentially assign them to users)
while keeping the network topology. Figure 3 shows how the numbers of activated nodes
were changed over time t with k = 1, 3, 5, or 7 for the cases of using synthetic propaga-
tion rates. Since the resulting numbers with synthetic propagation rates are quite different
from those with real propagation rates, we used a different y-axis scale for clarity.
Unlike the cases of using real propagation rates, we can see that the propagation-

weight scheme is significantly better than the degree scheme. Moreover, the perfor-
mance of the propagation-weight scheme is almost similar to that of the hybrid

scheme – this trend appears to be totally different from the cases of using real prop-
agation rates but similar to the results presented in Kim et al. [10] which also used

Figure 3 Changes in the ratio for synthetic propagation rates. Changes in the ratio of the average number
of activated nodes to the total number of nodes in the network over time t for the synthetic propagation rates.
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synthetic parameters for experiments. This implies that there exists the reciprocal rela-
tionship between the node degree and propagation rate in a real-world social network.
To show this, we calculate the Spearman correlation coefficient between the degree rank-
ing of nodes and their propagation rate ranking. The computed rank correlation is 0.1936
(P < 0.0001), which indicates there exists a weak correlation between them.
We discuss how the performance of the proposed neighbor selection schemes may

change with the number of initially activated nodes k. To accelerate the speed of informa-
tion diffusion, a possible straightforward approach is to increase the number of initially
activated neighbors k. Probably, we can imagine that even the naive random selection
scheme can also be used to efficiently disseminate a piece of information if k increases
sufficiently.
To demonstrate the effects of k, we analyzed the ratio of the average number of activated

nodes after the 50th, 100th, 150th, and 200th time steps, respectively, with k ranging from
1 to 7. The experimental results are shown in Figure 4.
Unsurprisingly, the effects of k were rather limited for the process of early stage – in

all selection strategies, the number of activated nodes were not greatly increased until
the 50th step. After around that time, however, the performance of all selection schemes
overall was improved as k increased. The ratios of activated nodes, except the random

Figure 4 Changes in the ratio with the number of initially activated neighbors k. Changes in the ratio of
the average number of activated nodes to the total number of nodes in the network with the number of
initially activated neighbors k.



Kim et al. Computational Social Networks  (2015) 2:3 Page 12 of 15

selection scheme, show almost a similar pattern – the curves commonly had gentle slopes.
Although the random selection scheme was relatively highly affected by k, the average
number of activated nodes in the random selection scheme was still below 0.002 after
the 200th time step even for k = 7. We can also see that the performance gaps between
the schemes still existed with k. Even when the time step is 50th, the hybrid, degree,
and propagation-weight selection schemes were significantly better than the random
selection scheme. Moreover, after the 200th time steps, the performance gaps between
selection schemes are clearly shown. We note that although the number of the initial
activated nodes is really important, selection scheme is also important to accelerate the
diffusion of information through the network. The performance of the hybrid selection
scheme, when k = 4, was better than the other schemes even when k = 7.
We now move to the discussion on the performance of neighbor selection schemes

when the content interestingness φ changes by fixing k = 1. We analyzed the ratio of
the average number of activated nodes after the 50th, 100th, 150th, and 200th time steps,
respectively, with mean of φ(r) ranging from 0.01 to 0.05 (and standard deviation 0.0501).
The experimental results are shown in Figure 5.
Overall, the performance of all selection schemes except the random selection was

improved and that of the hybrid selection scheme was particularly increased among
those schemes with φ(r) compared with the other schemes. Therefore, the hybrid

Figure 5 Changes in the ratio with the content interestingness φ(r). Changes in the ratio of the average
number of activated nodes to the total number of nodes in the network with the content interestingness φ(r).
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selection scheme is still recommendable even for contents with a high φ(r). We note that
the performance of the random selection was not significantly affected by φ(r).
Finally, we discuss the effects of the decay factor γ presented in Section ‘Influential

neighbor selection problem’. To demonstrate the effects of γ , we analyzed the ratio of
the average number of activated nodes after the 50th, 100th, 150th, and 200th time steps,
respectively, with k = 1 and γ ranging from 0.2 to 1. The experimental results are shown
in Figure 6. We use a different y-axis scale on this figure since the numbers of activated
nodes were greatly increased with γ .
Although the effects of γ were rather limited for the process of early stage within the

100th time step, after the 150th time step, the performance of all selection schemes except
the random selection generally improved and the gaps between the schemes grew with γ .
Thus our suggestion is to use the hybrid selection scheme even with a large decay

factor γ . Interestingly, we can also observe two different patterns in Figure 6: one is for
the hybrid and degree selection schemes, which tends to increase quickly when γ =
0.6, and the other one is for the propagation-weight and random selection schemes,
which tends to increase relatively slowly.

Conclusions
Given the increasing popularity of online social networks, it is of growing interest to
investigate the characteristics of epidemic spreading, in order to accelerate or mitigate it.
Kim and Yoneki [8] introduced the optimization problem to find influential neighbors for

Figure 6 Changes in the ratio with the decay factor γ . Changes in the ratio of the average number of
activated nodes to the total number of nodes in the network with the decay factor γ .
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maximizing information diffusion. We have extended their work by introducing several
parameters (user propagation weight, decay factor, and content interestingness) to provide
a more general and practical information diffusion model.
We presented four neighbor selection schemes (random, degree, propagation-

weight, and hybrid selection) and explored their feasibility. We compared these selec-
tion schemes by computing the ratio of the average number of activated nodes to the total
number of nodes in the network. We discussed which selection methods are generally
recommended under which conditions.
Our experimental results showed that the hybrid selection scheme produced the best

results of maximizing information diffusion through intensive simulation. Even with a
small k, the hybrid selection scheme outperformed the other selection schemes with
a relatively large k. Since the hybrid selection scheme can use the information about
the users’ posts alone, we can efficiently spread the information without the information
about the ‘number of friends’ each user has. Unlike the results based on synthetic param-
eters, the degree scheme is significantly better than the propagation-weight scheme.
As an extension to this work, we are considering a theoretical study to formally gener-

alize and verify our results in order to consider a wide range of application environments
(e.g., each of which will have different levels of content interestingness). We will also
develop a more extended framework for information diffusion. Wemay consider not only
a spreader with the knowledge about the user’s neighbors but also a spreader with a par-
tial knowledge of the network topology (e.g., a subset of users or neighbors of neighbors).
For example, we will extend the concept of the INS problem by expanding the set of the
initially activated nodes with the distance from the information spreader.
Another interesting problem is to consider a new problem in the opposite direction to

prevent (or reduce) the spread of information (e.g., rumor) by carefully monitoring the
(important) users with a high ‘user propagation weight’ and/or ‘number of friends’.
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