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or are dependent on other specifics of social interactions, remains unclear. Here we
address these problems by examining long-range degree correlations in three
undirected online social and three undirected nonsocial (airport,
transcriptional-regulatory) networks. Degree correlations were measured using Pearson
correlation scores and by calculating the average neighbor degrees for nodes
separated by up to 5 sequential links. We found that the online social networks
exhibited primarily weak anticorrelation at the first-neighbor level, and tended more
strongly towards disassortativity as separation distances increased. In contrast, the
nonsocial networks were disassortative among first-neighbors, but exhibited
assortativity at longer separation distances. In addition, the average degrees of the
separated neighbors approached the average network connectivity after
approximately 3-4 steps. Finally, we observed that two algorithms designed to grow
networks on a node-by-node basis failed to reproduce all the correlative features
representative of the social networks studied here.
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1 Introduction

A complex network is said to be degree correlated if the degrees of nodes at the end of
links occur together in a nonrandom manner. The tendency of nodes to connect with
others of similar degree is termed assortativity [1], or homophily when referenced specif-
ically to social networks [2]. Conversely, nodes connected to others of dissimilar degree
are said to be disassortatively mixed [1]. In a social network the nodes represent individu-
als, and the links between them conceptualize friendships or other social associations. In
this setting, an assortative network emphasizes the surprising result that “..your friends
have more friends than you do” [3]. Although results from the literature mostly involve
degree mixing among nearest neighbors, little else has been reported regarding degree
correlations extending beyond the first neighbors. Can a degree “correlation length” be
defined for complex networks? If so, how far do degree correlations extend into a network
based from any node?
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Some insight into these questions has come from the social sciences. For example, the
probability that an individual (termed the “ego”) and his/her acquaintance (termed the
“alter”) are jointly obese decreases with geodesic distance (i.e., the number of sequential
steps that link two nodes). However, this assortative effect is nearly independent of geo-
graphic distance [4], and is therefore a network property. Similar results hold for other
health-related outcomes, such as smoking [5]. For a wide variety of social outcomes, such
as happiness, divorce, depression, sleep length, marijuana use, Christakis and Fowler [6]
reported assortative correlations to up to 4 and 6 steps from the ego.

Several explanations were proposed to explain these nonrandom effects [6]. For exam-
ple, individuals could choose to associate with others of similar traits (homophily);
individuals could associate with others exposed to similar environments; or traits could
spread their influence through “conduction,” like a contagion. However, such hypothe-
ses cannot explain all assortative correlations beyond the first step (nearest neighbors),
because similar effects have been observed in networks of more “autonomous” agents,
such as food webs [7] (see also the commentary in [8]). Nevertheless, Christakis and
Fowler conclude that, for social networks, traits extend to, on average, 3 steps beyond
the ego [6]. Because node degrees are an elementary feature of networks and tend to cor-
relate assortatively, we could ask: Does this 3-step observation hold for degree-degree
correlations in general, across many different types of networks? If so, is there a defining
mechanism for the effect?

Here we address these questions by comparing degree correlations for several large
social networks to exemplary nonsocial ones, including an airline transportation network
and two well-annotated transcriptional regulatory networks. We developed and executed
an algorithm to evaluate degree correlations between nodes separated by more than one
step, which is general enough to be applicable to nearly any undirected network. These
methods could also be used to evaluate correlations between properties or features of the
nodes beyond those associated directly with the network topology.

2 Methods

2.1 Measuring degree correlations

The degree of a node measures the number of links to its nearest neighbors, and is a criti-
cal property of the network topology because it accounts for coupling of each node to the
greater network. It is therefore of great interest to examine the distribution of and corre-
lation in network degrees. For simplicity, we will assume that all edges of the networks we
examine are undirected (Section 2.3, below).

2.1.1 Average neighbor degree

The quantity (k1 ko) may be calculated, which is the correlation function between ky, the
degree of the “ego” or focal node, and ki, the degree of the “alter” node connected to the
ego by 1 link (Figure 1). This two-point correlation function can be expressed as: (k1ko) =
Zkokl kikop(ki1, ko), wherein p(ki, ko) is the joint probability that nodes of degree k1 and
ko appear together at the ends of a link [1]. Here, the sum spans k1, ko = 1,...,L, with L
the number of links in the network. The joint probability can be expressed as p(ki1, ko) =
p(kilko)p(ko), so that the correlation between degrees is contained within the conditional
probability, p(k;|ko).
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(a)

Figure 1 A smaller exemplary complex network. (a) A 5-chain path (bold) between the ego and alter
nodes (grey). (b) Degrees of nodes along the path of this 5-chain are labeled by ko, .. ., ks. Using sociology
terminology, ko is the degree of the “ego” (focal) node, and ks is the degree of the “alter” node.

One way to determine whether any degree correlation exists is to measure the average
nearest neighbor degree as a function of node degree, (ki") (ko). This quantity is directly
linked to the conditional probability [9]:

(K™ (ko) =Y kip(ki ko). (1)
k1

If the conditional probability is uncorrelated, then p(ki|ko) = p(k1), and Eq. 1 can
be evaluated to give (k]")(ko) = (kg) /{ko), which is a constant of the network. Here,
(k™) > (ko) for nonzero variance, which quantifies the notion that “..your friends have
more friends than you do” [3]. Thus, any observed dependence of (k]"") on kp indicates
the presence of degree correlations in the network.

Do degree correlations extend beyond direct neighbors? To address this question, we
extend Eq. 1 to nodes separated by long chains of m-many links. By “long chains”, we
mean the number of links separating one node (the ego) from another (the alter) that
can be reached by following successive links, generation-by-generation, out from the ego
without any back-tracking. We will refer to these paths as “m-chains”, which constitute
the shortest paths between two nodes of the network, and are identical to the geodesic
distance between ego and alter nodes [6]. The basic idea is conceptualized in Figure 1,
wherein m denotes the number of sequential links that compose the path between the ego
and alter.

We label the joint probability that a node of degree ky is connected by an m-chain to
another of degree ki, by py, (ki ko). For m = 1, this quantity represents the one described
in the previous section for nearest neighbors, and we drop the subscript: p;(k1, ko) =
p(k1, ko). In a similar way that Eq. 1 links the average nearest-neighbor degree to the node
degree, we have:

(k) (ko) =Y Ko (ki ko). (2)
kim
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Thus, any dependence of (k') on ko signifies degree correlations between nodes at the
ends of an m-chain.

2.1.2 Pearson correlation
The Pearson correlation, r, is the ratio of the covariance of fluctuations, ((ko — (ko))
(ke — (km))), to the variance in degree, (kg) — (ko)? [1]:

_ (ko — (ko) (ki — (him)
(k2) — (ko)?

, (3)

wherein the average, (- - - ), is taken over the nodes connected by m-chains. For practical

purposes, Eq. 3 can be implemented as a sum over m-chains:

L-US ki (=15 L (k4 ki )P
r= mZz(OWI [m212(0+ m)] , (4)

Lot 50 (674 4,7) ~ [t S0 (k4 43,

wherein L,, is the number of m-chains. Note that L; = L is the number of links in the
network, and that L,, > L.

The Pearson correlation is often used to measure the assortativity of nodes connected
by links (i.e., m1 = 1), because the variance in k is equal to the value of (koky;) — (ko) (ki)
for a maximally assortative network [1]. Therefore, r is bounded on [-1,1]; » = —1
corresponds to a purely disassortative network, while » = 1 marks a network as purely
assortative. However, this measure obscures the ky-dependence of p,, (ky,|ko) [10].

2.2 Algorithm to identify m-chain neighbors

We evaluated Egs. 1 and 2 using a computational algorithm to determine nodes connected
by m-chains, form = 1, ..., 5, which is conceptualized in Figure 2. We chose a maximum
geodesic distance of m = 5 to balance computational resources with the reports that such
correlations nearly vanish for m > 3 [6]. Referring to Figure 2 with the understanding
that the networks are undirected, the steps of the algorithm can be outlined as follows.

I.  Choose an ego node (node 0, Figure 2(a));
II.  Follow all links from the ego to its neighboring nodes, and append the IDs of these
neighbor nodes into one of five dynamic lists, one list for each geodesic distance, m;
II.  Now, follow all links from these neighbor nodes to their neighbors (e.g., from node
generations 1 to 2 in Figure 2(b)), excluding nodes already identified in a list from a
previous generation/geodesic distance;
IV.  Continue this process until m = 5, then return to step L

We followed a method outlined in Ref. [11] to evaluate Egs. 1 and 2, but using nodes
connected by m-chains obtained from the above algorithm. For each node i with degree
k‘ in the network (the ego), we identified a set of nelghbor nodes found at the end of each
m-chain, r/ (the alters), each of which has degree l<j To each ego node, we associated
an averaged m-chain neighbor degree: (k) (k(’)) = Hr/m} ‘_1 > i) k’m. Finally, we took

the arithmetic average of all instances of a given degree value, ké =k, to give [11]: (ky,) =

! Y i i (k) (K.
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Figure 2 Steps of the computational algorithm. (a) Beginning from the “ego” (here labeled 0), each
successive identification step moves away from the current node, without any back-tracking to nodes in
previous step-generations. Numbers here mark the geodesic distance from the ego, and dotted lines mark
nodes that link each step of the algorithm. (b) At each movement step, nodes’ IDs are recorded into 5
separate dynamic lists, one for each geodesic step from the ego. The resulting lists record the identity of the
leaves of the hierarchy for each m-chain.

2.3 Network datasets

We studied several online social network datasets, and compared their results to those
obtained from a transportation network and two transcriptional regulatory networks.
By social network, we mean a network wherein the nodes represent individuals and the
links between them signify social associations. All of these networks were manifestly
directed, but for simplicity we studied them as undirected networks by examining their
total degree, which is the sum of in- and out-degrees for each node, and ignoring link-
directions. Although many nodes could therefore support multiples links, we found that
all of the considered networks, both social and nonsocial, closely followed a “scale-free”
degree distribution, p(k) o k™Y (ko = k for notational convenience), as shown in Figure 3.

2.3.1 Online social networks
We evaluated a dataset from the Advogato online social network, wherein users can
express the level of “trust” between themselves and another [12]. As mentioned above,
we are only interested in the structure of the links between all individuals, and there-
fore ignored any weights assigned to them. The Advogato network is composed of 3,302
nodes/users linked together by 32,954 links.

A snapshot of the decentralized Gnutella peer-to-peer file-sharing network was cap-
tured on 6 August, 2002 [13]. In this dataset, the 8,717 nodes represent the hosts, and
each of the 31,525 links signify connections established between them.
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Figure 3 Degree distributions of all networks studied here. The top panels represent social networks,
and the bottom panels are nonsocial networks. All degree distributions were fit empirically to a power-law
function, p(k) o k¥, using a least-squares method; k is the ego degree and y is the power-law exponent.

The Wiki-Vote network was derived from a complete dump of the Wikipedia page-edit
history (3 January, 2008) [14,15]. Wikipedia users may be promoted to administra-
tors, who enjoy additional technical and maintenance capabilities of the website, which
requires a public vote among its users. In this network, all 8,297 nodes represent indi-
vidual users, and each of the 103,689 links indicate that one person voted for the
other.

2.3.2 Nonsocial networks

As examples of nonsocial networks, we chose a physical transportation network, labeled
“Airports”. This network maps flights scheduled between the 500 busiest airports in the
United States (US) in 2002 [16]. In this dataset, a node represents one of 500 US airports,
while each of its 2980 links denote whether a flight was scheduled from one airport to
another. While this network is manifestly undirected, it is weighted. We therefore ignored
the weights in favor of the network topology alone.

We compared this transportation network with two transcriptional regulatory net-
works, which relate the expression of genes (nodes) that interact by producing proteins,
termed transcription factors, that may alter the expression level of other genes. We
employed two experimentally validated datasets from the literature, obtained using the
GeneNetWeaver software package [17]; one for the model bacterium Escherichia coli
(E. coli), and the common baker’s yeast Saccharomyces cerevisiae (S. cerevisiae). The E.
coli network consisted of 1565 nodes and 3758 (directed) links, whereas the S. cerevisiae
network supported 4441 nodes and 12873 links. While the degree distribution of these
networks generally follows a power-law (Figure 3), its structure differs substantially from a
social network in that it is primarily hierarchical [18], with a few apical “master regulator”
proteins that control the expression of a great many genes.

3 Results

3.1 Above-average m-chain neighbor degrees in social networks

Figure 4 shows the average degrees of nodes found at the end of all m-chains, (),
independent of the starting point. The long-distance behavior of this metric should be
intuitive: as we move step-by-step away from a node, the average degree of nodes found

Page 6 of 13
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Figure 4 Degrees of nodes at the end of m-chains. Shown are three social (top row) and nonsocial
(bottom row) networks. Error bars denote standard deviations obtained from lognormal distributions.
Horizontal dotted lines denote the average degree of nodes in the network, (ko).

at the end of the chain should approach the average connectivity of the graph, (ko) (dotted
lines, Figure 4). To estimate (k,,), we observed that m-chain degree neighbor distributions
appeared lognormal, from which we estimated the mean (circles) and standard devia-
tion (error bars); however, the degree distribution of the nodes themselves, (ko), were
power-law distributed (Figure 3).

For the nonsocial networks (bottom row of Figure 4), the condition (k,,) = (ko) occurs
at approximately m = 3 or m = 4, while for the social networks we find m > 4. Addition-
ally, the quantity (k,,) (m > 0) remains elevated over the identical geodesic length of the
nonsocial networks. In other words, not only do your friends have more friends than you
do, but so do your friends’ friends’ friends’ friends.

One potential explanation for this effect may come from the tendency for social net-
works to form larger clumps of highly-connected nodes that, together, are only sparsely
connected [19]. If nodes that are connected through m-chains can often be found within
a highly-connected community, or if a node within a community can be easily reached
through an m-chain, then (k,,) will be biased toward the connectivity of the community.

3.2 Assortative mixing beyond the nearest neighbors in social networks

Figure 5 illustrates how the average m-chain neighbor degree, (k;,), varies with ego
degree, k, for the three social networks; Figure 6 illustrates this relationship for the three
additional nonsocial networks. It has been noted previously that some networks exhibit
non-monotone degree correlation [10], with a cross-over point near k = 10, which has
been observed before in models of random networks [20]. We therefore used a power-
law function, (k,,)(k) ~ k¥, wherein kg = k labels ego degrees, to empirically model the
tail of the m-chain neighbor degrees. This feature is not clearly present in the nonsocial
networks; so, we fit a power-law function across the whole domain of its degree.

We can make several observations by comparing results from the social networks
(Figure 5) to results from nonsocial networks (Figure 6). First, as geodesic distance
increases, (k) for all social networks exhibits disassortative tendency. Park and Newman
have argued [21] that social networks are different from other networks in that they are
substantially assortative in nearest neighbor degree correlations. While (k) for the social
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Figure 5 Degree-correlation curves for social networks. Average degree of alter nodes separated by
m-chains, (kn), versus the ego degree, k, for all three social networks studied here.

networks of Figure 5 exhibit nearly flat correlation, the nonsocial networks of Figure 6
appear disassortative in (k7). In light of the argument made by Park and Newman [21], the
nearly flat behavior of (k;) seen in Figure 5 could result from positive correlative trends.

Another observation we can make by comparing Figures 5 and 6, is that the nonsocial
networks, specifically the transcriptional networks, exhibit opposite correlations between
1- and 2-chain neighbors, (k1) and (k2), respectively. Additionally, the extended correla-
tions (m > 2) in the nonsocial networks are consistently positive (Figures 6 and Tables 1
and 2), which should be contrasted against the consistently disassortative correlations
(y < 0andr < 0) exhibited by the social networks (Figure 5).

3.3 Network growth models cannot fully explain long-range social network correlations

Do long-range disassortative correlations observed for social networks in Figure 5, occur
in networks created using random mechanisms? To address this problem, we used two
node-by-node network-growing algorithms. The first is a modified version of the well-
known Barabasi-Albert model [22] which reproduces scale-free degree distributions.
Networks grown using this algorithm are known to generate degree correlations at the
nearest-neighbor level due to the preference of older nodes to acquire more links [23]. We
have implemented this model with the addition of incorporating a selection method that
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Figure 6 Degree-correlation curves for nonsocial networks. Correlations in the average degree of alter

nodes separated by m-chains, (kn,), expressed by dependence on the ego degree, k, for three nonsocial
networks studied here.

Table 1 Correlation metrics for online social networks

Correlation metric

Geodesic distance, m y r
Advogato
1 -0.1892 [-0.2156, -0.1637] -0.0996
2 -0.0505 [-0.0735, -0.0275] -0.0559
3 -0.7166 [-0.7969, -0.6363] -0.2308
4 -0.8408 [-0.9624,-0.7191] -0.1687
5 -0.7448 [-0.8722,-0.6174] -0.0783
Gnutella
1 0.1066 [0.0110,0.2021] 0.0516
2 0.5027 [0.3675, 0.6379] 0.2904
3 -0.0776 [-0.1140,-0.0411] -0.0914
4 -0.3106 [-0.3920, -0.2292] -0.1609
5 -0.8001 [-1.0349, -0.5654] -0.2012
Wiki-Vote
1 -0.0889 [-0.1042,-0.0737] -0.0721
2 0.0371[0.0195, 0.0547] -0.0665
3 -0.6191 [-0.6754, -0.5628] -0.2600
4 -0.2129 [-0.3050, -0.1208] -0.1022
5 -0.1051 [-0.2475,0.0374] -0.0438

Power-law exponents from Figure 5 reported with 95% confidence intervals, and Pearson correlation scores calculated
using Eq. 4.
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Table 2 Correlation metrics for nonsocial networks

Correlation metric

Geodesic distance, m y r
Airports
1 -0.1612 [-0.2160, -0.1065] -0.2679
2 0.1332[-0.0134, 0.2798] -0.6291
3 -0.0467 [-0.2775,0.1840] -0.5655
4 -0.0553 [-0.2916, 0.1809] -0.6014
5 0.6351 [0.2824, 0.9877] -0.5974
E. coli
1 -0.6441 [-0.8127,-0.4756] -0.3274
2 0.4348[0.2096, 0.6599] 0.2695
3 -0.0173 [-0.2507, 0.2160] -0.0304
4 0.3207 [0.0586, 0.5828] -0.0076
5 0.1040 [-0.1330, 0.3411] -0.0235
S. cerevisiae
1 -0.6961 [-0.7920, -0.6002] -0.5967
2 0.5103 [0.3732,0.6474] 02197
3 -0.0466 [-0.1680, 0.0749] -0.0608
4 0.1584 [-0.0033, 0.3200] -0.0055
5 0.2376 [0.0758, 0.3994] -0.0041
Power-law exponents from Figure 6 reported with 95% confidence intervals, and Pearson correlation scores calculated
using Eq. 4.

allows for a variable number of links to be drawn at each attachment step. More specif-
ically, we choose to attach /-many links at each attachment step by rounding NP(x < k)
up to the nearest whole number /, wherein P(x < k) is the cumulative degree distribution
and N is the sum-total of nodes, both evaluated at the current attachment step. Because
all random networks are grown on a node-by-node basis, wherein the number of links are
determined by the step-wise attachment algorithm, we “grew” each network to the size
of a chosen representative social network, the Advogato network, which hosts a total of
3302 nodes.

The other node-by-node attachment mechanism was reported by Vazquez [20], and
termed the “random walk” model. Here, nodes are attached following the linear attach-
ment kernel of the Barabasi-Albert model as stated above, but an additional step is added:
a neighbor node is chosen at random with uniform probability, and with probability ¢,,
a link is drawn from the candidate node (the one just attached) to the neighbor node. If
this secondary link attachment is successful, then this “random walk” procedure contin-
ues until the check of each new ¢, fails. A primary feature of networks grown using this
model is that their degree correlations are “mixed”; that is, lower-degree nodes exhibit
positive correlations, while the higher degree nodes exhibit disassortative tendencies. We
have previously observed such behavior in a wide variety of directed, real-world net-
works [10], but this behavior can also be seen in the behavior of (k;,)(k) for the social
networks illustrated in Figure 5.

Figure 7 shows how the altered version of the Barabasi-Albert model performs in terms
of Pearson correlation scores (box plots), compared to a representative social network,
the Advogato online social network (asterisks). While we can see that the slope of the

power-law tail for the Advogato network indicates higher levels of disassortativity at
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Figure 7 Pearson correlations for the Advogato network. Pearson correlations, r (Eq. 4), for the Advogato
network (asterisks) compared against results from 10 generated random networks (box plots) using a variant
on the Barabasi-Albert model [22] of scale-free networks described within the text.

higher degree nodes (Figure 5), the Pearson scores show a weaker overall correlation at
long geodesic distances; however, the random network models show nearly no correlation
except among first-neighbors (m = 1, Figure 7).

This can be contrasted against results from the random walk model of Vazquez [20],
illustrated for various values of g, in Figure 8. These random networks generally show
assortative degree correlations in first-neighbors for all values of g,, but mostly disassor-
tative degree mixing among nodes at longer geodesic distances. This result is generally
consistent with the trends observed for the social networks (see Figure 5, and asterisks in
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Figure 8 Pearson correlations between the Advogato and random networks. Pearson correlations, r
(Eqg. 4), for the Advogato network (asterisks) compared against results from 10 generated random networks

(box plots) using the “random walk” model of Vazquez [20]. In this algorithm, ge is the probability to add an
additional link to a neighbor node during each attachment step. Crosses, +, denote statistical outliers.
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Figure 8). Nevertheless, close matching of the Pearson scores only occurs for g, = 0.9.
Such a high value of g, guarantees many successful sequential attachment rounds in the
random walk procedure, and thus increases the overall number of links. Whether the
closer matching of Pearson scores at high ¢, is the result of the increased number of links,
or their approximate placement, remains an open question.

4 Summary and Conclusions

In this paper we have studied three online social networks, and compared their long-
range degree correlation behavior to those of three nonsocial networks by measuring
both the average number of neighbors or calculating the Pearson correlation score. We
found that the number of friendships/associations in the social networks remained above
the background level for at least m = 4 “degrees of separation”. In contrast, the nonso-
cial networks reached the background level after approximately m = 3 steps from each
node.

We also examined the conditional probability that a node degree is connected to one
separated by at least one link, p(k;,|ko), by measuring the average number of nearest
neighbors, (k,,) (ko). We found that the social networks generally exhibited a power-law
tail with exponent y < 1, for the longer-range interactions (m > 3). We did not observe
this phenomenon in the nonsocial networks, which appeared nearly uncorrelated at this
geodesic distance.

Finally, we considered the Advogato network as a prototypical social network, and
examined whether two network-growing algorithms known to generate degree corre-
lations could reproduce the long-range correlations observed in the social network as
measured by the Pearson correlation. While we observed that the “random walk” algo-
rithm [20] and a variant of the celebrated Barabasi-Albert (preferential attachment)
model [22] showed similar uncorrelated results at the farthest separation (m = 5),
correlations in the Advogato network deviated substantially from the random mod-
els for m < 5. We conclude that these random node-attachment mechanisms can-
not fully explain how social networks gain new users, but could not entirely reject
this possibility. Further investigations are therefore required to definitively answer this

question.
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