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Abstract

A lot of daily activities require more than one person to participate and collaborate with
each other; however, for many people, it is not easy to find good partners to engage in
activities with one another. With the rapid growth of social network applications, more
and more people get used to creating connections with people on the social network.
Therefore, designing social network framework for partner-matching is significant in
helping people to easily find good partners. In this paper, we proposed a framework
which can match partners for an active community. In order to improve the matching
performance, all users are divided into groups based on a specific classification tree
that is built for a specific activity. The optimization goal of the partner-matching is to
maintain as many stable partnerships as possible in the community. To achieve the goal,
various factors are considered to design matching functions. The simulation results
show that the proposed framework can help most people find stable partners quickly.
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Background
A lot of daily activities require two or more people to collaborate. For instance, playing
tennis, squash, rock climbing, and ballroom dancing. However, a lot of people liking these
activities suffer from finding good partners. Some people have partners; however, it is
still impossible to engage in these activities at the time they preferred since their partners
might not be available at that time. Also, partners with different levels usually do not
enjoy playing with each other. Everyone wants to have good partners since good partners
can help each other improve their performance and skills efficiently. Lacking of matched
partners really can ice people’s enthusiasm for these activities. An application which can
find good partners for people has high practical utility. Obviously, it can encourage more
people to engage in these activities.
Nowadays, social networks have integrated into our daily life [1-5]. More and more

people use social network applications everyday. A survey shows that 74% of online
adults use social network sites as of January 2014 [6]. Therefore, for most of people, it
is easy to accept using a social network application to find partners. However, randomly
finding partners through social networks is not so efficient. First of all, it is difficult
and takes time for users to find partners who meet their requirements via social net-
works. Most importantly, people have to take various risks to be partners with strangers
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found on social network sites. Therefore, people rarely try to find partners via social net-
works. This motivates us to design a partner-matching framework for users to find good
partners.
Usually, people engage in the activities which need partners at certain places such as a

gym, fitness center, and classroom. Obviously, people usually do not want to change their
activity locations for a new partner. Therefore, the searching pool should be limited to the
people who engage in the same activity at the same place. Partner-matching applications
can be used by these places to help their members to have better experiences and also
attract more new members. The partner-matching application can be implemented as a
social network website and/or mobile application.
The challenges of designing a partner-matching framework are as follows:

1. How to find a good partner for a user? A good partner for one may be bad for
another since users have different definitions of good partners. Therefore, we
cannot use the same criteria for every user. Only the user can rate the selected
partner is good one or not according to their collaboration experience.

2. How to make the utmost effort to benefit all users? It is very difficult to satisfy
every user. Then, how to match partners to benefit as many users as possible is a
complicated optimization issue.

3. How to protect every user’s privacy? In order to match partners very well, users
need to provide their personal information such as age, gender, years of experience,
and contact information. However, users do not want anyone else to access their
private information. Thus, protecting the users’ privacy is a big challenge.

In this paper, we proposed a partner-matching framework to address this issue. Our
proposed framework designs to use a classification tree to distribute users to leaf nodes
of the tree; thus, for a user’s request, the searching pool is way smaller compared to
finding the best match among all candidates. Apparently, the matching performance can
be improved significantly by using the classification tree. Moreover, in order to achieve
the optimization goal of maintaing as many stable partnerships as possible, we proposed
matching functions which consider various factors. The simulation results show that our
framework can find good partners for most of the users quickly.
The rest of the paper is organized as follows: ‘Related work’ section reviews the related

work of this study. The proposed mechanism is introduced in the ‘Partner-matching
framework’ section. ‘Simulation’ section shows the simulation results. The ‘Conclusion’
section concludes our work.

Related work
Gale and Shapley proposed an algorithm to solve the college admissions and the stability
of marriage problem [7]. The stable marriage problem is the problem of finding a sta-
ble match between two sets of elements given a set of preferences for each element. A
matching is a mapping from the elements of one set to the elements of the other set. The
Gale-Shapley algorithm solves the stable marriage problem. It executes in rounds. In the
first round, each man proposes to the woman he prefers most. A woman faces one of the
following three situations: 1) no one proposes to her, 2) only oneman proposes to her, and
3) there are more than one man who propose to her. For the first situation, the woman
does not need to do anything and just wait. For the second situation, the woman accepts
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the proposal. For the third situation, the woman accepts the suitor she prefers most and
rejects the rest of suitors. After the first round, each single man proposes to the woman
he prefers most among all women who did not reject him no matter if she is single or
not. A woman still picks the one she prefers most among all suitors and rejects the rest
suitors. If a woman already accepted a man in the previous rounds, when she has a bet-
ter suitor, she must reject the current match and accept the new suitor. Therefore, some
men might become single again, then they can propose to another women in the next
round. After rounds and rounds, till no one is single, there will be no new proposal; thus,
the whole process ends. The stable marriages are achieved. David Gale and Lloyd Shapley
proved that for any equal number of men and women, it is always possible to solve the sta-
ble marriage problem and make all marriages stable. The time complexity is O(n2). The
Gale-Shapley algorithm is not suitable for the partner-matching problem since unlike the
marriage relationship, we cannot divide people into two sets.
Dubins and Freedman [8] proved that for student admission problem, a student can-

not improve his/her fate via lying about his/her preferences. Gale and Sotomayor [9] and
Roth [10] proposed further analysis of the college admission and stable marriage problem.
Roth [11] addressed that the college admission problem is not equivalent to the marriage
problem. There does not exist a stable matching procedure to make a dominate strategy
for colleges to reveal their preferences. Roth [12] studied the stability and polarization
of interests in job matching. Roth [13] studied the common and conflicting interests in
two-sided markets. In [14], the preferential partner selection in an evolutionary study
of a prisoner’s dilemma was studied. Marriage and employment relationship matching
problem is addressed in [15]. Beckman et al. [16] studied the network partner selection.
A variant of stable marriage problem is the stable roommate problem which is a non-

bipartite extension of stable marriage problem. Given 2n persons, each has a preference
list over the other 2n−1 people. The stable roommate problem is to find a stable matching
[17]. For a roommate matching problem instance, there might not exist a stable matching.
In [18], an algorithm withO(n2) time complexity is proposed to determine whether a sta-
ble matching exists for any instance of the problem and find one if it exists. The problem
of finding a matching with the minimum number of blocking pairs is NP-hard, and it is
hard to approximate [19]. Unfortunately, algorithms of stable roommate problem cannot
be applied to partner-matching applications since giving a preference list will violate the
rule of protecting privacy of users.
To the best of our knowledge, existing algorithms are not suitable for solving the

partner-matching problem efficiently. Obviously, randomly matching partners or round
robin will not find stable partnerships quickly since people will keep requesting a new
partner when they are not satisfied with the current one. In this paper, we proposed a
mechanism to match partners for a social activity community.

Partner-matching framework
In this section, we introduce our proposed partner-matching framework. People who
need to find partners can send a request. The partner searching pool includes peo-
ple who request partners and all members of a certain place where the activity is held.
Even though some members have no intention to send a partner-matching request, they
might accept a partner request from others. Therefore, we also add them to the searching
pool.
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A profile is created for every member in the searching pool. An example profile for
an indoor rock climbing gym is shown in Table 1 [20]. For different activities, the pro-
file is designed specifically according to the features of the activity. When a climber uses
a harness and rope as protection from falling, he/she needs a belayer to operate these
belaying devices to ensure a falling climber does not fall very far. It is important for the
belayer to closely monitor the climber’s situation as the belayer’s role is crucial to the
climber’s safety. Therefore, a rock climber usually carefully picks a partner. Usually, an
indoor rock climbing gym requires climbers to pass a test to get a belay certification.
A climber without a certification is not allowed to belay other climbers. There are two
belay certification levels, top rope and lead climbing. A climber who can do lead climb-
ing also can do top rope but not vice versa. The climbing route difficulty level is from 5.6
to 5.13 usually for an indoor gym. Climbers like to be partners with someone who has
similar or more advanced climbing skills than themselves, thus they will improve more
quickly.
For request senders, we can obtain their profiles easily when they send the requests. For

the regular members of the place, we use their membership information to fill the pro-
file, thus some information might be missing such as years of experience, level, and time
schedule. A time schedule can be summarized according to check-in records of the past
few months. If someone does not have a regular time schedule, we use the term random
to fill it. Also, we can use their years of membership as their estimated years of experi-
ence, then use the average values of other members with the same years of experience to
fill in other missing items. For these members with estimated items in their profiles, we
put an estimated mark on them.
When a user signs in to use the partner-matching application, he/she needs to com-

plete a form to describe their requirements to potential partners. An example request
form is shown in Table 2. The request form is designed according to the features of the
activities. Requirements are divided into two categories, strong requirements and weak
requirements. Strong requirements are more important for users; thus, strong require-
ments must be totally or partially met. Weak requirements do not affect collaboration
experience of partners obviously, so these are used for ranking search results when multi-
ple candidates are found. For the climbing gym example, belay certification level, climbing
level, and scheduling are strong requirements. Age and gender are weak requirements.
For the strong requirement items, users must specify a value or choose a range. For

each requirement item, there are a few options from which to choose. In Table 2, we

Table 1Member profile for a rock climbing gym

Parameter Value

Name Rachel

Phone 555-555-5555

Email address rachel@partnerfinding.com

Gender Female

Age 35

Years of experience 2

Belay certification level Top rope

Climbing level 5.9 to 5.10

Climbing time Weekday evenings
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Table 2 Partner request

Requirement Options

Belay certification level Top rope; lead climb

Climbing level 5.6 to 5.7; 5.8 to 5.9; 5.10 to 15.11; 5.12 or above

Schedule Weekday mornings; weekday afternoons;

weekday evenings; weekends

Preferred gender Male; female; none

Preferred age Under 30; 31 to 40; 40 or above; none

use semicolons to separate options. For some requirement items, users can choose more
than one option. For instance, in Table 2, users can choose more than one schedule and
climbing level option. But users can only choose one option at belay certification level.
The domain of a requirement item which has values within a certain range are divided
into several continuous intervals such as preferred age.

Problem definition

The optimization goal of the partner-matching application is to construct as many stable
partner relationships as possible. A partner relationship is stable when each party thinks
he/she found the best partner already or he/she cannot find a better partner. The rating
system in Table 3 is used for rating partners.
A set P is created including everyone who has either sent a partner request or accepted

a partner request. For a person pi in P, Rpi is the rate he/she gave to the current partner, If
he/she does not have a partner currently or if a person pi sent a request but never found
a partner, Rpi = 0. The goal of matching partners is as follows:

Maximize
|P|∑
i=1

Rpi (1)

In order to achieve this optimization goal, we propose a partner-matching strategy in
the ‘Partner-matching’ section.

Classification

If a user requests a partner, the system can recommend a list of members who meet or
almost meet the requirements of the user. In order to efficiently find the members who
meet the requirements, we use classification techniques to divide all members in the
searching pool into groups. SP is the searching pool. SP = {

m1,m2, · · · ,m|SP|
}
wheremi

is the profile of member i in the searching pool.

Table 3 Partnership rating

Score Rate Action Possibility of accepting
a new partner (%)

4 Excellent None 0

3 Good Little chance of accepting new partners 25

2 Fair Big chance of accepting new partners 50

1 Poor Request a new partner 75
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Assume there are n requirements, r1, r2, · · · , rn, in the partner request form. For every
requirement ri, we assign a weight wi for it, and the total weight of all requirements is 1
as shown in Formula 2.

n∑
i=1

wi = 1 (2)

The more important the requirement is the bigger weight is assigned. The opinions of
the experts of this activity are necessary for weight assignment since it will affect a user’s
degree of satisfaction to recommended partners. Table 4 shows the weight assignment
for the rock climbing gym example. Usually, the total weight of weak requirements is not
more than 0.1 since they are not so important compared to strong requirements.
Assume there are s strong requirements. We sort strong requirements in descending

order by weights and store in the list RS = r1, r2, · · · , rs, where wi > wj if i < j. Each
requirement ri in RS has oi options. rik indicates the kth option of requirement ri. These
strong requirements are used to divide all members into groups. The requirement with
bigger weight is applied first. The purpose is to reduce the searching pool size when pro-
cessing a user’s request. A classification guide tree is used to help the group division
process.
Initially, we create an empty classification tree T . A tree node t has the structure

{rik , member_list, child_list}. rik is the classification attribute used for the current tree
node.member_list includes all members who fall into the group that the current tree node
represents. child_list contains links to child nodes of the current tree node. In the clas-
sification tree, all members are in the leaf nodes; in other words, the member_list of an
internal node is empty. Therefore, for any tree node, either member_list or child_list is
empty.
Algorithm 1 describes the basic process of building a classification tree. First, the root

node is created. Its member_list initially includes all members in the searching pool.
Then, all options of the requirement r1 are used as grouping criteria to divide all mem-
bers into separate groups. For each option, a new group is generated. We create a new
tree node for each group to store the members in this group. Also, all these new cre-
ated nodes are children of the current node. Then, for these new nodes, options of the
next requirement in the list RS are used to partition their members to new groups. This
process is repeated until the last strong requirement is applied. However, if members
are not evenly distributed based on these options of requirements or there is no suffi-
cient members, a lot of sparse nodes (groups without member or just with few members)
will be generated. The tree with many sparse nodes is not desired since it leads to poor
searching performance. In order to avoid generating too many sparse nodes, a classifi-

Table 4 Partner request

Requirement Weight

Belay certification level 0.4

Climbing level 0.3

Schedule 0.2

Preferred gender 0.05

Preferred age 0.05
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cation threshold is predefined. When the number of members of the current processing
node is less than the classification threshold, it is not necessary to continue the partition
process.

Algorithm 1 Classification
Input: SP, RS, OS, and classification_threshold
Output: Classification tree T
1: create a queue Q, set Q empty initially
2: create a tree T with only the root node root where root = {null, SP,∅}
3: add the root node root to Q
4: whileQ is not empty do
5: t = dequeue(Q) {return the first node in the queue}
6: if |member_list| of t is greater than classification_threshold then
7: if the first element classification attribute rik of t is null then
8: classification_requirement = r1
9: else if i of rik is less than s {did not apply the last strong requirement yet} then

10: classification_requirement = ri+1
11: end if
12: for each option rjk of classification_requirement do
13: create a tree node c = {rjk ,∅,∅}
14: remove every member who meet rjk in member_list of t and add to the

member_list of c
15: ifmember_list of c is not empty then
16: add c to the child_list of t
17: add c to Q
18: end if
19: end for
20: end if
21: end while

The classification tree of the rock climbing gym example is shown in Figure 1. Usually,
there is no 5.12 and 5.13 top rope routes in an indoor rock climbing gym, so there is no
child node for levels 5.12 to 5.13 for top rope. Also, lead climbers do not climb easy routes
like levels 5.6 and 5.7, so there is no node for levels 5.6 to 5.7 for lead climbing. The node
for level ≥ 5.12 of lead climbing is not partitioned further since there are not enough
climbers in the group to support further partition on schedule [20].

Figure 1 Classification tree of rock climbing gym.
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After the classification tree is generated, we can search members who meet certain
requirements easily via visiting from the top to the corresponding leaf node. If a new
member just joins in, we can use his/her profile to search the tree and find the matched
leaf node to insert the member. Each member in the searching pool is stored in one leaf
node of the classification treeT . If a member’s certain attributes in the profile are updated,
we can relocate the member to the proper leaf node by removing the member and then
reinserting into the tree.
By using the classification tree to partition members, the searching performance can

be improve significantly since only one or a few nodes are accessed instead of the whole
searching pool.

Partner-matching

Maintaining as many stable partnerships as possible is the optimization goal of the
partner-matching application. When a partner request pr is received, we will search the
classification tree to find all members who meet the strong requirements of the pr and
add them to candidate set Cpr . If there is no more than ten candidates found in the cor-
responding leaf node, add left and right direct sibling’s members into the candidate set. If
a user does not think his/her current partner is the best partner he/she can find, he/she
will keep trying to send partner requests or accept requests until the best match is found.
In order to make each user find their matched partner as early as possible, the method of
ranking candidates becomes significant. For amemberm inCpr , function f (m) is designed
to measure how well the membermmatches the request pr.

f (m) =
n∑
1
wi ∗ meeti (3)

where wi is the weight of requirement i. meeti is 1 if member m meets the requirement
i; otherwise, meeti is 0. The more requirements a candidate satisfy, the bigger is his/her
f (m).
How well a pair of partners match relies on both parties. The candidate with the largest

f (m) is the best candidate for the requester. However, the requester might not meet the
expectation of the candidate. Therefore, only considering the benefits of the requester
is not sufficient. Benefits of the candidates are also important for maintaining stable
partnerships. Therefore, we redefine f (m) as follows:

f (m) =
( n∑

1
wi ∗ meeti

)
∗

( n∑
1
wi ∗ meetim

)
(4)

where meetim is used to indicate whether the requester meets the candidate m’s require-
ment i. f (m) in Formula 4 is suitable to measure how well the requester and the candidate
mmatch each other.
If the best candidate is satisfied with the current partner, the possibility he/she accepts

the request would be low. If the request sender was rejected by the best candidate, he/she
also possibly misses the chance to win the second or third best candidate. Thus, the pos-
sibility of being accepted by a candidate also needs to be considered when we rank all
candidates.

f (m) =
( n∑

1
wi ∗ meeti

)
∗

( n∑
1
wi ∗ meetim

)
∗ ratem (5)
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As shown in Formula 5, we add one more factor ratem which is the possibility candidate
m accepts a new request. The estimated possibility of accepting a request is related to
the rating of the current partner. Table 3 shows our estimated possibilities. The lower the
rating to the current candidate is, the higher possibility the user will send a new partner
request. If a person never had a partner, we set the ratem to 50%.
f (m) is used to rank all candidates of the request pr. Then, the systemwill send a request

to the top one candidate. The request includes the profile of the request sender. To pro-
tect privacy of members, personal information such as name and contact information are
not included. Age is sent as a range format instead of using exact age. If the request is
accepted, a new partnership is established. Otherwise, send a request to the next candi-
date in the ranked list. The system repeatedly sends the request out until someone accepts
the request or all candidates are probed already. A reply waiting time is set up. If the
receiver did not reply in time, the request is withdrawn and continues to probe to the next
candidate. After probing all candidates in the list, if no one in the candidate set accepts
the request, the partner request sender can file another request. Candidates who made a
rejection prior might accept the request from the same sender since they are not satisfied
with the current partner.
Since a member changes a partner when there is a better choice, most members will

have a stable partnership over time. A few members with improper behaviors are not
capable of maintaining a long-term partnership. Therefore, they have to keep sending
requests and changing partners.

Simulation
We use the rock climbing gym example to evaluate the proposed framework. In our sim-
ulation, there are total 500 members. One hundred of them requests partners initially. If
a member gave the current partner a poor rating, he/she definitely sends a new request.
Whenever someone accepts the request, he/she will break the partnership with the cur-
rent partner. The member abandoned by the partner will send a new partner request to
find a new partner.

Figure 2 Percentage of matched partners.
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Figure 3 Average rate to partners.

We use the ranking function f (m) in Formulas 3, 4, and 5, respectively to evaluate
the performance of our partner-matching mechanism. The matching program is run by
rounds. In each round, a person can only send or receive one request. Figure 2 shows the
percentage of matched partners within 30 rounds. The percentage of matched partners is
calculated by following Formula 6.

number of requesters who currently have a partner
the total number of requesters

(6)

As seen in Figure 2, the effectiveness of Formula 3 is the worst among these three for-
mulas. The reason is that only the requester’s need is considered; however, a request
might not satisfy his/her best candidate’s requirements. Formulas 4 and 5 perform better
since requirements of both requesters and candidates are considered. Overall, Formula 5
achieves the fastest matching progress since it also considers the possibility of the candi-
dates to accept a new request. Formulas 4 and 5 have reached almost stable status after
20 rounds; however, Formula 3 needs more rounds to reach a stable status.

Figure 4 The number of times of accessing members for each round.
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The average rate to partners is shown in Figure 3. Formulas 4 and 5 perform better than
Formula 3 since Formula 3 does not consider the need of candidates. Thus, if the chosen
candidate accepted the request, the possibility of satisfaction is not high. Formula 4 has
higher average rate to partners than Formula 5 because it always chooses the bestmatched
partners for each other. However, Formula 5 sacrifices the best match to achieve a higher
request acceptance rate. Overall, Formula 5 has the fastest matching progress and gains
acceptable partner rate scores.
Figure 4 shows the difference between using and without using the classification tree.

As shown in the figure, in each round, the number of times of accessing members for
searching candidates is significantly low when we use the classification tree compared to
searching the whole pool. Therefore, the classification tree strategy obviously improves
the performance of finding candidates.

Conclusion
In this paper, a partner-matching mechanism is proposed to help people find partners
in a social activity community. A classification tree is used to partition users into groups
to reduce the candidate-searching time complexity. To achieve the optimization goal to
maintain stable partnerships in the community, we design three matching functions. The
simulation results show that the proposed framework gains good partner-matching per-
formance. In our future work, we will consider partnerships which require more than two
parties. Also, we will conduct real experiments on social network communities.
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