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Abstract

We study the dynamics of a game-theoretic network formation model that yields
large-scale small-world networks. So far, mostly stochastic frameworks have been
utilized to explain the emergence of these networks. On the other hand, it is natural to
seek for game-theoretic network formation models in which links are formed due to
strategic behaviors of individuals rather than based on probabilities. Inspired by
Even-Dar and Kearns’ model (NIPS 19: 385-392, 2007), we consider a more realistic
framework in which the cost of establishing each link is dynamically determined during
the course of the game. Moreover, players are allowed to put transfer payments on the
formation and maintenance of links. Also, they must pay a maintenance cost to sustain
their direct links during the game. We show that there is a small diameter of at
most four in the general set of equilibrium networks in our model. We achieved an
economic mechanism and its dynamic process for individuals which firstly, unlike the
earlier model, the outcomes of players’ interactions or the equilibrium networks are
guaranteed to exist. Furthermore, these networks coincide with the outcome of
pairwise Nash equilibrium in network formation. Secondly, it generates large-scale
networks that have a rational and strategic microfoundation and demonstrate the main
characterization of small degree of separation in real-life social networks. Moreover, we
provide a network formation simulation that generates small-world networks.

Keywords: Network formation; Linking game with transfer payments; Pairwise
stability; Pairwise Nash equilibrium; Small-world phenomenon

Introduction
In recent years, networks have been extensively studied mostly in terms of their structure
but also their formation and dynamics. Structural characteristics of various networks,
which emerge from disciplines, such as economics, computer science, sociology, biol-
ogy, and physics, have been investigated. Many of these networks, in spite of their
different origins, indicate large commonalities among their key structural properties,
such as small diameter, high clustering coefficient, and heavy-tailed degree distribution
which are often quantified by power-law probability distributions. Hence, it is an excit-
ing challenge to study network formation models capable of explaining how and why
these structural commonalities both occur and evolve. The series of experiments by
Milgram in the 1960s [2] were among the pioneering works that quantified the small-
world phenomenona and introduced the ‘six degree of separation’. Recent experiments
[3] showed that today’s online social networks such as Facebook indicate that the degree
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of separation (for almost any two individuals in a given database) must be even smaller
than 4.
The small-world model by Watts and Strogatz [4] was one of the first models that gen-

erates networks with small diameter. This work was followed by Kleinberg’s stochastic
model [5] that was located in a grid graph. It introduced a process that adds links with
distance d to the grid with a probability proportional to 1/dα . These models, however,
can not be applicable when there is a strategical purpose in players’ making or losing
their connections. In these cases, players, which are represented by vertices, strategically
establish and sever their connections to obtain an advantageous position in their social
network. Hence, we refer to a class of game-theoretic network formation, also known as
strategic network formation (see [6,7] for comprehensive surveys). Models in this class
are in their early efforts. They generally assume that players make connections based on
a utility maximization and treat the network as the equilibrium result of the strategic
interactions among players.

Our contribution

Our game-theoretic network formationmodel is mainly inspired by Even-Dar and Kearns
(EK model) [1]. In their model, players (i.e., vertices) seek to minimize their collective
distances to all other players. The network formation starts from a seed grid. Also, the
cost of establishing each link in this model is considered to be the grid distance between
the endpoint players of that link and the power of α, which is the parameter of the model.
Hence, their model uses a fixed link-pricing for each link. Both link creation and link
severance are considered unilateral by players. In addition, the equilibrium is defined in
terms of link stability: no players benefit from altering a single link in their link decisions.
The EKmodel achieves small diameter link stable networks within the threshold of α = 2.
However, they faced an unbounded diameter that grows with the number of players, when
α > 2.
We define three types of costs for links: (i) the link-price, (ii) the maintenance cost, and

(iii) the transfer payment. The link-price pij is the price of establishing link ij. Only the
initiator of the connection would bear its payment. It is a one-time charge when estab-
lishing the link.We introduce a new viewpoint to this game that better echoes with reality
by constructing a dynamic link-pricing. When characterizing the formation of a network,
the involved dynamics is a crucial and determining element. We aim to effectuate the
impact of this dynamics in our model with the revised link-pricing. We update the used
distances of each pair of players in the related link-prices from the current network rather
than sticking with the initial grid distances.
In addition, we introduce maintenance costs to make the model more real where a

player can give up her payment and sever her connection, if she will be better off by doing
so. Also, it is reasonable to assume that refunding the link-prices may not be possible in
lots of real-world scenarios. Hence, maintenance costs make the link severance scenario
well-defined. In our model, player i is charged for all of its incident links by consider-
ing recurring maintenance costs cij. In other words, for each decision made in the game,
players should take the maintenance cost of their incident links into their consideration.
Lastly, we allow individuals to put transfer or side payments on their links. Transfers are
a sort of communication between players for their connections. In fact, without transfer
payments, many agreements on these connections would simply never exist.
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We use the myopic notion of pairwise stability with direct and indirect transfers (PSt)b

as our equilibrium notion. This notion has the advantage of being compatible with the
cooperative and bilateral nature of link formation. Moreover, the pairwise stability has the
desirable simplicity required for analyzing players’ behaviors under this notionc.
On the other hand, due to the bilateral agreement for any link formation, the typical

notion of Nash equilibria have some drawbacks in terms of coordination failures, e.g., an
empty network is always a Nash equilibrium. In other words, Nash equilibria networks
can contain some mutually beneficial link(s) that are left aside. To solve this coordina-
tion problem when employing Nash equilibria, the notion of pairwise Nash stabilityd was
introduced. Pairwise Nash stable (PNSt) networks are at the intersection of the set of
Nash equilibrium networks and the set of pairwise stable networks.
In this paper, we not only guarantee the existence of pairwise stable networks but also

demonstrate that, in our model, the set of pairwise stable networks coincide with the
set of pairwise Nash stable networks. Finally, we show that the general set of equilib-
rium networks exhibits a short diameter of at most 4. The rest of this paper is organized
as follows. In the ‘Preliminaries’ section, we explain the required preliminaries and pro-
vide the setup of our model. ‘Fixed link-pricing model’ section contains an analysis and
extension to the EK model. We then provide the main results for our grid-based model
with the dynamic link-pricing and transfer payments in the ‘Dynamic link-pricing model
with transfer payments’ section. In the ‘Simulations’ section, we present the outcome of a
network formation simulation that we carried out.

Preliminaries
The network and players. Let N = {1, . . . , n} be the set of n players forming a network G.
Network G is undirected and includes a list of pairs of players who are linked to each
other. Link ij ∈ G indicates that player i and player j are linked in G. Let GN denote the
complete network. The set G = {

G ⊆ GN}
consists of all possible networks on N . We

define network G0 to be the starting network of the game, which is also called the seed
network. The set of player i’s neighbors in G is Ni(G) = {j|ij ∈ G}. Similarly, Li(G) ={
ij ∈ G | j ∈ Ni(G)

}
denotes the set of links, which are incident with player i in G. If l is a

subset of Li(G), then G − l is the network resulted by removing the existing links in the
set l from G. Similarly, if l = {

ij | j /∈ Ni(G), j �= i
}
, then the network G + l is obtained by

adding the links in set l to G.
The utility of networkG for player i is given by a function ui : G → R

+. Let u denote the
vector of utility functions u = (u1, . . . ,un). So, u : G → R

N . Also, the value of a network,
v(G), is the summation of all players’ utilities in the network G, i.e., v(G) = ∑n

i=1 ui(G).
For any network G and any subset li(G) ⊆ Li(G), the marginal utility for a player i and a
set of links li(G) is denoted bymui(G, li(G)) = ui(G) − ui(G − li(G)).
Strategies, transfer payments. Each player i ∈ N announces an action vector of transfer

payment ti ∈ R
n(n−1)/2. The entries in this vector indicate the transfer payment that

player i offers (to pay) or demands (to gain) on the link jk. If i ∈ {j, k}, then we call it
a direct transfer payment. Otherwise, it is called an indirect transfer payment. Typically,
individuals can make demands (negative transfers) or offers (non-negative transfers) on
their direct connections. However, they can only make offers (and not demands) on the
indirect transfer paymentse. In addition, a link jk is formed if and only if

∑
i∈N tijk ≥ 0.

Thus, the profile of strategies or the announced vectors of transfer payments for all players
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is defined: t = (
t1, . . . , tn

)
. Consequently, the network G, which is formed by this profile

of strategies t, can be denoted as follows: G(t) =
{
jk | ∑

i∈N tijk ≥ 0, where j, k ∈ N
}
.

The payoff function. The distance between a pair of players i and j in G, denoted
by dG(i, j), is defined as the length of a shortest path between i and j in G. Simi-
lar to the EK model, players seek to minimize their total distances to all players. This
benefit would be considered for each player with respect to the network G and links
benefit both endpointsf. The link-price is defined to be pij = dG(i, j)α for α > 0.
The link-price function is non-decreasing and follows Kleinberg’s stochastic model.
Also, function cij denotes the maintenance cost for the link ij. The utility function of
player i is the negative of her total distances and links expenses and is defined as
follows:

ui(G(t)) = −
∑
j∈N

dG(t)(i, j) −
∑
j∈Ni

(pij + cij) −
∑

jk∈G(t)
tijk . (1)

The dynamic process.The following notion is stated from [15] that motivates the desired
dynamics for our analysis.

Definition 1. An improving path represents a sequence of changes from one network
to another. The changes can emerge when individuals create or sever a single link based
on the improvement in the resulting network relative to the current network.

In each round of the game, one player adapts her strategy with respect to the current
state of the network. We assume a random meeting mechanism for vertices (randomly
choosing a pair of players), but we start with a seed network instead of an empty network
[16,17]. If two networks G and G′ differ in exactly one link, they are said to be adjacent
networks. Also, if there exists an improving path from G to G′, then G′ defeats G.
The equilibrium strategies. In every equilibrium profile of strategies t∗, there is no

excess in the offer of transfer payments. A transfer payment t∗iij is negative if and only
if maintaining the existing link ij is not beneficial for i. In other words, i’s utility from
network G is smaller that her utility from network G − ij. We refer to this difference as
a utility gap. Player i can only use a transfer payment equal to her utility gap. Hence,
for an equilibrium profile of strategies t∗ijk that forms equilibrium network G,G(t∗) ={
jk | ∑

i∈N t∗ijk = 0, j, k ∈ N
}
.

We would like to indicate that other generalization of transfers’ distribution among
players are not among the main focuses of this paperg.
The Definitions of equilibrium notions are as follows:

Definition 2. A network G is pairwise stable with transfers (PSt) with respect to a
profile of utility functions u and a profile of strategies t that creates network G if

(a) ij ∈ G =⇒ ui(G) ≥ ui(G − ij) as well as uj(G) ≥ uj(G − ij),
(b) ij /∈ G =⇒ ui(G) ≥ ui(G + ij) as well as uj(G) ≥ uj(G + ij).

Also, PSt(u) denotes the family of pairwise stable networks with transfers.
A pure strategy profile t∗ = (

t∗1, . . . , t∗n
)
forms a Nash equilibrium in the linking game

with transfers if ui
(
G

(
ti, t∗−i)) ≤ ui (G (t∗)) holds for all i ∈ N and all ti ∈ Ti, where
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t∗−i is the equilibrium strategy for all players other than i, and Ti is the set of all available
strategies for i. We can also indicate that in the context of network formation, a networkG
is Nash stable if ∀i ∈ N and ∀li(G) ⊆ Li(G): ui(G) ≥ ui(G − li(G)).

Definition 3. A pure strategy profile t∗ = (t∗1, . . . , t∗n) forms a pairwise Nash
equilibrium in the linking game with transfers if

1. It is a Nash equilibrium, and
2. There does not exist any ij /∈ G(t∗), and t ∈ T such that

(a) ui
(
G

(
tiij, t

j
ij, t∗−ij

))
≥ ui(G(t∗)),

(b) uj
(
G

(
tiij, t

j
ij, t∗−ij

))
≥ uj(G(t∗)), and

(c) at least one of (1) or (2) holds strictly,

where t∗−ij includes all players’ strategies in t∗ except player i.

A tutorial example. Suppose that Figure 1 shows a sub-network of a network G that is
obtained through an improving path. Also, assume that player i considers establishing a
link to player j in the next random meeting. For this example, let us assume α = 2 and
cij = 10 for all i and j. Furthermore, Bi(G+ ij, ij) = − ∑

k �=i
(
dG+ij(i, k) − dG(i, k)

)
defines

the benefit of reduced distances in the whole network G that player i is received after
adding link ij toG. We assume that Bi(G+ij, ij) = 30 and Bj(G+ij, ij) = 5 in this example.
According to the dynamic link-pricing, pij = 32 = 9. First, we can verify that player i

has an incentive to buy link ij, as Bi(G + ij, ij) = 30 ≥ 9 + 10 = 19. However, there is no
advantage for player j in this linking, as Bj(G + ij, ij) = 5 < 10. Therefore, player j must
demand the transfer payment tjij = −5 that makes her indifferent regarding this linkage.
Player i can offer the transfer payment tiij = 10 − 5 = 5 to player j, since creating ij
is still beneficial for i, as 30 ≥ 5 + 19 = 24. Consequently, link ij can be added to G
and network G′ is achieved along the improving path of game. The network formation
continues until a pairwise stable network with transfers is reached. Note that we can also

Figure 1 An example of a sub-network from network G during the dynamic process.
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consider the indirect transfers that other players may offer for this linkage, which is not
stated in this example for simplicity.

Fixed link-pricingmodel
In this section, we study the EK model [1] and consider an extension to this model. This
also helps us to provide some insights regarding our results in the ‘Dynamic link-pricing
model with transfer payments’ section.

The presence of cycles

The EK model takes a
√
n × √

n grid as its seed network. It defines the link-price pij =
dG0(i, j)α for α > 0 and defines dG0(i, j) to be the grid distance of i and j. Consequently,
the link prices are fixed during the course of the game. Furthermore, this model defines
the set si ∈ {0, 1}n−1 to be the action set of player i such that sij is one when player i creates
a link to player j. Also, each link benefits both endpoints and sij = 1 if sji = 1. The utility
function for player i ∈ N is ui(G(s)) = − ∑

j �=i dG0(i, j) − ∑
j∈Ni pij.

In the EK model, link creation is unilateral. Moreover, creation of a link only requires
the agreement of at least one of the endpoint players of the link. This is in contrast to our
model in which the presence of each link needs the consent of both players. Also, there
is no transfer payment and maintenance cost in this model. Players can receive a refund
of the link-prices given the severance of links. This model uses the notion of link stability,
where link stable networks are immune against unilateral creation or severance of a single
link by each player.
A problem that can arise in this model concerns the fact that the network formation

may not converge to a link stable network. In other words, there exists the possibility for
the formation of cycles in the evolving networks during this network formation model, as
it is defined in the following.

Definition 4. A cycle C is a set of networks (G1, . . . ,Gk) such that for any pair of net-
works Gi,Gj ∈ C, there exists an improving path connecting Gi to Gj. In addition, a cycle
C is a closed cycle, if for all networksG ∈ C, there does not exist an improving path leading
to a network G′ /∈ C.

Generally, the presence of negative externalities can be seen as one of the potential
reasons in the formation of cycles in linking games. Consider the following grid-based
example shown in Figure 2. In this example, we can observe the formation of a cycle in
the game.
Assume that 48 < 3α < 49. First, it is easy to verify that player s has an incentive

to create link st. Now, a cycle of strategical updates may be formed as follows. Player u
saves 57 in

∑n
i=1 dG(s)(u, vi) as it can be verified that the distance to u of nine players in

area i is reduced by 1 and the distance to u of 24 players in area ii is reduced by 2. So,
(I) player u has an incentive to buy link uv, as puv = dG0(u, v)α = 3α < 9 + 48 = 57.
Then, with similar observations, it can be seen that the following strategical changes will
be made in this order. (II) Player w buys link wu as pwu = dG0(w,u)α = 3α < 49. (III)
Player u is no longer willing to maintain link uv, as with existing link wu, it has a ben-
efit of only 48. Therefore, u returns the link uv. (IV) Player w has no incentive to retain
link wu, as with the removal of link uv, it has a benefit of only 34. So, w returns the
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Figure 2 An example that the gamemay not converge to a link stable graph.

link wu. Thus, a cycle of steps (I) to (IV) may be formed and the game does not con-
verge to stability. The example can be expanded to a large-scale grid as well. We note that
player w, by establishing wu, creates a negative externality for u. Since it causes a reduc-
tion in player u’s utility, u decides to sever uv that in overall leads to the formation of
a cycle.

Forbidding link severance

In this model, players should be allowed to sever only those links that they themselves
have purchased. However, this issue is not clear in the notion of link stabilityh. Let
assume an extension of the EK model with forbidding severing links. Forbidding players
to sever their links, although limits the applicability of model, makes the convergence of
equilibrium networks possible for the network formation.

Proposition 1. Under the assumption of forbidding link severance in the EK model, the
convergence of network formation to link stability is guaranteed.

Proof. When there is no link severance, the existence of negative externalities for players
is ruled out. In other words, there is no player whose utility can be hurt during the game.
Thus, the total value of the network is increased by each change during the dynamic
process. This points to the exact pairwise monotonicity, introduced by Jackson and
Watts [15], which guarantees the existence of stable networks. The proof of Theorem 1
can be adapted to imply Proposition 1.

Dynamic link-pricingmodel with transfer payments
Existence of pairwise stable network with transfers

In all game-theoretic problems, one of the primary questions concerns the existence of
equilibria or stable states. This question in the framework of network formation is trans-
lated to the existence of pairwise stable networks and have been first addressed by Jackson
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andWatts [15]. We show that their arguments can be extended and adapted in our model.
As a result, we guarantee the existence of pairwise stable network with transfers in our
model.
While improving paths that start from a seed network may end in an equilibrium net-

work, it is also possible to find the formation of cycles as the result of an improving path.
Jackson andWatts showed that in any network formation model there exists either a pair-
wise stable network or a closed cycle. Their argument is based on the fact that a network
is pairwise stable if and only if it does not lie on an improving path to any other network.
We provide the following lemma and refer to the work of Jackson and Watts [15] for its
proof, where the exact arguments can be applied for the notion of PSt inour model.

Lemma 1. In the network formation model with transfer payments, there exists either
an equilibrium network from PSt(u) or a closed cycle of networks.

Theorem 1. In the linking game with direct and indirect transfers given the utility
function in (1),

(a) There are no cycles,
(b) There exists at least one pairwise stable network (PSt(u)).

Proof. We can rule out the existence of cycles in a network formation model if we show
that the following holds: for any two networksG andG′,G′ defeatsG if and only if v(G′) >

v(G) and G and G′ are adjacenti. We can briefly argue that our linking game satisfies
this condition. Since the direct and indirect transfer payments between players prevent
the situations, where a player’s utility can get hurt by actions (link addition or deletion)
of others. In fact, this is one of the main function of transfers. Therefore, the value of
networks through each improving path must be increased. Conversely, if G and G′ are
adjacent in an improving path such that v(G′) > v(G), G′ must defeat G, where G is a
network in the cycle.
Now, since there are finitely many networks that can be reached through the dynamic

process, if there is a cycle, then the exact pairwise monotonicity of our linking game
implies v(G) > v(G); contradiction. Ruling out the existence of cycles along with
Lemma 1 guarantees the existence of at least one pairwise stable network with transfer
payments.

Strictly pairwise stability

Now, we show that given the utility function u(.) in (1), the family of networks in PSt(u)

satisfies the notion of strictly pairwise stability. It is first described by Chakrabarti and
Gilles [20], which is a variation of pairwise stability.

Definition 5. A network G is strictly pairwise stable for u if

(a) ∀i ∈ N and ∀li(G) ⊆ Li(G), ui(G) ≥ ui(G − li(G),
(a) ∀i ∈ N , ij /∈ G implies ui(G + ij) < ui(G) as well as uj(G + ij) < uj(G).

In order to progress our argument, we need to provide the following definition and
lemma.
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Definition 6. Let α ≥ 0. A utility function u(.) is α-submodular in own current links
on A ⊆ G if ∀i ∈ N ,G ∈ A, and li(G) ⊆ Li(G), it holds that mui(G, li(G)) ≥
α

∑
ij∈li(G) mui(G, ij).

The case α = 1 corresponds to submodularity, also called superadditivity in [9].

Lemma 2. The utility defined in (1) is submodular in own current links.

Proof. The proof is inspired by the arguments in [18]. First, we show the related inequal-
ity in Definition 6 holds for the case when the subset li(G) consists of two distinct links ij
and ik, which is indicated in the below inequality:

mui(G, ij + ik) ≥ mui(G, ij) + mui(G, ik) (2)

If we consider any player such as m in network G, the distance between i and m
(dG(i,m)) contributes to the distance expenses in i’s utility. It is important to note that
removing any link such as ij or ik from the networkG cannot decrease this distance; how-
ever, if the removed link belongs to the shortest path between i and m in G, then the
distance would be increased. This argument can be extended to the severance of two links
such as ij and ik from G.

dG(i,m) ≤ dG−ij(i,m) ≤ dG−ij−ik(i,m) (3)

dG(i,m) ≤ dG−ik(i,m) ≤ dG−ij−ik(i,m) (4)

In computing the marginal utilities of networksG− ik,G− ij, andG− ij− ik, we should
note that the link-prices of removed links cannot be refunded for player i:

mui(G, ij) = −
∑
m �=i

(
dG(i,m) − dG−ij(i,m)

) − cij − tiij (5)

mui(G, ik) = −
∑
m �=i

(
dG(i,m) − dG−ik(i,m)

) − cik − tiik (6)

mui(G, ij + ik) = −
∑
m �=i

(
dG(i,m) − dG−ij−ik(i,m)

) − cij − cik − tiij − tiik (7)

According to Inequalities (3) and (4), we can simply imply the Inequality (2). Finally, we
can easily extend this argument for any subset of links li(G).

Proposition 2. Given the utility functions u(.) defined in (1), PSt(u) = P�(u).

Proof. According to the definitions, it can be derived that P�(u) ⊆ PSt(u). We further
prove that PSt(u) ⊆ P�(u).
Let G ∈ PSt(u), then for any link ij /∈ G, neither player i nor j can benefit from creat-

ing link ij. This is one of the impact of allowing players to put transfer payments on the
links. Thus, pairwise stable networks with transfers satisfy the second condition in the
Definition 5. Further, we know that ∀i ∈ N and ∀j ∈ li(G), ui(G− ij) ≤ ui(G). Let assume



Atabati and Farzad Computational Social Networks  (2015) 2:1 Page 10 of 14

there are k links in the subset li(G). Hence,
∑

ij∈li(G) ui(G − ij) ≤ (k)ui(G). On the other
hand, based on Lemma 2,

∑
ij∈li(G) mui(G, ij) ≤ mui(G, li(G)). This implies:

(k)ui(G) −
∑

ij∈li(G)

ui(G − ij) ≤ ui(G) − ui(G − li(G)). (8)

Since the left-hand side of Inequality (8) is positive, the expression in the right-hand
side must be positive too. So, this proves the first condition in the Definition 5 for the
networks in PSt(G).

Convergence to pairwise Nash stability

Calvó-Armengol and Ilkiliç [13] show the equivalency of pairwise stable networks and
pairwise Nash stable networks, given a utility function that is α-submodular. It targets
the simple observation that given a α-submodular utility function, if a player does not
benefit from severing any single link, then she does not benefit from cutting any subset of
links simultaneously as well. A similar argument can be adapted to our linking game with
transfers as well. So, we provide the following proposition without proof.

Proposition 3. Given a profile of utility functions u in (1) in a linking game with
transfers, PSt(u) = PNSt(u).

Small diameter in equilibrium networks

We take a large-scale
√
n × √

n grid as the seed network in this model. In order to prove
the main result for the diameter of the equilibrium networks, we provide the following
lemmas.
Let TG(t)(i, j) be the set of players that use link ij in their unique shortest paths to i in

the network G(t) : TG(t)(i, j) = {
k ∈ N | dG′(t)(i, k) > dG(t)(i, k)

}
, where G′ = G − ij.

Lemma 3. Let G(t) be an equilibrium network and i, j ∈ N be an arbitrary pair of

players in this network. If ij /∈ G(t), then |TG(t)(i, j)| <
dG(t)(i, j)α + cij + tiij

dG(t)(i, j) − 1
.

Proof. Since i and j are not linked in the equilibrium network, the benefit of establishing
ij has to be less than its linking costs for i and j. On the other hand,TG(t)(i, j) represents the
set of players that creates a part of this benefit by reducing the distance dG(t)(i, j) between
i and j to 1. Hence, we can state that paying dG(t)(i, j)α + cij + tiij, which is necessary for
establishing ij, cannot be beneficial for player i. As a result, |TG(t)(i, j)|

(
dG(t)(i, j)−

)
<

dG(t)(i, j)α + cij + tiij.

Remark 1. For any i, j ∈ N , cji can be noted as an upper bound for the transfer payment
tiij. Hence, if c = max∀i,j∈N (cjk), it is an upper bound for any direct transfer payment in
the network.

Lemma 4. In any equilibrium network G(t), for any player i ∈ N,

let Sdi = {k ∈ N | dG(t)(i, k) ≤ d}. Then, |Sdi |
(
1 + dα + 2c

d − 1

)
≥ n, where

c = max∀i,j∈N (cij).
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Proof. The set Sdi consists of players in the neighborhood of i within a distance at most
d. Furthermore, for each of these players such as k in the set Sdi , according to Lemma 3,
we consider the set TG(t)(i, k). All players outside of this set should use one of players
such as k in their shortest path to i. As a result, we can cover all players outside the set Sdi
by allocating a set TG(t)(i, k) to i for all players in set Sdi . By doing so, an upper bound of
|TG(t)(i, k)||Sdi | + |Sdi | for the number players in network (n) is achieved.
In order to obtain an upper bound for the set TG(t)(i, k) in wide range of different

possible choices for i and k, we define c to be the maximummaintenance cost for all pos-
sible links in network. According to Remark 1, this is an upper bound for all the possible

direct transfer payments as well. Hence, |TG(t)(i, k)| ≤ dα + 2c
d − 1

. By substituting the upper

bounds of TG(t)(i, k) and Sdi in |TG(t)(i, k)||Sdi | + |Sdi | ≥ n, the desired inequality can be
achieved.

Lemma 5 shows an upper bound for the set |S2i |.

Lemma 5. |S2i | ≤ �α +2c/k
(
� − (

h1 + h2(g1 + 2) + h3(2f1 + f2 + 3)
))
, where � is the

diameter of any equilibrium network G(t), and 0 ≤ k, fi, gi, hi ≤ 1 denote some fractions of
players in the set S2i based on their reduced distances to player i when forming the link ij.
Also, f1 + f2 + f3 = g1 + g2 = h1 + h2 + h3 = 1.

Proof. LetG be an arbitrary instance from the set of equilibrium networks in our model,
which are the set of pairwise stable networks with transfer (G ∈ PSt(u)), given the utility
function u(.) in (1). Also, let t be the the profile of strategies for players that forms G. Fur-
ther, assume that the largest distance between any two players (or diameter) in networkG
exists between two players i and j. We denote � to be the size this distance. Note that the
pair of i and j is not necessarily unique.
Based on the stable state, we can imply that creation ij is not beneficial for neither i nor

j. If j wants to establish a link to i, |S2i | is a lower bound for the j’s benefit that comes from
the reduced distances to players in S2i . This set includes i itself and two subsets of players
that are in distance 1 (type 1) and 2 (type 2) from i. First, let k represents players in S2i
such that their distances to j can be reduced by adding ij, as a fraction with respect to all
players in |S2i |. Moreover, let h1 represents player i itself as a fraction with respect to all
players in |S2i |. By establishing ij, j’s distance to i reduced by � − 1.
Furthermore, let h2 and h3 represent the fractions of the number of type 1 players and

type 2 players, respectively, in S2i . Their reduced distances for j is computed according to
the initial distances of these two types of players in S2i from j. Among the type 1 players,
there are two subsets of players that g1 and g2 are their fractions with distance of�−1 and
� from j, respectively. Furthermore, in type 2 players, there are three subsets of players
in terms of their distance from j with fractions of f1, f2, and f3 that are in distance of
� − 2,� − 1, and � from j, respectively.

Theorem 2. For a sufficiently large network, there is a small diameter of at most 4 for
any equilibrium network in the dynamic link-pricing model with transfer payments.

Proof. Based on our arguments in Lemma 4 and Lemma 5, we can state that

n ≤ (1 + 2α + 2c)(�α + 2c)/k
(
� − (

h1 + h2(g1 + 2) + h3(2f1 + f2 + 3)
))
. (9)
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For sufficiently large network, when the diameter is greater than 
h1 + h2(g1 + 2) +
h3(2f1+f2+3)�, it contradicts Inequality (9). Clearly, we can specify that 3 ≤ 2f1+f2+3 ≤
5 and 2 ≤ g1 + 2 ≤ 3. Thus in this case, the upper bound for the diameter is the weighted
average of 1, 2f1+ f2+3, and g1+2, and it is surely smaller than 5. Therefore, the diameter
cannot be bigger than 4 for any choice of parameters. However, we cannot have the same
claim for smaller diameter and rule out their possibility.

Simulations
We carried out a set of simulations that improves the EK model by implementing the
dynamic link-pricing and a fixed maintenance cost c. These simulations generate net-
works that show (i) a small diameter of at most 4, (ii) a high clustering coefficient (with
respect to edge density), and (iii) a power-law degree distribution. The dynamical sim-
ulations are implemented on a grid with n ≈ 1, 000. At each iteration of the dynamic
process, two players i and j are chosen uniformly at random. Then, with probability 1/2
player i considers establishing a link to j (if ij /∈ G) and with probability 1/2, she considers
severing her link to j (if ij ∈ G). Note that these considerations are such that in each ran-
dom meeting, the decision for adding (or removing) a link is implemented based on the
corresponded benefit and cost to that link with respect to the current state of the evolved
network. We used the notion of link stability. In this set of simulations, we aim to indi-
cate our improvements and extension on the EK model in order to generate small-world
networks. Note that by using the dynamic link-prices, the emergence of a small diame-
ter of at most 4 in link stable networks are directly implied similarly by our argument in
the ‘Small diameter in equilibrium networks’ sectionj.
In many instances of our simulations, it can be seen as in Figure 3 that the degree

distribution is a good estimation for the power-law degree distributions in the real-life
social networks. Figure 3 shows the impact of parameters c and α on the degree distribu-
tions of resulting networks. The larger plots are the distributions where their vertical axis
is the probability for degrees and their horizontal axis determines different values for the
degree of nodes. The smaller plots are the log-log plots of these distributions. Their verti-
cal axis are the logarithm of the number or the frequency for nodes with different values

Figure 3 Degree distributions. Structural properties of generated networks in the simulations.
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Figure 4 Average clustering coefficients. Structural properties of generated networks in the simulations.

for their degree. Moreover, the appearance of few high degree nodes represents the few
hubs in these networks.
Figure 4 demonstrates the clustered structure of the link stable networks: a high average

clustering coefficient is present in all instances after increasing themaintenance cost from
c = 1. The high clustering in these networks can be highlighted by pointing out their
small edge-density in the range from 0.007 for the network with c = 50, α = 5 to 0.069
for the network with c = 1 and α = 1. The diameter in all instances was either 3 or 4 as
expected.

Endnotes
aThe principle that individuals are all linked by short chains of connections and

acquaintances.
bThe pairwise stability is the major notion of stability that assumes myopic players and

has been studied in related literature. In a linking game with transfers, it was first
introduced as an extension in [8] and then developed in [9,10].

cComputing the best responses of players in Nash equilibria within some similar
models [11,12] are proved to be NP-hard.

dSee [9,10,13,14].
eThis assumption is reasonable in our framework, since the formation of other links

cannot hurt the utility of non-involved players with respect to the distance-based
structure of our utility function in (1).

fSee e.g. [8,10,12] for some application instances of distance-based payoff structures.
gSee [18,19] for some instances of study in the case of bargaining between players on

network. In fact, despite the rich literature in general for bargaining between players,
bargaining on networks is in its early attempts.

hAdding a charging scheme for the maintenance of existing links is a reasonable
extension that can resolve this issue, and it is studied in our model.

iThis condition is denoted as exact pairwise monotonicity by Jackson and Watts.
jNote that although the existence of stable networks and convergence to the Nash

outcomes would not be guaranteed in this assumption, we achieved a set of link stable
networks by implementing many trials for different sets of α and c.
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