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Introduction
In recent times, the study of social influence has extended beyond mathematical sociol-
ogy [16, 24, 50] and has entered the realm of computation [1, 4–7, 28, 30, 33, 34, 36, 37]. 
A computational study of “influence”—however we define it—is key to understanding 
the behavior of individuals embedded in networks. In this paper, we model and analyze 
social influence in a strategic setting where one’s behavior depends on others’ behav-
ior. Since game theory reliably captures such interdependence of behavior in a popula-
tion, we ground our computational approach in game theory. The strategic setting of our 
interest here is the U.S. Senate. We model the influence structure among the senators 
by taking into account the relevant context, which we call the spheres of legislation. We 
learn these models of influence from the real-world behavioral data on Senate bills and 
voting records. Our particular focus is on analyzing machine learned influence networks 
to answer various questions on polarization and most influential nodes.

Interestingly, most computational models of influence assume a fixed network 
structure among individuals. We relax this simplifying assumption, allowing the net-
work of influence to vary according to the spheres of legislation. For example, bills on 
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finance may induce a very different influence network among senators than bills on 
defense, which may in turn have different impacts on inference problems like polari-
zation and most influential nodes. One central question in this regard is: how do we 
identify different spheres of legislation that may have different implications on these 
inference problems? We address this in "Spheres of legislation" section.

After identifying spheres of legislation, we can learn an influence network among 
the senators for each sphere by adopting game-theoretic models of strategic behavior. 
Broadly speaking, the topic of modeling and analyzing congressional voting behavior 
has been getting a lot of attention in both political science and computer science [9, 
19, 28, 30, 45], in part due to the availability of data.

In particular, we use the linear influence game (LIG) model of strategic behavior 
proposed by Irfan and Ortiz [29, 30]. We learn these models using data from the 
spheres of legislation. In LIG, each senator exerts influence upon (and is subject to 
influences from) other senators in a network-structured way. The model focuses on 
interdependence among the senators and adopts the game-theoretic solution concept 
of Nash equilibrium to predict stable outcomes from a complex system of influences. 
This notion of Nash equilibrium leads to a definition of the most influential senators, 
where a group of senators is called most influential with respect to a desirable stable 
outcome represented by a pure-strategy Nash equilibria (PSNE) if their support for 
that outcome influences enough other individuals to achieve that outcome. The LIG 
model will be elaborated in "The LIG model" section and machine learning of this 
model using the spheres of legislation will be detailed in "Machine learning" section.

The main theme of this paper is how influence networks are affected by the underly-
ing context, where the spheres of legislation represent the context. We should note 
here that contextual information has been considered before in the congressional set-
ting. Recently, Irfan and Gordon [28] extended the LIG model to account for the bill 
context. They sought to combine both the social interactions and ideological leaning 
aspects of congressional voting. Although their model incorporates an aspect of bill 
context by assigning polarities to bills, it does not completely disentangle the influ-
ence network from the topics or subjects of the bills. The influence network produced 
by their model does not change due to the bill context, whereas we allow the influence 
network to change based on the spheres of legislation.

Additionally, Irfan and Gordon [28] focused on making predictions given a single 
bill, rather than analyzing the network as a whole. In "Towards richer models: ideal 
point models with social interactions" section, we briefly touch upon how their richer 
model can be applied to multiple spheres of legislation, thereby allowing the net-
work to vary according to the context. The full exploration of their model within the 
spheres of legislation remains open.

As alluded above, while game-theoretic prediction of congressional votes has 
been well studied using the LIG model and its extensions [28–30], an analysis of the 
machine learned networks of influence did not get much attention, which we address 
here. Similarly, algorithms for computing most influential nodes in a strategic setting 
have been studied before (e.g., [30]), but their structural analogs like centrality meas-
ures have not been explored in a comparative fashion. In other words, what do we 
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gain by using a game-theoretic definition of most influential nodes as opposed to a 
structural definition? We address questions like this.

Furthermore, polarization in social networks has been well studied [4, 16, 21, 22, 39, 
41], especially in the political arena [10, 17, 27, 40, 52, 53] and often in a regional con-
text [2, 43]. A detailed literature review is provided in Appendix A. Three salient points 
distinguish our approach from the rich body of literature: (1) Ours is a model-based 
approach, where networks are central to predicting collective outcomes, (2) we learn the 
networks using behavioral data because the networks are not observable, and (3) we seek 
to show that polarization in Senate varies according to the spheres of legislation. We do 
not touch on the rising polarization in Senate over time, which by now is a well-settled 
matter [15].

Two recent congressional terms—114th and 115th—are especially interesting for ana-
lyzing network behavior and polarization. The 114th Congress ran from January 2015 to 
January 2017, and the 115th Congress ran from January 2017 to January 2019. In both 
terms, Republicans controlled the Senate, but the executive power was different. In the 
114th Congress, Barack Obama (D) held the presidency; in the 115th, Donald Trump (R) 
held the presidency. Despite the two opposing parties holding presidency, both terms 
are perceived to be deeply polarized. Interestingly, when we study different influence 
networks among the same group of senators arising from different spheres of legislation, 
we find that polarization is not really equally applicable. It very much depends on the 
sphere under consideration. Our aim is to put polarization and other inference ques-
tions like most influential nodes in context.

Spheres of legislation
We use an unsupervised machine learning technique, namely fuzzy clustering, to assign 
bills to different spheres of legislation based on the bill subjects. We learn the linear 
influence game (LIG) models, analyze influence networks, compute equilibria, and find 
most influential senators for each sphere separately. By doing so, we are able to examine 
differences and make comparative judgments across the spheres. We first describe how 
we prepare the data for clustering.

Preparing congressional roll‑call data

Our model relies on data obtained from the @unitedstates project’s Congress repository, 
(https ://githu b.com/unite dstat es/congr ess), a public domain program that allows easy 
access to official congressional data from the Congressional Research Service (CRS). In 
particular, we use bill data and roll-call data. Roll-call data contain senators’ “yea,” “nay,” 
or abstaining votes, while bill data include a list of subjects incident to the bill, among 
other attributes. These 820 subjects range from “Abortion” to “Zimbabwe,” and a multi-
tude of subjects describes each bill. Additionally, each bill is assigned a single “top term,” 
the broad subject which best describes the bill out of 23 possible top-level subjects. We 
use the roll-call data to represent senator voting behavior, and bill data to extract bill 
topics.

Working with the combined data from multiple terms presents a troubling problem 
for graph-based analysis: senators come and go. Seats in the United States Senate often 
change during midterm  elections, when constituents have the chance to re-elect or 

https://github.com/unitedstates/congress
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replace incumbent senators. In the middle of a term, if a senator leaves their seat, a suc-
cessor is appointed until the state can hold a special election to find a democratically 
elected replacement. In the 2016 midterm election at the onset of the 115th congress, 
seven senate seats were changed; during the course of the 115th congress, due to cabi-
net appointments by President Trump, scandals, and a death, the senate saw seven more 
changes.

When a senator is not present for a vote, they neither influence nor can be influenced 
by other senators’ votes during that roll call. Some senators in our dataset never once 
overlap with another; one left the senate before the other even joined. To reduce the 
number of these cases, we combined non-permanent senators under the following cir-
cumstances, given a departing senator A and an incoming senator B: 

1. Senator A does not run during an election, and senator B of the same party is elected 
to replace them.

2. Senator A voluntarily or involuntarily steps down, and senator B of the same party is 
appointed as their replacement

In these circumstances, we assume that the incoming senators behave similarly to the 
departing senators. In other circumstances, such as when a senator loses their seat to 
member of the opposing party, we keep both senators in the dataset. Changes in sen-
ate membership, and the operations undertaken to reduce the number of total senators, 
are described in Table 1. Additionally, learning the LIG model requires data to be in the 
form of two discrete values: 1 (yea) or −1 (nay). When a senator is not present for a 
vote—either because they were absent on that day, or were not yet holding office—we fill 
in the missing data with the mean vote of their party.1

Table 1 Changes in congressional membership within the 114th–115th congresses

When two senators are combined, the senator name in italicface indicates the label which was kept. This table should be 
referred to when examining figures and graphs which depict individual senators

State Incoming Departing Reason for change Operation

IN Young (R) Coats (R) Midterm election Combined

LA Kennedy (R) Vitter (R) Midterm election Combined

NV Cortez Masto (D) Reid (D) Midterm election Combined

NH Hassan (D) Ayotte (R) Midterm election

IL Duckworth (D) Kirk (R) Midterm election

MD Van Hollen (D) Mikulski (D) Midterm election Combined

CA Harris (D) Boxer (R) Midterm election

AL Strange (R) Sessions (R) Appointment Combined

AL Jones (D) Strange (R) Special Eeection

MN Smith (D) Franken (D) Appointment & special election Combined

MS Hyde‑Smith (R) Cochran (R) Appointment & special election Combined

AZ Kyl (R) McCain (R) Appointment Combined

1 Senators King I-ME and Sanders I-VT are considered Democrats in these circumstances; while unaffiliated with that 
party, their progressive ideologies match the average Democratic vote far more closely than the average Republican vote.
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Clustering algorithm

We seek to split the bills into a small number of broad categories, each of which encom-
passes many bills. Each bill has been tagged with a “top term” by @unitedstates. The top 
term corresponds to congress.gov’s tag of “policy area.” According to congress.gov, “one 
Policy Area term, which best describes an entire measure, is assigned to every public 
bill or resolution.” The policy area vocabulary consists of 32 terms. 2 However, these top 
terms/policy areas are too specific to be used as clusters on their own. In fact, making 
each top term its own cluster would result in some clusters containing only one bill and 
others containing a hundred. This would be problematic because the “outcome space” 
of LIGs is exponential in size, and as a result, learning LIGs requires a relatively large 
amount of data.

Rather than manually re-categorizing bills, we took a statistical clustering approach 
to grouping, based on a bill’s assigned “top term” in addition to all subjects it contains. 
For each data point, we assigned each possible subject a weight: 0 if missing, 1 if present, 
or 10 if it is the “top term.” By including both measures of subjects (top and regular), we 
produce more meaningful categories than using top terms or bill subjects lists alone.

In data science, K-Means (KM) is often used as a simple yet effective clustering algo-
rithm [38]. In KM, n data points are partitioned into k clusters based on their Euclidean 
distance from cluster centers. In each iteration, every data point is assigned a cluster 
based on the closest centroid; then, the centroid of each cluster is reset to the average 
position of each data point within that cluster. The process repeats until centroid posi-
tions converge. The problem of choosing k is left up to the researcher; generally, k is cho-
sen by trial-and-error. Cluster membership in KM is crisp, meaning that each data point 
belongs to one and only one cluster. While effective at producing distinct clusters, KM 
is not ideal for our purposes because bills often belong to multiple clusters. For example, 
a bill about increasing defense spending is about national security as well as economics.

The Fuzzy C-Means (FCM) clustering algorithm addresses this problem. FCM is an 
extension of KM which allows for overlaps in clusters [3, 47]. The objective function in 
FCM is largely the same as in KM, with the addition of membership values wij and a 
fuzzifier m. Membership values describe how closely each data point i belongs to cluster 
j. The fuzzifer changes membership values: m = 1 results in crisp clusters ( wij ∈ {0, 1} ), 
and higher values of m result in fuzzier clusters. The FCM algorithm produces a list of 
cluster centers, describing the position of each centroid, as well as the fuzzy partition 
matrix, describing the membership degree of each bill to every cluster.

Iterating over a range of values, we found that number of clusters, c = 4 and m = 1.3 
resulted in clusters which were relatively distinct, had intuitive descriptions and also 
contained an adequate number of bills for machine learning. Additionally, we experi-
mented with the threshold values for cluster membership and settled on 0.15. That is, 
a bill is considered a member of a cluster if its membership value is above 0.15. Table 2 
describes the results of our chosen FCM parameters. Each cluster is assigned a short-
hand name describing its contents and is called a sphere of legislation in this paper. We 
next describe the model.

2 See https ://www.congr ess.gov/help/field -value s/polic y-area.

https://www.congress.gov/help/field-values/policy-area
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The LIG model
We represent the senate influence network as a linear influence game (LIG) [29, 30], one 
type of 2-action graphical game [35]. Nodes represent senators, or players, and are con-
nected by directed edges. Edge weights represent the influence exerted by the source 
node upon the target. Influence weights can be negative, positive, or zero. The directed 
edges are allowed to be asymmetric, meaning that nodes A and B may exert different 
levels of influences on each other. Additionally, nodes have a threshold level, which rep-
resents “stubbornness.” Nodes with thresholds further from zero are more resistant to 
change. Absent influences, a node with negative threshold is predisposed to adopting 
action 1 (yea vote), and a node with positive threshold is predisposed to −1 (nay vote). 
The matrix of influence weights W ∈ R

n×n and the threshold vector b ∈ R
n constitute 

the LIG model. The action xi ∈ {1,−1} chosen by each node i is the outcome of the 
model, as described below in game-theoretic terms.

Each node’s best response to other nodes’ actions depends on the net incoming influ-
ence and the node’s threshold. When the total incoming influence from nodes playing 1 
minus the total incoming influence from nodes playing −1 exceeds the node’s threshold 
level, that node’s best response is 1. If below, it is −1 ; in the case of a tie, the node is indif-
ferent and can play either. Note that the best responses of the nodes are interdepend-
ent. A vector of mutual best responses of all the nodes is a stable outcome of the model, 
formally known as a pure strategy Nash equilibrium (PSNE). It is stable because no node 
has any incentive to deviate from it. The LIG model adopts PSNE to represent stable 
collective outcomes from a complex network of influence. Before formally defining the 
technical terms, we illustrate the model using an example.

Example. Fig. 1 illustrates the LIG model with a simple, 4-node example. Note that the 
LIG model allows edges of opposite polarities between two nodes. This is not shown in 
this example for simplicity. As explained in Fig. 1, A and B playing 1 and C and D playing 
−1 is a PSNE, whereas all nodes playing 1 is not a PSNE.

As shown for node A in the above example, the process of adding up incoming influ-
ences from nodes playing 1, then subtracting influences from nodes playing −1 , and 
finally comparing the result with the threshold value is succinctly captured by the 

Table 2 Summary of four spheres of legislation: shorthand names and descriptions for each of the 
spheres of legislation identified by the FCM algorithm are shown here

The sum of the number of bills across all spheres (965) is greater than the total number of bills (722) because membership is 
fuzzy. Spheres 1 and 2 are relatively distinct from the rest, while Spheres 3 and 4 share a large number of bills

Sphere# Size Name of sphere Sampling of bill subjects Ovlp. 1 Ovlp. 2 Ovlp. 3 Ovlp. 4

1 105 Security & Armed Forces Armed forces and national 
security (77), Emergency 
management (11), Transpor‑
tation and public works (10)

7% 20% 20%

2 263 Economics & Finance Economics and public finance 
(263)

3% 0% 0%

3 284 Energy & Infrastructure Energy (69), Education (31), 
Taxation (28), Transportation 
and public works (27)

7% 0% 76%

4 313 Public welfare Health (52), Crime and law 
enforcement (43), Taxation 
(38), Education (31)

7% 0% 69%
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influence function defined in Definition  3.1. The best response calculation (e.g., node 
A’s best response is to play 1 if the total weighted influence on A exceeds its threshold) 
can be done using the payoff function defined in Definition 3.2. Finally, PSNE is formally 
defined in Definition 3.3. In the following formal definitions, we use the same notation 
as [30].

Definition 3.1 (Influence function [30]) The influence function of each individual i, 
given others’ actions x−i , is defined as fi(x−i) ≡

∑
j �=i wijxj − bi where for any other 

individual j, wij ∈ R is a weight parameter quantifying the “influence factor” that j has on 
i, and bi ∈ R is a threshold parameter for i’s level of “tolerance.”

Here, individuals receive influences from other players and have an influence thresh-
old of their own, which accounts for their own resistance to external influence. The influ-
ence function fi calculates the weighted sum of incoming influences on i, as described in 
the paragraph above Definition 3.1, and subtracts i’s threshold from it.

Example. In the LIG shown in Fig. 1, when B plays 1 and C and D play −1 , the influence 
function of A is 1× 1+ (−1)× (−2)+ (−1)× (−1.5)− 0 = 4.5 . In contrast, when B, C, 
and D play 1, the influence function of A is 1× 1+ 1× (−2)+ 1× (−1.5)− 0 = −2.5 . 
Note that the influence function of A does not depend on A’s action.

We next define the payoff of each player. The payoff function happens to be one of the 
main ingredients of any game-theoretic model.

B D

C

A

1

2

-1.5

-31

2.5

-2

-3

0

0

00

Fig. 1 LIG example. A four‑node LIG is shown here. The directed edges are labeled with influence levels. Any 
absence of a directed edge implies an influence level of 0. Threshold values of 0 (for simplicity) are shown 
with a connector to each node. We assume binary actions {1,−1} . In this game, nodes A and B playing 1 and 
nodes C and D playing −1 is a pure strategy Nash equilibrium (PSNE). To see this, consider node A first. We 
add up the incoming influences from those nodes (in this case, B) that are playing 1 and then subtract from 
it the influences coming from nodes (in this case, C and D) playing −1 . We get 1− (−2− 1.5) = 4.5 , which 
is basically the total weighted influence on A. Since 4.5 is greater than A’s threshold of 0, A’s best response 
is 1. Similarly, it can be shown that B, C, and D’s best responses are 1,−1,−1 , respectively, and therefore, 
this is a PSNE. Similarly, nodes A and B playing −1 and C and D playing 1 is another PSNE. As a negative 
example, all nodes playing 1 is not a PSNE. To see this, consider node A. The total weighted influence on A 
is 1+ (−2)+ (−1.5) = −2.5 , which is less than A’s threshold of 0. Therefore, A’s best response is to play −1 , 
which violates the mutual best response condition for PSNE
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Definition 3.2 (Payoff function [30]) For an LIG, we define the payoff function 
ui : {−1, 1}n → R as ui(xi, x−i) ≡ xifi(x−i) , where x−i denotes the vector of a joint action 
of all players except i and fi is defined in Definition 3.1.

The payoff function quantifies the preferences of the players based on the actions of 
other players. Given the action of all other individuals x−i and influence function fi(x−i) , 
an individual will prefer to choose either 1 or −1 as follows. When fi(x−i) is negative, 
xi = −1 will result in a positive payoff; when fi(x−i) is positive, xi = 1 will result in a 
positive payoff. Actions chosen in this fashion in order to result in a positive payoff (i.e., 
to maximize payoff) is defined as the best response.

Example. For the LIG shown in Fig. 1, when A and B play 1 and C and D play −1 , A’s 
payoff is 1× 4.5 = 4.5 . In this scenario, A is playing its best response because if A were 
to play −1 , A’s payoff would have been −4.5 . As another example, when everyone plays 1, 
A’s payoff is 1× (−2.5) = −2.5 . Here, A is not playing its best response because A could 
have gotten a payoff of 2.5 by switching to action −1 . Note that the payoff of a node does 
depend on the node’s own action.

We next define pure-strategy Nash Equilibrium (PSNE) of an LIG. PSNE is one of the 
most central solution concepts in game theory. A PSNE signifies everyone playing their 
best responses simultaneously.

Definition 3.3 (Pure-strategy Nash equilibrium [30]) A pure-strategy Nash equilib-
rium (PSNE) of an LIG G is an action assignment x∗ ∈ {−1, 1}n that satisfies the follow-
ing condition. Every player i’s action x∗i  is a simultaneous best response to the actions x∗−i 
of the rest.

Example. In our running example (Fig. 1), nodes A and B playing 1 and nodes C and 
D playing −1 is a PSNE because it can be verified that every player is playing their best 
response simultaneously. As another example, nodes A and B playing −1 and C and D 
playing 1 is also a PSNE. As shown in Fig. 1, all nodes playing 1 cannot be a PSNE.

We adopt PSNE as the notion of stable outcomes arising from a network of influence. 
We are interested in questions like how the network changes based on the spheres of 
legislation and what impact the spheres have on polarization and most influential nodes. 
For these, we learn the networks using the spheres data.

Machine learning
We use Honorio and Ortiz’s machine learning algorithm to instantiate an LIG from raw 
roll-call data [26]. The goal of the algorithm is to capture as much of the ground-truth 
data as possible as PSNE (the empirical proportion of equilibria), without having so 
many total PSNE (the true proportion of equilibria) that the model is meaningless. For 
example, if all influence weights and threshold levels are 0 (i.e., W = 0, b = 0), then all 
2n possible joint actions among n players would be PSNE, trivially covering all observed 
voting data. However, this is undesirable as it has no predictive power at all. Therefore, 
we would like to maximize the empirical proportion of equilibria while minimizing the 
true proportion. Following is a gist of Honorio and Ortiz’s machine learning algorithm 
resulting from a very lengthy proof [26].
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Learning algorithm

To balance the true and empirical proportions of equilibria, the learning algorithm uses 
a generative mixture model that picks a joint action which is either a PSNE or non-PSNE 
of an LIG model G with probabilities q and 1− q , respectively. Of course, our goal is to 
learn the game G . Let NE(G) denote the set of PSNE of G and D = {x(1), x(2), ..., x(m)} 
be the dataset of m voting instances. The empirical proportion of equilibria, π̂(G) , is the 
fraction of data captured as PSNE of G . This is formally defined as follows, where � is the 
indicator function returning 1 if the condition is true, 0 otherwise:

The true proportion of equilibria, denoted by π(G) , is the fraction of all joint actions 
among n players that are PSNE, regardless of their existence in the voting instance data. 
This can be expressed as:

Given a set of voting instances D , the average log-likelihood of the probabilistic gen-
erative model can be written as follows. Here, KL stands for the Kullback–Liebler diver-
gence [11, Ch 2]:

Leaving the rigorous mathematical proof [26] aside, we can intuitively see how maximiz-
ing the above log-likelihood achieves maximization of the empirical proportion of equi-
libria π̂(G) relative to the true proportion of equilibria π(G) . For this, note that the first 
term above, KL(π̂(G) ||π(G)) , is maximized by a game G that makes π̂(G) as big as pos-
sible while making π(G) as small as possible. In other words, the game should capture as 
much of the data as possible as PSNE while keeping its total number of PSNE as small as 
possible.

Furthermore, the second term, −KL(π̂(G) || q) becomes 0 when π̂(G) = q . This indi-
cates that the optimal mixture parameter q is π̂(G) . This leaves learning G to maximize 
KL(π̂(G) ||π(G)) as the main task because we are maximizing the log-likelihood over all 
choices of G and q. The main challenge here is dealing with π(G) due to the hardness of 
computing PSNE [30]. However, it can be shown that with high probability, maximizing 
a lower bound of the log-likelihood is equivalent to maximizing π̂(G) over all choices of 
G . This is equivalent to minimizing 1− π̂(G) , which leads to the following loss minimiza-
tion formulation:

Above, the loss function ℓ represents the errors in best responses. It is easy to explain 
the above using the 0/1 loss function l(z) ≡ �[z < 0] . Whenever any player in the l-th 
voting instance does not play its best response, maxi ℓ

[
x
(l)
i (wT

i,−ix
(l)
−i − bi) is 1. When all 

players play their best responses, then maxi ℓ
[
x
(l)
i (wT

i,−ix
(l)
−i − bi) = 0 , signifying a PSNE. 

π̂(G) ≡
1

m

∑

x∈D

�[x ∈ NE(G)].

π(G) ≡ |NE(G)|/2n.

L̂(G, q) = KL(π̂(G) ||π(G))− KL(π̂(G) || q)− n log 2.

min
W,b

1

m

∑

l

max
i

ℓ
[
x
(l)
i (wT

i,−ix
(l)
−i − bi)

]
.
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For practical purposes of optimization, instead of the 0/1 loss function, a continuous loss 
function like the logistic loss function is used.

The final optimization problem is the following:

Here, m is the number of bills, ℓ is the typical logistic loss function, and ρ is an l1 regu-
larization parameter controlling the number of edges ||w||1 . That is, we prefer sparser 
networks if the solution quality is not degraded too much.

We solve the above optimization for each sphere of legislation and obtain an influence 
network. While doing this, we rigorously cross validate to avoid overfitting or underfit-
ting as described in the next section.

Cross‑validation and model selection for LIG

To make use of the l1-regularized model, we must choose a regularization parameter ρ . 
High values of ρ assign a higher penalty to the number of edges in the graph and result in 
a sparser graph, while low values of ρ assign a lower penalty and result in a denser graph. 
While low values of ρ will be better fitted to the model, there is a risk of overfitting—
“memorizing” the data—which results in poor predictive performance on new data.

Additionally, the number of edges must be taken into consideration because the prob-
lem of computing equilibria is NP-hard [29, 30]. In fact, it is likely that an extremely 
complex model would have so many edges that equilibria computation would never fin-
ish within a reasonable time-frame of several days. However, an exceedingly low number 
of edges would lead to an under-fit model, and could not be generalized to new data. 
Therefore, we must pick a ρ value which strikes a balance between computation time and 
the risks of over- and under-fitting.

We use cross-validation (CV) to determine the effectiveness of a given ρ value. In 
CV, a process essential to most machine learning applications, data are partitioned into 
two sets: training and validation. The model is trained using the training set and then 
employed to make predictions against the validation set. The performance of the model 
is measured by the error in the training and validation set. When a model is overfit, vali-
dation error will be significantly higher than training error. When a model is under-fit, 
both validation and training error will be high. In CV, researchers adjust the parameters 
of the machine learning algorithm to create the best model which neither underfits nor 
overfits the data.

With large datasets, training and validation sets are often created by splitting the 
data in half, or holding out some smaller proportion of the data.3 However, the four 
datasets generated by clustering method are too small to form informative predic-
tions if they are further reduced by this straightforward partitioning. Instead, we 
used k-fold CV, which leverages re-sampling to form useful insights on small data-
sets. In k-fold CV, the dataset is randomized and split into k partitions. In one run 

min
W,b

1

m

∑

l

max
i

ℓ
[
x
(l)
i (wT

i,−ix
(l)
−i − bi)

]
+ ρ||w||1.

3 In previous LIG research on congressional networks, models have been trained on one session of a congressional term, 
and validated on the other. However, because our data combine two terms (i.e., four sessions), this was not practical.
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of the k-fold CV, one of the k sets is chosen as the validation set, while the remain-
ing k − 1 sets are combined to form the train set. On the next run, a different set is 
chosen as the validation set, and the others are used to train the model. Measures of 
accuracy and error from each run are averaged across the k runs. Choosing a value 
of k is arbitrary, but k = 10 is often used in research applications, colloquially known 
as 10-fold CV.

We ran 10-fold CV on each sphere with 0 < ρ < 0.01 , tracking three measures of 
model performance: 

1. Number of edges in the training set graph
2. Best response (BR) error, or the percentage of senators not playing their best 

response, in training and validation sets
3. q, the proportion of votes recorded as PSNE, in training and validation sets.

We chose ρ values, shown in based on the following goals: 

1. The graph is sparse enough to efficiently compute equilibria
2. The model neither overfits nor under-fits the data (i.e., BR error is low, and the differ-

ences between training and validation sets for BR error and q are low)
3. The proportion of observed roll-call votes that are PSNE (q) according to the learned 

model is high

We next present the cross-validation results for Sphere 1.
Cross-validation on Sphere 1 (Security & Armed Forces). As shown in Fig.  2, 

the number of edges drastically decreases until ρ = 0.000367 and then begins to 
decrease at a slower rate, reaching a reasonable number of edges between values of 
0.002424 and 0.003455. BR error in both the training and validation set remains low 
until ρ ≥ 0.004 and then begins to increase, showing that the model performs well 
until that point. Until ρ = 0.001512 , the drastic difference between training and vali-
dation q values shows that the model is overfit, and the regression to q = 0 when 
ρ > 0.007014 shows that the model is under-fit. Between values of 0.002154 and 
0.03455, all metrics are within an acceptable range.

While we leave the detailed cross-validation results for the other spheres to 
Appendix B, there are a lot of similarities among these results. Across all spheres, 
when ρ = 0 , the learned model is basically memorizing the training data as training 
error is 0, validation error is relatively high, and the proportion q of data captured 
as PSNE is drastically higher for the training set than the validation set. This is the 
overfitting regime. As ρ increases, validation and training errors begin to converge, 
as do the validation and training q values. At higher ρ values, validation and training 
errors are both prohibitively high and the learning enters the under-fitting regime.

Table 3 summarizes the ρ values that we have chosen according to the three crite-
ria listed above. We use these values of ρ to produce the LIG models used through-
out the rest of the paper.
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Polarization in context
Visualization of the machine learned networks clearly shows that the network struc-
ture varies according to the spheres of legislation. In all spheres, however, the force-
directed drawing algorithm automatically distinguishes Republicans from Democrats. 
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Fig. 2 Cross validation: Sphere 1 (Security & Armed Forces). We perform tenfold CV for 0 < ρ < 0.01 . The 
plots for the number of edges, best response errors, and the proportion q of data that are PSNE are shown 
here

Table 3 Chosen values of ρ for each sphere and the corresponding number of edges and the 
average best response (BR) error of validation sets

Sphere ρ # Edges BR error 
(validation)

1 0.002728 1191 7.07%

2 0.003888 1071 5.05%

3 0.003070 1280 5.56%

4 0.003888 1076 5.10%
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Figures 3 and 4 depict the LIG visualizations for Spheres 1 (Security & Armed Forces) 
and 2 (Economics & Finance) as representative examples. The visualizations for the 
remaining spheres can be found in Appendix F.3. In this section, we discover dif-
ferent degrees of polarization across the spheres by investigating cross-party (or 
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Fig. 3 A bird’s eye view of the LIG network for Sphere 1 (Security & Armed Forces). Red nodes are 
Republicans, blue Democrats, and green Independents. Darker nodes have higher threshold and thicker 
edges have more influence weights. The strongest 40% incoming and outgoing edges for each node are 
shown
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cross-border) edges, influence weights and thresholds, and modularity measures. We 
begin with cross-party edges.

Cross‑party edges

The boundary between the two parties is interesting for studying polarization. Even 
though negative edges more often occur at the boundary, the connectivity between the 
two parties varies a lot according to the spheres of legislation. These are depicted in 
Figs. 5, 6 for Spheres 1 and 2, respectively (others are in Appendix F.4).

Figure 6 shows the cross-party edges in Sphere 2 (Economics & Finance), which starkly 
contrasts those of Sphere 1 (Security & Armed Forces) shown in Fig. 5. In Sphere 2, only 
12 of the strongest 40% of edges are between members of different parties. Of these, 2/3 
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Fig. 4 A bird’s eye view of the LIG network for Sphere 2 (Economics & Finance). The interpretation is the 
same as Fig. 3
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Fig. 5 Cross‑party edges in Sphere 1 (Security & Armed Forces): Graphviz visualization of cross‑party edges 
connecting members of the opposing parties within the strongest 40% of all edges. Here, 52 boundary edges 
are positive and 37 negative



Page 15 of 51Phillips et al. Comput Soc Netw            (2021) 8:14  

are negative, suggesting a very polarized network. Aside from two positive influences 
between Maine senators King (a left-leaning Independent) and Collins (a center-leaning 
Republican), the remaining two positive connections are the weakest of all connections 
shown for this sphere.

Similarly, examining inter-party edges reveals that Sphere 3 (Energy & Infrastructure) 
is also very polarized. While there are many edges between both parties in this network, 
about 70% of them are negative. Positive influences come from a few sources, again 
including the centrist Senator Collins. Incongruously, prominent right-wing senator 
Tom Cotton (R-AR) also exhibits positive influences with Democratic senators. How-
ever, most other far-left or far-right leaning senators, including Sanders (I-VT) and Cruz 
(R-TX), only exhibit negative influences with the opposite party.

Sphere 4 (Public Welfare)’s inter-party edges strike a balance between the polarities 
exhibited by the previous three spheres. There are slightly more positive edges (9) than 
negative edges (7), but still a low number of edges overall. Again, there are positive influ-
ences between Maine senators King (I-ME) and Collins (R-ME), but also positive influ-
ences between Senator McConnell and Democratic senators King (D-ME) and Tester 
(D-MT).

Overall, each sphere exhibits some level of polarization, but some spheres are far more 
polarizing than others. Some senators are present in every sphere’s inter-party bound-
ary, whether for positive or negative influences. Maine Senators Collins (R) and King (D) 
often share positive influences with each other, as well as other senators. Senator Lee 
(R-UT), a conservative libertarian, always exhibits negative edges with members of the 
other party, although in Sphere 1, he also shares positive influences with senators Harris 
(D-CA) and Feinstein (D-CA). Meanwhile, left-wing icon Bernie Sanders (I-VT) exhib-
its the equivalent behavior, with only negative cross-party edges in all spheres except 
Sphere 1. These results suggest that Sphere 1 (Security & Armed Forces) is least polar-
ized, whereas Spheres 2 (Economics & Finance) is highly polarized.

Influence weights and thresholds

We now take a closer look at the influence weights and thresholds of the machine 
learned models, beyond just the cross-party edges. Figure  7 shows a histogram of 
four different categories of edge weights: in the top row, Democrat-to-Democrat and 
Republican-to-Republican, and in the bottom row, Democrat-to-Republican and 
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Republican-to-Democrat (note that the edges are directed). In each plot, the histograms 
for the four spheres are superimposed for the purpose comparison. For the intra-party 
edges (D–D and R–R), Spheres 2, 3, and 4 have very similar histograms and they are 
different from the histogram of Sphere 1 (Security & Armed Forces). At the peak, the 
number of intra-party edges in Sphere 1 is dominated by the other spheres. However, 
for higher edge weights, Sphere 1 dominates the other spheres. This indicates that there 
are stronger D–D and R–R influences in Sphere 1 compared to the other spheres, which 
in turn may indicate more polarization in Sphere 1. Interestingly, if we look at the cross-
party edges (D-R and R-D), we can see that Sphere 1 again dominates the other spheres 
in the positive influence weights regime. Note that in the bottom row of Fig. 7, the peak 
of Sphere 3 dominates that of Sphere 1, but Sphere 3’s peak is in the negative influence 
regime, whereas Sphere 1’s peak is in the positive influence regime.4 All of these indicate 
that there are more positive influences within and across the two parties in Sphere 1 
compared to the other spheres, which contributes to Sphere 1 being less polarized.

Fig. 7 Histograms of edge weights. Best viewed in color, each plot shows frequency polygons, a form 
of histogram, of edge weights for the four spheres. Clockwise from top left: Democrat‑to‑Democrat, 
Republican‑to‑Republican, Republican‑to‑Democrat, and Democrat‑to‑Republican edges. The data are 
parsed into bins (x1, x2], (x2, x3], ..., (xn−1, xn] . We then plot the number of data samples that appear in the bin 
(xi−1, xi] against xi . The plots show how the influence weights in Sphere 1 (Security & Armed Forces)— shown 
in black dots—are different from the rest of the spheres

4 Also note that, as shown in Table 3, Sphere 3 has the highest number of edges among all the spheres.
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Of course, the influence weights cannot be read alone without considering thresholds 
because the game-theoretic model accounts for both of these in predicting stable outcomes. 
Recall that the threshold magnitude signifies stubbornness or resistance to influence. More 
positive threshold values resist positively weighted influences by leaning to play −1 in the 
presence of (1) positive influence from those playing 1 and (2) negative influence from those 
playing −1 (in both cases, a neighbor’s action times the influence from that neighbor is posi-
tive). More negative threshold values resist negatively weighted influences in a similar fashion.

Figure  8 shows the threshold histograms for the two parties. The most interesting 
aspect of these histograms is that for both Democratic and Republican senators, the 
threshold distribution is “flatter” in Sphere 1 (Security & Armed Forces) compared to the 
other spheres. This indicates that for both parties, the thresholds are more “uniformly 
distributed” in Sphere 1 than in the other spheres. In contrast, in Spheres 2 (Economics 
& Finance), 3 (Energy & Infrastructure), and 4 (Public Welfare), the threshold values of 
each party are concentrated in one region, which indicates the similarity among the sen-
ators belonging to the same party. Together with negative cross-party edges and positive 
intra-party edges, this contributes to polarization in these spheres. While Fig. 8 shows 
the histogram of each party for different spheres, Fig. 9 makes a comparison of the histo-
grams of the two parties for each sphere separately. The contrast between the two parties 
is not as remarkable as the contrast among the four spheres for any party.

As a final note, we emphasize that the threshold values on their own lack sufficient 
predictive power. In fact, the main component of the LIG model is the interdependence 
among the senators’ actions through the influence structure. Having said that, if a sphere 
is overwhelmingly dominated by bills sponsored by one of the two parties, then it is pos-
sible that the machine learning algorithm would assign low threshold values to the sena-
tors of that party (that is, those senators would be predisposed to voting yea).5 Even then, 
the influence weights would play a role in predicting the stable outcomes. Investigating 
this issue using sponsorship and co-sponsorship data is an interesting future direction.

Fig. 8 Histograms of thresholds. Frequency polygons of the Democratic and Republican senators’ thresholds 
are shown in these two plots. Each plot shows the frequency polygons of the four spheres. The frequency 
polygon of Sphere 1 (Security & Armed Forces) is “flatter” than the other three spheres for both Democratic 
and Republican senators

5 We thank an anonymous reviewer for raising this point.
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Modularity

Furthermore, a formal study of polarization rooted in network science produces simi-
lar results. Modularity [23, 41, 42] has been widely used as a measure of polarization in 
networks. We apply the following definition of modularity derived for directed networks 
with signed weights [20]:

Here, wij is the weight of edge i to j, w+
ij = max{0,wij} , w−

ij = max{0,−wij} , and 2w± is 
the total weight of all positive or negative edges, expressed by 

∑
i

∑
j w

±
ij  . Furthermore, 

w±,out
i  is the weighted out-degree 

∑
k w

±
ik and w±,in

j  is the weighted in-degree 
∑

k w
±
kj . The 

Kronecker delta function δ
(
Ci,Cj

)
 is 1 if i and j belong to the same party; it is 0 

otherwise.
Applying this definition, We obtain the following modularity scores for the four 

spheres of legislation respectively: 0.7861, 0.8904, 0.8724, and 0.8857 (see Table 5). This 
shows that Sphere 1 (Security & Armed Forces) is least polarized and Spheres 2 (Eco-
nomics & Finance), 3 (Energy & Infrastructure), and 4 (Public Welfare) are much more 
polarized.

It is important to note that modularity does not always indicate polarization. As 
Guerra et  al. [22] show, there are networks that exhibit community structure despite 

Q =
1

2w+ + 2w−

∑

i

∑

j

[
wij −

(
w+,out
i w+,in

j

2w+
−

w−,out
i w−,in

j

2w−

)]
× δ

(
Ci,Cj

)
.

Fig. 9 Comparative histograms of Democratic and Republican thresholds. Frequency polygons of the 
Democratic and Republican senators’ thresholds are compared for the four spheres. We do not immediately 
see any significant contrast
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not being polarized. However, in our case, we are not investigating whether Congress is 
polarized or not. Polarization in Congress is already a settled matter [15]. We are rather 
investigating to what degree Congress is polarized based on the spheres of legislation. 
Furthermore, our analysis of cross-party edges ("Cross-party edges" section) resonates 
with Guerra et al.’s main idea that in a polarized network, the nodes at the border are on 
average more connected inside their own community than outside.

Most influential nodes in context
There exists a number of centrality measures that are derived from a structural anal-
ysis of networks [31]. However, our model is behavioral where nodes adopt their best 
responses to each other. In a strictly game-theoretic model of behavior, a set of nodes 
will be called most influential with respect to achieving a desirable stable outcome if their 
choice of actions leads the whole system of influence to that desirable stable outcome 
[29, 30]. Here, a crucial aspect is a desirable stable outcome, represented by a PSNE. For 
example, let us say that our desirable stable outcome is to pass a bill by a 100–0 vote. A 
set of senators will be called most influential if their voting together influences every 
other senator to also vote for the bill, thereby having the desirable stable outcome as the 
unique PSNE outcome. This concept can be extended to other types of desirable stable 
outcomes like blocking a bill unanimously, passing a bill with at least 60 votes, forcing/
avoiding a filibuster, etc. When there are multiple most influential sets, we naturally pre-
fer smaller sets of most influential nodes.

The above concept of most influential nodes is centered around stable or PSNE out-
comes. As we will see in   "Computing most inuential nodes" section, it requires com-
putation of all PSNE. We next outline how we compute all PSNE for each sphere of 
legislation.

PSNE computation

Once the LIG is instantiated by the machine learning algorithm (see "Machine learning" 
section), we can compute the set of all PSNE using the algorithm described in [30]. This 
is a backtracking search algorithm which takes advantage of the graph’s structure. We 
give a brief overview below.

The algorithm begins by selecting the node with the highest out-degree—the node 
which directly influences the most other nodes—and assigns it the action 1. It pro-
gressively selects new nodes and assigns them the action 1 until all nodes are assigned 
actions without any contradiction (indicating a PSNE) or it encounters a contradiction 
that guarantees that there is no PSNE with the actions assigned so far. It then revisits the 
most recent node and changes its action from 1 to −1 . After this, the algorithm again 
tries to make progress. In general, at any stage of the algorithm, we have a partial joint 
action, which is the action (1 or −1 ) of each node selected so far. If some node in the 
network is not playing its best response, the partial joint action cannot lead to a PSNE. 
When this occurs, the algorithm tries a different action for the most recently selected 
node v if it has not already done so. If trying a different action for v still leads to a contra-
diction, the algorithm backtracks by deselecting v and changing the action of the node 
that had been selected before v. When every node is playing their best response with 
respect to each other, we have reached a PSNE. Importantly, the algorithm always tries 
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to reach a contradiction so that it can reduce the overall computation time by pruning 
large parts of the search tree. This process repeats until all possible PSNE have been 
found.

For each sphere, we ran the algorithm on Bowdoin College’s high-performance com-
puting (HPC) grid. The number of PSNE created for each sphere’s LIG given our chosen 
ρ values are summarized in Table 4. Note that the number of PSNE is a tiny fraction of 
the 2103 possible joint actions. These sets of all PSNE are necessary to compute the most 
influential senators, which we describe next.

Computing most influential nodes

Algorithmically, the most influential nodes problem asks for selecting a minimum 
set of nodes, such that when they choose their actions according to the desirable 
stable outcome (e.g., voting yea when the desirable stable outcome is passing a bill 
unanimously), the desirable stable outcome becomes the only possible PSNE. An 
approximation algorithm for computing most influential senators was given by 
Irfan and Ortiz [30], which produces a directed acyclic graph (DAG). The algorithm 
requires precomputation of all PSNE, which is a provably hard problem [30]. We 
apply Irfan and Ortiz’s PSNE computation algorithm to the LIG for each sphere of 
legislation. Having computed all the PSNE, we then compute the DAG representing 
most influential sets of nodes. Figures 10, 11 show the results of the most influential 
nodes algorithm for Spheres 1 and 3, respectively, where the desirable stable out-
come is to achieve the most number of yea votes possible in any PSNE (that is, to 
gain the most support possible from the legislative body according to our model). 
The way to read Figs. 10, 11 is to inspect each DAG and find a top to bottom path. 
Each of these paths gives a most influential set. 

The sets of most influential senators in each sphere support the inferences gained 
from analyzing the LIG networks. As illustrated in Fig. 10, in Sphere 1 (Security & 
Armed Forces), 4 Republicans and 4 Democrats comprise a set of 8 most influential 
senators. In other words, 8 senators and, more importantly, the balanced bipartisan 
groups of 8 senators shown in Fig. 10 are sufficient to generate the maximum pos-
sible support for a bill in Sphere 1. As shown in Fig. 11, in Sphere 3 (Energy & Infra-
structure), 5 Republicans and 6 Democrats comprise a set of 11. This suggests that 
Sphere 3 is more polarized than Sphere 1, since it requires a larger body of influenc-
ing senators. The DAGs for the other spheres are shown in Appendix E.

Game‑theoretic vs. structural centrality measures

In the above game-theoretic formulation of most influential nodes, we find that each 
set of most influential senators across all spheres is comprised of an (almost) equal 

Table 4 ρ values selected through cross‑validation and the corresponding PSNE counts across 
different spheres

Sphere 1 Sphere 2 Sphere 3 Sphere 4

ρ 0.002728 0.003888 0.003070 0.003888

# PSNE 865,578 6,454,013 8,711,782 4,162,629
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 COTTON R AR

 TESTER D MT

 HARRIS D CA

 GILLIBRAND D NY

 LEE R UT

 REED D RI  WHITEHOUSE D RI

 ENZI R WY

 COCHRAN R MS

Fig. 10 Most influential nodes for Sphere 1 (Security & Armed Forces): Directed acyclic graphs (DAGs) 
representing sets of most influential nodes. Any top‑to‑bottom path gives a most influential set. Here, 4 
Republicans and 4 Democrats are most influential

 BURR R NC

 MORAN R KS

 SASSE R NE

 BARRASSO R WY  ENZI R WY

 SANDERS I VT

 CARPER D DE

 DUCKWORTH D IL  FRANKEN D MN

 MENENDEZ D NJ

 MERKLEY D OR  WYDEN D OR

 PETERS D MI  STABENOW D MI

 PAUL R KY

Fig. 11 Most influential nodes for Sphere 3 (Energy & Infrastructure): The interpretation is similar to Fig. 10. 
Here, 5 Republicans and 6 Democrats are most influential
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number of Democrats and Republicans. This signifies the need for bipartisan support 
to guarantee passing a bill with the maximum possible support under the PSNE con-
straints. As we show next, this also happens to be a distinguishing feature between 
game-theoretic and structural measures. Table  5 shows various centrality measures 
and other quantities computed for each sphere.

First, measures like diameter, average shortest path length, and clustering coeffi-
cient reveal some, but not many, differences among the spheres. The network diam-
eter of Sphere 3 (Economics & Finance) is 4, and the network diameter of every other 
sphere is equal to 5. The average shortest path lengths between all four spheres are 
similar to one another, ranging between 2.2295 and 2.5476. Being close to half the size 
of the network diameter, these values suggests that most nodes in the network are 
well connected, though not all. The average clustering coefficient is a measure of the 
density of triangles in a network. In more polarized networks, we might expect this 
value to be high because senators who are closely aligned on partisan issues would be 
well connected with each other. In each sphere, the average clustering coefficient is 
similar, but lower in Spheres 1 and 3 (0.0187 and 0.0174, respectively) than in Spheres 
2 and 4 (0.0206 and 0.0218, respectively). These measures, however, do not give a 
direct indication of polarization, at least not as much as the modularity measure. We 
discussed the modularity values in "Polarization in context" section.

We now focus on the widely applied structural measures of centrality. For each 
sphere, we show the top 10 most central senators with respect to four centrality 
measures: degree, closeness, betweenness, and eigenvector. The simplest measure is 
degree centrality, or the number of nodes each node is connected to (normalized by 
the maximum possible degree, N − 1 or 102 in our case). The next form is closeness 
centrality, or how close a node is, on average, from every other node in the network. 
The third form is betweenness centrality, which is the average number of times the 
node is present along the shortest path from any other two nodes. The final form is 
eigenvector centrality, which has a self-referential definition accounting for the cen-
trality of a node’s neighbors.

Most notably, these centrality measures do not capture the strategic aspects of 
behavior. Throughout most measures, Republican senators are overrepresented, com-
prising the majority of the top ten most central nodes. In contrast, the game-theo-
retic measure gives a balanced coalition between Democrats and Republicans. This is 
important because when networks are polarized, achieving a desirable stable outcome 
requires support from both sides. 

Toward richer models: ideal point models with social interactions
We also apply a richer model of influence recently proposed by Irfan and Gordon 
[28] that extends the LIG model by incorporating ideal points of senators and polari-
ties of bills. Their work showed the value of combining game-theoretic and statistical 
models for studying strategic interactions in context, but they assume the network to 
be fixed, regardless of the bill context. We use their model and allow the network to 
change based on the spheres of legislation. We also perform an analysis of the net-
works learned.
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Table 5 Network analysis of learned influence networks for different spheres of legislation. Various 
centrality measures and network‑level properties are shown

Sphere 1 Sphere 2 Sphere 3 Sphere 4

Number of edges 1191 1071 1280 1076

Network diameter 5 5 4 5

Avg. (shortest) path 
length

2.2295 2.5132 2.1506 2.5476

Avg. clustering coef‑
ficient

0.1867 0.2057 0.174 0.2176

Modularity 0.7861 0.8904 0.8724 0.8857

Degree centrality

 Degree (1) 0.5784: LEE R‑UT 0.3529: TOOMEY 
R‑PA

0.3725: LANKFORD 
R‑OK

0.3725: COTTON R‑AR

 Degree (2) 0.4216: PAUL R‑KY 0.3333: PERDUE 
R‑GA

0.3627: SASSE R‑NE 0.2941: LEAHY D‑VT

 Degree (3) 0.4118: SANDERS 
I‑VT

0.3235: ENZI R‑WY 0.3529: WARNER 
D‑VA

0.2843: CAPITO R‑WV

 Degree (4) 0.3824: MORAN R‑KS 0.3137: LANKFORD 
R‑OK

0.3333: CAPITO 
R‑WV

0.2843: MURKOWSKI 
R‑AK

 Degree (5) 0.3725: MANCHIN 
D‑WV

0.3137: YOUNG R‑IN 0.3235: TOOMEY 
R‑PA

0.2745: AYOTTE R‑NH

 Degree (6) 0.3627: RUBIO R‑FL 0.3039: COTTON 
R‑AR

0.3235: MURKOWSKI 
R‑AK

0.2745: SHELBY R‑AL

 Degree (7) 0.3529: CRUZ R‑TX 0.2941: CASEY D‑PA 0.3235: COTTON 
R‑AR

0.2647: PERDUE R‑GA

 Degree (8) 0.3333: ALEXANDER 
R‑TN

0.2843: CASSIDY 
R‑LA

0.3137: BROWN 
D‑OH

0.2549: ALEXANDER 
R‑TN

 Degree (9) 0.3333: ENZI R‑WY 0.2843: WICKER 
R‑MS

0.3137: FEINSTEIN 
D‑CA

0.2549: PETERS D‑MI

 Degree (10) 0.3235: LEAHY D‑VT 0.2745: CORKER 
R‑TN

0.3137: PAUL R‑KY 0.2549: PAUL R‑KY

Closeness centrality

 Closeness (1) 0.5862: LEE R‑UT 0.5126: PERDUE 
R‑GA

0.5514: WARNER 
D‑VA

0.5204: COTTON R‑AR

 Closeness (2) 0.5635: RUBIO R‑FL 0.4951: COTTON 
R‑AR

0.5426: LANKFORD 
R‑OK

0.5178: KIRK R‑IL

 Closeness (3) 0.5574: PAUL R‑KY 0.4766: COLLINS 
R‑ME

0.5368: SASSE R‑NE 0.4951: MURKOWSKI 
R‑AK

 Closeness (4) 0.5455: SANDERS 
I‑VT

0.47: ENZI R‑WY 0.5368: BENNET 
D‑CO

0.4928: AYOTTE R‑NH

 Closeness (5) 0.5455: BALDWIN 
D‑WI

0.4636: SASSE R‑NE 0.534: KING I‑ME 0.4766: SULLIVAN 
R‑AK

 Closeness (6) 0.5397: ENZI R‑WY 0.4636: MANCHIN 
D‑WV

0.5231: MURKOWSKI 
R‑AK

0.4744: MCCONNELL 
R‑KY

 Closeness (7) 0.5368: MORAN R‑KS 0.4615: FLAKE R‑AZ 0.5178: COTTON 
R‑AR

0.4722: PAUL R‑KY

 Closeness (8) 0.5285: CORKER R‑TN 0.4595: SHELBY R‑AL 0.5152: BROWN 
D‑OH

0.4636: COLLINS R‑ME

 Closeness (9) 0.5258: CASEY D‑PA 0.4595: YOUNG R‑IN 0.5126: CASEY D‑PA 0.4554: CAPITO R‑WV

 Closeness (10) 0.5231: DURBIN D‑IL 0.4595: HEITKAMP 
D‑ND

0.51: CARPER D‑DE 0.4554: SANDERS I‑VT

Betweenness centrality

 Betweenness (1) 0.0696: LEE R‑UT 0.0538: PERDUE 
R‑GA

0.0278: LANKFORD 
R‑OK

0.0685: SANDERS I‑VT

 Betweenness (2) 0.0362: PERDUE 
R‑GA

0.0468: HEITKAMP 
D‑ND

0.0272: SASSE R‑NE 0.0641: WYDEN D‑OR

 Betweenness (3) 0.033: MORAN R‑KS 0.0452: GILLIBRAND 
D‑NY

0.0265: WARNER 
D‑VA

0.0559: COTTON R‑AR
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We start with an overview of how Irfan and Gordon’s model [28] builds on the political 
science literature on ideal point models [8, 13, 32, 45, 46, 48]. Ideal point models are pre-
dictive statistical models that assign each senator i an ideal point pi signifying the sena-
tor’s legislative position. Usually, more negative values of pi mean more liberal position 
and more positive values mean more conservative. Similarly, each bill l is also assigned 
a polarity al signifying the position of the bill in the liberal to conservative spectrum. 
There is a third model parameter called the popularity rl of bill l representing the frac-
tion of senators supporting the bill. The ideal point model in its most basic form defines 
the probability of senator i supporting bill l using the following logistic function σ:

The ideal point model captures the interdependence among the senators using the rl 
term. However, this term is an aggregate measure quantified by the number of sena-
tors voting yea on bill l. In ideal point models with social interactions, Irfan and Gordon 
expand this aggregate measure by considering how the individual senators are voting and 
how their votes influence each other [28]. The resulting model is game-theoretic with 

p(xi,l = yea | pi, al , rl) = σ(pial + rl).

Table 5 (continued)

Sphere 1 Sphere 2 Sphere 3 Sphere 4

 Betweenness (4) 0.0314: KING I‑ME 0.045: ENZI R‑WY 0.0226: BENNET 
D‑CO

0.0533: MARKEY D‑MA

 Betweenness (5) 0.0301: MANCHIN 
D‑WV

0.0434: COLLINS 
R‑ME

0.0206: MURKOWSKI 
R‑AK

0.0532: ALEXANDER 
R‑TN

 Betweenness (6) 0.0288: DURBIN D‑IL 0.0383: MERKLEY 
D‑OR

0.0196: BROWN 
D‑OH

0.0421: MURKOWSKI 
R‑AK

 Betweenness (7) 0.0283: RUBIO R‑FL 0.0382: COTTON 
R‑AR

0.0194: CORNYN 
R‑TX

0.0381: PAUL R‑KY

 Betweenness (8) 0.0283: PAUL R‑KY 0.0381: SANDERS 
I‑VT

0.0193: SCHATZ D‑HI 0.0376: SASSE R‑NE

 Betweenness (9) 0.0253: SANDERS 
I‑VT

0.0344: LEE R‑UT 0.0187: SANDERS 
I‑VT

0.0347: HARRIS D‑CA

 Betweenness (10) 0.0249: CRUZ R‑TX 0.034: TESTER D‑MT 0.0185: WICKER 
R‑MS

0.032: AYOTTE R‑NH

Eigenvector centrality

 Eigenvector (1) 0.271: LEE R‑UT 0.2114: COTTON 
R‑AR

0.181: WARNER D‑VA 0.2029: KIRK R‑IL

 Eigenvector (2) 0.2291: SANDERS 
I‑VT

0.2061: PERDUE 
R‑GA

0.1703: CORNYN 
R‑TX

0.2017: HOEVEN R‑ND

 Eigenvector (3) 0.228: PAUL R‑KY 0.1866: SULLIVAN 
R‑AK

0.1675: LANKFORD 
R‑OK

0.1727: GARDNER 
R‑CO

 Eigenvector (4) 0.1894: BALDWIN 
D‑WI

0.1865: ENZI R‑WY 0.1567: BENNET 
D‑CO

0.1724: PORTMAN 
R‑OH

 Eigenvector (5) 0.1892: RUBIO R‑FL 0.183: YOUNG R‑IN 0.1551: JOHNSON 
R‑WI

0.1715: CAPITO R‑WV

 Eigenvector (6) 0.1696: ENZI R‑WY 0.1758: THUNE R‑SD 0.1541: SASSE R‑NE 0.1706: COTTON R‑AR

 Eigenvector (7) 0.1681: BARRASSO 
R‑WY

0.1734: WICKER 
R‑MS

0.1525: MURKOWSKI 
R‑AK

0.1706: ROBERTS R‑KS

 Eigenvector (8) 0.161: CASEY D‑PA 0.1674: MORAN R‑KS 0.1454: KING I‑ME 0.1683: FISCHER R‑NE

 Eigenvector (9) 0.1607: MORAN R‑KS 0.1653: JOHNSON 
R‑WI

0.1426: COTTON 
R‑AR

0.1682: MURKOWSKI 
R‑AK

 Eigenvector (10) 0.1602: MANCHIN 
D‑WV

0.163: GARDNER 
R‑CO

0.1379: BOOZMAN 
R‑AR

0.1646: ISAKSON R‑GA
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the following influence function. Here, other than the new terms l, pi , and al defined in 
the previous paragraph, the rest of the terms are the same as those in Definition 3.1:

Using the above influence function, the richer game-theoretic model is defined in the 
same fashion as "The LIG model" section.

As a cautionary note, the way Irfan and Gordon’s model [28] combines networks 
with ideal points makes it difficult to disentangle the two. Analyzing the networks 
alone may be inconclusive because ideal points also supply the model with predic-
tive power. Moreover, the machine learning algorithm learns these two components 
simultaneously. With this caveat in mind, we give an analysis of the networks and the 
ideal points learned.

Analysis of influence networks. Figs.  12, 13 show the learned networks for Sphere 
1 (Security & Armed Forces) and 2 (Economics & Finance) under this richer model 
(other spheres are in Appendix F.3). First, it is evident that the two parties are not as 
clustered as they were in the LIG model (compare with Figs. 3, 4). Second, a closer 
look at the cross-party edges shows that there are a lot more negative edges between 
the two parties under this richer model than there are under the LIG model. We show 
the cross-party edges for Spheres 1 and 2 in Figs. 14, 15, respectively (others are in 
Appendix F.4). These two differences can be attributed to using ideal points to dis-
criminate the behaviors of opposing senators.   

Polarization metric based on modularity. The modularity framework discussed in 
"Polarization in context" section yields scores of 0.5392, 0.6801, 0.6887, and 0.6229, 

fi(x−i, l) ≡
∑

j �=i

wijxj + (pi · al)− bi.
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Fig. 12 Learned influence network for Sphere 1 (Security & Armed Forces) under the ideal point model with 
social interactions. A bird’s eye view of the influence network for Sphere 1 is shown. The strongest 33% of the 
edges are shown here. Contrast this with Fig. 3 where the two parties are more distinctly clustered
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respectively. Both the ideal point metric and modularity scores indicate that Spheres 2 
(Economics & Finance) and 3 (Energy & Infrastructure) are most polarizing, whereas 
Sphere 1 (Security & Armed Forces) is least polarizing. Sphere 4 (Public Welfare) sits 
in between. These results are somewhat similar to our earlier conclusions based on 
LIG without using ideal points. We include a broader analysis of the learned influence 
networks in Appendix F.5.

Polarization metric based on ideal points. We now apply the well-known ideal 
point-based polarization metric (i.e., distance between the means of the two parties) 
[40] to calculate polarization levels across the four spheres. The ideal point distribu-
tions for two of the spheres are depicted in Figs. 16, 17 (others are in Appendix F.2). 
Applying the ideal point-based polarization metric, we obtain values of 0.754, 1.235, 
1.126, and 0.889 for Spheres 1–4, respectively. Evidently, Sphere 1 is least polariz-
ing with respect to the ideal point distributions alone. Note that in our computation, 
we have not used the scaled versions of ideal point distributions shown in Figs.  16, 
17. Instead, we have the non-scaled, machine learned ideal points. The scaled ideal 
points are amenable to comparison, but we have observed similar results for non-
scaled versions.

We have also applied a recently proposed measure called polarization index [39]. 
Inspired by the electric dipole moment, the polarization index is measured from an 
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Fig. 13 Learned influence network for Sphere 2 (Economics & Finance) under the ideal point model with 
social interactions. A bird’s eye view of the influence network for Sphere 2 is shown. The strongest 33% of the 
edges are shown here. Contrast this with Fig. 4 where the two parties are separated to a great extent
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opinion distribution, where opinions propagate from a set of elite entities (e.g., influen-
tial politicians and media accounts on Twitter) to listener entities (e.g., ordinary individ-
uals on Twitter). The measure is based on opinion distribution (as opposed to dynamics). 
Here, we apply it to the machine learned ideal point distribution.6 We use the following 
definition of the polarization index µ , where �A represents the difference between the 
fraction of Republicans and Democrats and gc+ and gc− represent the gravity centers of 
the Republican and Democratic senators’ ideal points, respectively:

µ = (1−�A)(gc+ − gc−)/2.
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Fig. 14 Cross‑party edges in Sphere 1 (Security & Armed Forces) under the richer model. Only 40% of the 
strongest cross‑party edges are shown. 123 cross‑party edges are positive, and 47 are negative
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Fig. 15 Cross‑party edges in Sphere 2 (Economics & Finance) under the richer model. Only 40% of the 
strongest cross‑party edges are shown. 86 cross‑party edges are positive, and 57 are negative

Fig. 16 Ideal points of Sphere 1 (Security & Armed Forces): The ideal point distributions of Democratic (blue 
+) and Republican (red x) senators, scaled linearly between −1 and 1 are shown. The distance between 
the mean ideal points of the two parties is 0.754. It shows that Democratic and Republican senators are 
ideologically close to each other when it comes to national security

6 We note a semantic difference between the originally proposed polarization index [39] and how we are applying it 
here. Originally, the polarization index was measured from a distribution of behaviors generated through a network of 
retweets. In our case, although there are two major parties, the strategic interdependence among the nodes leads to mul-
tiple joint behaviors represented as PSNE. Both the multiplicity of PSNE and the interdependence of the behaviors in a 
PSNE make a direct application of the polarization index to the PSNE setting unclear. We are rather applying it to the 
ideal point distribution.
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This definition produces the following polarization indices for the four spheres, respec-
tively: 0.3588, 0.5874, 0.5356, and 0.4227. These are a constant factor off of the ideal 
point-based polarization measures [40] presented before due to the similarity between 
the two definitions in our case.

We conclude this section by reiterating an earlier point. Investigating the influence 
networks and ideal points separately does not give us the complete picture, since the 
model combines these two components together to make predictions. Therefore, we 
should also combine them in a meaningful way to infer polarization. We leave this as 
future work. We also leave open an exploration of the most influential nodes problem 
under this richer model.

Concluding remarks and research outlook
In this paper, we have studied the linear influence game (LIG) model in the context of 
four spheres of legislation. We have done a thorough network analysis of the machine 
learned models for each sphere. Our analysis shows that contrary to the popular notion 
that the U.S. Congress is overly polarized these days, the measure of polarization varies 
according to the spheres of legislation. In fact, the two opposing parties tend to come 
together when dealing with bills in Sphere 1 (Security & Armed Forces). Therefore, the 
notion of polarization should be contextualized with respect to the spheres of legislation.

We have also shown that across all the spheres, the LIG model predicts that a set of 
most influential senators consists of a bipartisan coalition (which also differentiates 
game-theoretic and structural centrality measures). Despite this shared property among 
the four spheres, the number of senators required to form a most influential set var-
ies. Sphere 1 happens to require the least number of senators in its most influential set 
to achieve a desirable outcome of garnering the maximum support possible for a bill 
(under PSNE constraints). Again, this signifies that Sphere 1 is least polarized among the 
four spheres.

In sum, the consideration of different spheres of legislation reveals interesting aspects 
of polarization and most influential senators in Congress. Building upon this study, fol-
lowing are some interesting future directions. 

1. The most pressing task is to fully explore the ideal point model with social inter-
actions [28] for different spheres of legislation. We have briefly touched upon it in 
"Towards richer models: ideal point models with social interactions" section. How-
ever, as we have mentioned in that section, finding a behavioral definition of polari-
zation that can meaningfully combine different constituent parts of the model, such 

Fig. 17 Ideal points of Sphere 2 (Economics & Finance): The distance between the mean ideal points of the 
two parties is 1.235, which shows more polarization compared to Sphere 1 shown in Fig. 16
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as ideal points of senators, polarity of bills, influence weights, and threshold values, 
remains an open problem.

2. In a similar vein, the notion of context provides another interesting direction. In this 
paper, we use spheres of legislation as a contextual platform for learning, analyzing, 
and comparing influence networks. The main idea here is that depending on the 
sphere, the influence network would be different. In contrast, the ideal point model 
with social interactions also has a contextual element in terms of polarities of bills 
and ideal points of senators, but it keeps the network fixed. How we can synthesize 
these two diverging ways of capturing context and thereby give a deeper meaning to 
context remains open.

3. A detailed comparative study of the most influential nodes for different spheres 
under the richer model [28] is another interesting direction. In particular, what hap-
pens to the balanced, bipartisan composition of most influential sets under the LIG 
model (see "Most inuential nodes in context" section when we incorporate additional 
contextual parameters like ideal points and polarities?

4. On the computational front, Irfan and Gordon [28] showed promising results on 
improving the time required to compute all PSNE. Extending those results to the 
spheres of legislation setting is another promising direction. It would also be interest-
ing to investigate why their model leads to drastic improvement in computational 
time.

5. Considering different modeling frameworks is yet another exciting direction. A par-
ticularly promising framework is probabilistic graphical models (PGMs). Whereas 
we are currently constructing the spheres of legislation first and then learning the 
LIG models for each sphere, PGMs may allow us to do both at the same time. This 
approach would not require us to split the data. Finally, exploring the recently pro-
posed semi-supervised learning for studying polarization [25] in game-theoretic set-
tings is also an interesting direction.

In addition to the above open directions in the context of legislative chambers, the 
LIG model may also be applied to other settings where network-connected individuals 
exhibit influence or behavioral interdependence. Some examples in the public health 
domain are smoking [7] and obesity [6]. Other promising areas include smart electricity 
grids, vaccination, and the adoption of microfinance.

Appendix A: literature review
We first review the literature on models and algorithms. We then review the literature 
on polarization.

A.1 Models and algorithms

While the study of influence in networks is very broad [16], we focus on models and 
algorithms for game-theoretic settings. Irfan and Ortiz propose Linear Influence Games 
(LIGs) [30], a type of 2-action graphical game [35]. In an LIG, every node (or player) 
represents an individual with a binary action (1 or −1 ) and a threshold level represent-
ing their “stubbornness.” There is an underlying network structure among the nodes. 
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The weight of each edge (u, v) represents the amount of influence that node u exerts on 
node v. These influence weights may be positive or negative,7 and are not required to 
be symmetric (meaning that node u may exert more or less influence on node v than it 
receives). The best response of a node depends on its threshold level and the net influ-
ence on it. The net influence is found by calculating (1) the sum of all incoming influ-
ences from nodes playing action 1 and (2) the sum of all incoming influences from nodes 
playing action −1 , and then subtracting the second sum from the first. If this net influ-
ence exceeds the node’s threshold, the best response for that node is 1; if it does not, the 
best response is −1 . In the case of a tie, the node is indifferent between the two actions.

Instantiating an LIG, then, requires a matrix of influence weights W ∈ R
n×n and a 

threshold vector b ∈ R
n . Each outcome of an LIG is a joint action x , which is basically a 

vector of actions of all players. For every individual player i, x−i is the vector of all actions 
except the action of i. Each player has an influence function fi(x−i) ≡

∑
j xjwij − bi and 

a payoff function ui(x) ≡ xifi(x−i) . A joint action x∗ is a pure-strategy Nash equilibrium 
(PSNE) when every individual is playing their best response x∗i—that is, when no player 
has an incentive to unilaterally deviate from their chosen action. With the United States 
Senate as an example, each node is an individual senator, and each edge is the influence 
that a senator has upon another senator. A senator will vote yea (1) if their threshold has 
been met given all incoming influences from other senators, or nay ( −1 ) if not. When all 
senators are playing their best responses in x , the system is stable, and the network is in 
PSNE. The LIG model is further explained in "The LIG model".

While the matrix of influence weights and vector threshold values necessary for 
instantiating an LIG could be generated manually for very small instances, Honorio and 
Ortiz develop a method of instantiating an arbitrarily large LIG from raw, binary-action 
data via machine learning [26]. Only voting records are made available to the learning 
program; no other information is involved. Given these data, the program generates 
the influence weights w and influence thresholds b which define a game G. The pro-
gram seeks to instantiate an LIG where a high proportion of real-world data is accu-
rately reflected as PSNE, without allowing so many PSNE that any joint action would be 
in equilibria. Finding the number of ground-truth joint actions represented as PSNE is 
computationally easy, but computing the total number of PSNE in a game is NP-hard, 
and therefore infeasible on large datasets. By proving a number of simplifying assump-
tions, they approximate the problem using convex loss minimization. In this function, 
parameters of the game are chosen so that the average error—the proportion of ground-
truth joint actions which are not reflected as PSNE—is minimized. This algorithm is 
explained in "Machine Learning" section.

The majority of research in analyzing and predicting legislative votes has not been in 
the game theory space. Rather, roll-call data are most often used in ideal point mod-
els, which estimate the ideal point of a legislature upon a scale of conservative to liberal 
extremes. Clinton et  al. proposed Bayesian methods for ideal point estimation, which 
can be solved using Markov Chain Monte Carlo (MCMC) simulations [9]. In contrast to 
prior methods, this MCMC-calculated Bayesian method is computationally efficient at 

7 The absence of an edge between a pair of nodes is interpreted as a weight of zero.
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large scale; other methods required small populations or made statistical compromises 
in order to be feasible. Regardless of methods used, ideal points range on an arbitrary 
scale of negative to positive. In practice, a negative ideal point represents “liberal” polar-
ity, while a positive ideal point represents a “conservative” polarity. Their work is widely 
cited in later ideal point models which expand upon the original concept.

While the importance of roll-call data is widely recognized, it is also recognized that 
each vote is a member of a broader context with important characteristics. Grerish 
and Blei extend the traditional ideal point model, which relies solely on roll-call data, 
to account for the topics of bills [18]. Using a Latent Dirichlet Allocation (LDA) topic 
model, Gerrish and Blei integrate bill topics and political tone into their ideal point 
model. LDA topic models identify patterns in words, but labeling and interpreting these 
patterns are left up to the researchers. These bill topics may be, for example, national 
recognition (“people”, “month”, “recognize”, “history”, “week”, and “woman”) or healthcare 
(“care”, “applicable”, “coverage”, “hospital”, and “eligible”). They find that the model per-
forms especially well when bills have bipartisan support or disapproval, or when bills 
face clearly partisan support and disapproval, but lose accuracy when bills receive mixed, 
nonpartisan support. Topic modelling is not the only method of inferring bill topics: The 
Congressional Research Service (CRS) assigns subject codes to every bill, out of close to 
a thousand possible codes. In an ensuing study on ideal point models, Gerrish and Blei 
note that using CRS subject codes rather than an LDA topic model also provided a good 
basis for their ideal point model [19].

In a recent paper, Irfan and Gordon add context to the LIG models [28]. By combin-
ing social interactions and context, they develop a model which performs better than 
the purely behavioral model. They learn the ideal points of each senator while learning 
parameters for the LIG, and account for disparities in polarity across bill topics by utiliz-
ing the subject codes of each bill. They expand the influence function of every senator i 
to include the ideal point of that senator ( pi ), and the polarity al of a bill l. The product 
of these two terms is added to the otherwise unchanged influence. When the signs of the 
polarity of the bill and the ideal point of the senator are the same (e.g., −1.5 and −0.5 , 
meaning that both are liberal leaning), the signs cancel, increasing senator i’s payoff for 
voting yea; when they differ, a negative value is added, decreasing senator i’s payoff for 
voting yea.

Some researchers have taken other approaches to modeling congressional behavior. 
Woon utilizes both ideal points and game-theoretic concepts to analyze how bill spon-
sorship and co-sponsorship affect the content senators write in a bill [51]. Woon argues 
that, when sponsoring a bill, legislators balance two opposing forces. One pushes them 
toward writing median language because they want a bill to pass without complications, 
and the other toward writing highly polarized language because they wish to signal their 
beliefs to their constituents. As such, a legislator L will propose a bill with location y 
within a one-dimensional policy space. They also consider that another legislator, P, will 
be pivotal in allowing a bill’s passage. That pivotal senator may choose either y or the sta-
tus quo, q. P’s choice is known as the policy outcome and is denoted by x. The passage of 
a bill depends on senator L and P’s utility functions, which consider the distance between 
x and the ideal points of L and P, respectively. In addition, L’s utility function also consid-
ers the weight w that L places on being close to y, which is known as L’s position-taking. 
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Woon extends the model to account for co-sponsorship of other legislators, each with 
their own utility functions. While our research focuses on legislative votes rather than 
policy proposals, Woon’s research affirms the validity of combining contextual data and 
game-theoretic models, and puts forth bill sponsorship and co-sponsorship as another 
direction of future research.

Bill sponsorship and co-sponsorship is not the only method by which legislators may 
signal their preferences for a bill prior to voting. Desmarais et al. build upon prior bill 
co-sponsorship research to introduce co-participation in press events—called the joint 
press events network—as an indicator for voting behavior [14]. Using linear regression, 
they show a statistically significant positive relationship between press event co-partic-
ipation and roll-call votes. While not focused on the computational aspects of congres-
sional research, this study highlights the observation that “[l]egislation is often the end 
product of a lengthy collaborative effort.” Studies like this attempt to uncover ostensi-
bly hidden mechanisms within that lengthy effort. This process starkly contrasts to the 
behavioral, game-theoretic approach, which makes no assumptions about the underly-
ing mechanism or process, viewing them instead as a “black box”. This lack of assump-
tions is one of the key benefits of the game-theoretic approach.

Recently, a group of mathematicians took a very different approach to analyzing 
congressional voting networks from roll-call data. Glonek et  al. introduce the Graph 
Labeling Semi-Supervised (GLaSS) method [25], a random-walk-based graph labeling 
method. They model both the House and Senate (from 1935-2017, in different trials) as 
a graph from roll-call data, where nodes are Democratic or Republican legislators (other 
parties are ignored), and their labels correspond to their parties. While every senator’s 
party affiliation is known for validation purposes, the only labelled nodes in the graph 
are the Democratic and Republican party leaders; all other nodes are unlabelled. With 
the GLaSS method, those nodes are labelled based on the expected time to absorption in 
a discrete-time Markov chain (DTMC), where absorption states are labelled nodes (i.e., 
party leaders) and transient states are unlabeled nodes (i.e., other senators). By compar-
ing the labels generated by the GLaSS method to the ground-truth labels of legislator, 
they measure polarization in Congress. When party affiliation can be accurately pre-
dicted by voting trends, Congress is more polarized; when there is some uncertainty, it 
is less so. Their results show that the U.S. Congress has become remarkably polarized in 
the past decade, with the model able to accurately predict every senator’s affiliation in 
each term of Congress since 2007. In contrast to Glonek et al.’s stochastic process-based 
approach, we model strategic interactions among senators in a game-theoretic fashion 
that allows us to infer joint behavioral outcomes. Additionally, Glonek et  al.’s method 
relies on a model of binary party affiliation and considers nodes as labeled only by party 
affiliation rather than named as individual senators, which prevents further analysis of 
the model’s network structure.

A.2 Literature review: polarization

While modularity [23, 41, 42] has been widely used as a measure of polarization in net-
works, it is often not a definitive measure. Guerra et al. presents a novel metric based on 
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the edges incident on the boundary nodes [22]. Like most other metrics of polarization, 
their metric is also structural in the sense that it does not take into account potentially 
different network structures among the same population induced by different behavioral 
contexts. One of the main goals of this paper is to analyze polarization within behavioral 
context.

Closely related to this paper is Waugh et al.’s work on polarization in Congress [52]. 
They first compute a weighted network among the members of Congress by counting 
how many times each pair of members voted the same way. They then compute the 
modularity of this network as a measure of polarization. Their work can be contrasted 
with McCarty et  al.’s ideal point-based approach [40], where the absolute value of the 
differences in mean ideal points of the two parties serves as a measure of polarization. 
In fact, our approach may be mistaken as a combination of these two approaches. First, 
we do compute influence networks among the senators, but these networks are learned 
from behavioral data. Moreover, there are positive as well as negative edge weights in 
our networks, whereas Waugh et  al.’s networks have only non-negative edge weights 
by definition [52]. Second, the richer model [28] which we use combines influence net-
works with ideal points in such a way that we cannot talk about either networks or ideal 
points in isolation of the other.

Zhang et  al. [53] study polarization in the U.S. Congress, the same setting as ours. 
However, theirs is based on co-sponsorship networks, which is observed from data. In 
contrast, ours is based on networks of influence, which have been learned using roll-call 
and bill-text data. Furthermore, one of the central aspects of our work is to show that 
polarization in Senate varies according to the spheres of legislation. We do not touch on 
the rise in polarization in Senate over time, which by now is a well-settled matter [15].

Behavioral aspects of polarization among political parties have been studied before, 
but at an empirical level. Garcia et  al. analyze multiplex networks consisting of com-
ments, likes, and supports levels among multiple political parties in Switzerland [17]. In 
contrast, ours is a model-based approach where polarization can be considered an infer-
ence question.

At a broader level, there have been numerous studies on political polarization. The 
edited volume by Hopkins and Sides [27] presents a comprehensive treatise from three 
different perspectives: why American politics is polarized, how it became polarized, and 
what we can do about it (including whether the alternatives are any better). As a specific 
example, Conover et al. [10] give evidence of polarization in Twitter network based on 
retweet networks. Interestingly, the opposite happens in mention networks (where ideo-
logically opposing individuals mention each other to start conversations).

Not surprisingly, Twitter provides a trove of data that has been used in several other 
studies. Notably, Morales et  al. [39] give a framework to estimate polarization index 
using a model of opinion generation. Unlike other generative models of opinion propa-
gation [49], their focus is on the distribution of opinions and not the dynamics of opin-
ions. We briefly reviewed their model in “Toward richer models” section. One major 
difference between Marales et al.’s work and ours is how we get to the behavioral distri-
bution (or PSNE in our case). In our models, we do not have predefined elite and listener 
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nodes and do not perform DeGroot-style iterative updates [12]. Furthermore, the com-
plexity of interdependent actions in a PSNE and the multiplicity of PSNE make a direct 
application of polarization index to our setting challenging (see Footnote 6).

Whereas Morales et al. apply polarization index to a case study of tweets in the after-
math of Venezuelan leader Hugo Chávez’s death, their basic idea has been generalized 
to any Twitter topics by Garimella et al. [21]. Of course, there are methodological dif-
ferences between the two studies. Garimella et  al.’s random walk-based algorithm to 
measure polarization is promising for large-scale networks. In contrast to these studies, 
we use machine learning to learn the networks of influence from voting data. Also, our 
behavioral model is strictly game-theoretic.

There has also been some interesting work on the behavioral choice of individuals in 
a polarized environment. Bakshy et  al. [4] use large-scale Facebook data to show that 
the consumption of politically “hard content” is largely controlled by individuals’ own 
choices and not by algorithmically fed news rankings.

On the computational side, algorithmic approaches to polarization extend beyond 
modularity. Al Amin et  al. [1] give a matrix factorization-based algorithm to uncover 
polarization in Twitter networks.

Appendix B: Detailed cross‑validation results
In this section, describe the cross-validation results on learning LIG models for Spheres 
2, 3, and 4.

Cross-validation on Sphere 2 (Economics & Finance). The number of edges decreases 
smoothly, reaching a reasonable number of edges when 0.002424 ≤ ρ ≤ 0.006236 . 
Best response error converges for both training and validation sets around ρ = 0.001512 , 
and remains at an acceptably low value until ρ ≥ 0.007017 . Until around ρ = 0.001512 , 
the high values of training q relative to validation q show that the model is overfit, and 
when ρ > 0.006236 , q’s regression to 0 shows that the model is under-fit. Within this 
range, both training and validation q are relatively high, at around 0.22. The acceptable 
range, then, is between 0.002424 and 0.006236 (Fig. 18).

Cross-validation on Sphere 3 (Energy & Infrastructure). The number of edges 
again decreases smoothly, and is reasonable when 0.002728 < ρ < 0.005541 . Best 
response error for training and validation sets converges and remains low when 
0.001914 < ρ < 0.006236 . As the large difference between training q value and vali-
dation q illustrates, the model is overfit until q ≥ 0.001061 . When ρ > 0.005541 and 
the q value starts to decrease, the model is under-fit. The acceptable range is between 
0.002728 and 0.005541 (Fig. 19).
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Cross-validation on Sphere 4 (Public Welfare). The number of edges again decreases 
smoothly, and is reasonable when 0.002728 < ρ < 0.005541 . Best response error for 
training and validation sets converges and remains low when 0.001914 < ρ < 0.006236 . 
The high training q relative to validation q shows that the model is overfit until 
ρ ≥ 0.001701 , and remains steady until the model begins to become under-fit when 
ρ ≥ 0.006236 . The acceptable range is between 0.002728 and 0.005541 (Fig. 20).
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Appendix C: Visualization of LIG networks
Within the main body of the paper, the LIG networks for Spheres 1 and 2 are shown in 
Figs. 3, 4, respectively. Here, we show the LIG networks for the other two spheres. These 
are shown in Figs. 21, 22.
 

Appendix D: Visualization of cross‑party edges
The cross-party edges for Spheres 1 and 2 are shown in Figs. 5, 6, respectively. Here, we 
show the cross-party edges of the remaining two spheres (Figs. 23, 24). 
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Appendix E: Visualization of most influential nodes
The most influential nodes for Spheres 1 and 3 are shown in Figs. 10, 11, respectively. 
Here, we show the most influential nodes for the remaining two spheres in Figs. 25, 26.
 

Appendix F: Application of ideal point models with social interactions
F.1 Cross‑validation and model selection

Here, we show tenfold cross-validation results of applying the ideal point model with 
social interactions [28] to Sphere 2 (Economics & Finance) only. The results for the 
other spheres are similar. Using these results, we choose the regularization parameters 
for the number of edges ( ρ ) and ideal points and polarities ( ρ′ ). The cross-validation 
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Fig. 23 Sphere 3 (Energy & Infrastructure): 11 boundary edges are positive and 26 negative
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Fig. 24 Sphere 4 (Public Welfare): 9 boundary edges are positive and 7 negative

 BOOKER D NJ

 UDALL D NM

 KAINE D VA  WARNER D VA

 ALEXANDER R TN

 FLAKE R AZ

 SHELBY R AL

 DUCKWORTH D IL  FRANKEN D MN HASSAN D NH JONES D AL

 GILLIBRAND D NY

 PAUL R KY

 LEE R UT

 MARKEY D MA

 WARREN D MA

 CRAPO R ID

 MERKLEY D OR

Fig. 25 Sphere 2 (Economics & Finance), ρ = 0.0.003888. 10 total levels; 5 Republicans and 4 Democrats
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experiments were done over the following range of ρ and ρ′ values: 0.001 < ρ < 0.0035 
and 0.0004 < ρ′ < 0.0005 . The chosen values of ρ and ρ′ are listed in Table 6.

Figures 27, 28, 29, and 30 show the plots for the best response (BR) training error, BR 
validation error, number of PSNE, and proportion of data captured as PSNE for Sphere 2 
(Economics & Finance).   

F.2 Ideal point distributions

The plots of ideal point distributions are shown in this section. We first show the scaled 
versions of the ideal point distributions for Spheres 3 and 4 in Figs. 31, 32, respectively. 
Note that the ideal point distributions for Spheres 1 and 2 have been shown earlier in 
Figs. 16, 17, respectively. We also show the non-scaled versions of the ideal point distri-
butions of the four spheres here (Figs. 33, 34, 35, 36).     

 SHELBY R AL

 ERNST R IA

 INHOFE R OK

 GRASSLEY R IA

 MCCASKILL D MO

 WARREN D MA

 WYDEN D OR

 YOUNG R IN

 DUCKWORTH D IL

Fig. 26 Sphere 4 (Public Welfare), ρ = 0.003888. 9 total levels; 5 Republicans and 4 Democrats

Table 6 Summary of cross‑validation results for ideal point model with social interactions

Sphere 1 Sphere 2 Sphere 3 Sphere 4

ρ 0.002447 0.002447 0.002184 0.002053

ρ′ 0.000395 0.000395 0.000374 0.000395

# Edges 1132 1234 1220 1499
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Fig. 27 The BR training error is acceptable within the 2–5% range

Fig. 28 The BR validation error is acceptable within the 6–21% range
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Fig. 29 The number of edges is acceptable within the 1000–1500 range

Fig. 30 The proportion of data captured as PSNE is acceptable within the 20–45% range
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Fig. 31 The ideal points of senators in Sphere 3 (Energy & Infrastructure), scaled linearly. Democratic senators 
are blue and Republican senators are red

Fig. 32 The ideal points of senators in Sphere 4 (Public Welfare), scaled linearly. Democratic senators are blue 
and Republican senators are red

Fig. 33 Non‑scaled version of the ideal points of senators in Sphere 1 (Security & Armed Forces). Democratic 
senators are blue and Republican senators red. The scaled version is shown in Fig. 16

Fig. 34 Non‑scaled version of the ideal points of senators in Sphere 2 (Economics & Finance). Democratic 
senators are blue and Republican senators are red. The scaled version is shown in Fig. 17

Fig. 35 Non‑scaled version of the ideal points of senators in Sphere 3 (Energy & Infrastructure). Democratic 
senators are blue and Republican senators are red

Fig. 36 Non‑scaled version of the ideal points of senators in Sphere 4 (Public Welfare). Democratic senators 
are blue and Republican senators are red
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F.3 Visualization of networks

In this section, we show the networks for Spheres 3 and 4 learned under the ideal point 
model with social interactions (Figs. 37,  38). The networks for the first two spheres have 
been shown in Figs. 12, 13 within the main body of the paper.
 

F.4 Visualization of cross‑party edges

In this section, we show Graphviz visualizations of edges which connect members 
of opposite parties within the top 40% of all edges when we apply the richer model to 
Spheres 3 and 4 (Figs. 39, 40). Figures 14, 15, shown in the main body of the paper, illus-
trate the cross-party edges for Spheres 1 and 2, respectively.
 

F.5 Analysis of learned networks under the richer model

Table 7 shows the results of network analysis under the ideal point model with social 
interactions. This table can be compared with Table 5 shown in the main body of the 
paper. Table 8 shows the distance between the mean Democratic and Republican ideal 
points for each of the four spheres.  
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Fig. 39 Sphere 3 (Energy & Infrastructure): 90 cross‑party edges are positive and 54 are negative
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Fig. 40 Sphere 4 (Public Welfare): 101 cross‑party edges are positive and 56 are negative
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Table 7 Network analysis of influence networks for different spheres of legislation learned using 
Irfan and Gordon [28]’s model of ideal points with social interactions. Various centrality measures 
and network‑level properties are shown

Sphere 1 Sphere 2 Sphere 3 Sphere 4

Number of edges 1102 1027 1106 1234

Avg. (shortest) path 
length

2.1641 2.3898 2.2948 2.1806

Avg. clustering coef‑
ficient

0.165 0.1747 0.1754 0.1812

Modularity 0.5392 0.6801 0.6887 0.6229

Degree centrality

 Degree (1) 0.451: MANCHIN 
D‑WV

0.4118: MANCHIN 
D‑WV

0.4902: TESTER D‑MT 0.5392: CARPER D‑DE

 Degree (2) 0.4314: CRUZ R‑TX 0.3922: KING I‑ME 0.451: DONNELLY 
D‑IN

0.4706: TESTER D‑MT

 Degree (3) 0.4118: CORKER R‑TN 0.3824: HEITKAMP 
D‑ND

0.3627: KING I‑ME 0.451: MANCHIN 
D‑WV

 Degree (4) 0.402: LEE R‑UT 0.3627: MENENDEZ 
D‑NJ

0.3627: KLOBUCHAR 
D‑MN

0.451: DURBIN D‑IL

 Degree (5) 0.3922: PAUL R‑KY 0.3529: HELLER R‑NV 0.3627: HEITKAMP 
D‑ND

0.451: PAUL R‑KY

 Degree (6) 0.3922: ENZI R‑WY 0.3431: FLAKE R‑AZ 0.3627: LEE R‑UT 0.4314: MCCASKILL 
D‑MO

 Degree (7) 0.3627: SCHATZ D‑HI 0.3431: TESTER D‑MT 0.3529: COLLINS 
R‑ME

0.4118: HARRIS D‑CA

 Degree (8) 0.3529: HELLER R‑NV 0.3333: DONNELLY 
D‑IN

0.3529: MCCASKILL 
D‑MO

0.3922: STABENOW 
D‑MI

 Degree (9) 0.3431: BALDWIN 
D‑WI

0.3333: WYDEN 
D‑OR

0.3529: WARNER 
D‑VA

0.3725: HEITKAMP 
D‑ND

 Degree (10) 0.3431: TESTER D‑MT 0.3333: FEINSTEIN 
D‑CA

0.3529: CARPER 
D‑DE

0.3627: LEE R‑UT

Closeness Centrality

 Closeness (1) 0.5426: MANCHIN 
D‑WV

0.516: MANCHIN 
D‑WV

0.5543: DONNELLY 
D‑IN

0.573: MCCASKILL 
D‑MO

 Closeness (2) 0.5231: HELLER R‑NV 0.5133: HEITKAMP 
D‑ND

0.5484: TESTER D‑MT 0.5635: CARPER D‑DE

 Closeness (3) 0.5231: COLLINS 
R‑ME

0.5106: FLAKE R‑AZ 0.5455: KING I‑ME 0.5574: TESTER D‑MT

 Closeness (4) 0.5204: BALDWIN 
D‑WI

0.5106: GARDNER 
R‑CO

0.5397: HELLER R‑NV 0.5574: HARRIS D‑CA

 Closeness (5) 0.5152: LEE R‑UT 0.5028: KLOBUCHAR 
D‑MN

0.5312: HARRIS D‑CA 0.5514: DURBIN D‑IL

 Closeness (6) 0.5152: BOOKER 
D‑NJ

0.5002: KING I‑ME 0.5231: KLOBUCHAR 
D‑MN

0.5514: PAUL R‑KY

 Closeness (7) 0.51: CORKER R‑TN 0.4927: MENENDEZ 
D‑NJ

0.5204: DURBIN D‑IL 0.5514: HELLER R‑NV

 Closeness (8) 0.51: SCHATZ D‑HI 0.4927: HATCH R‑UT 0.5178: HASSAN 
D‑NH

0.5455: STABENOW 
D‑MI

 Closeness (9) 0.51: PORTMAN 
R‑OH

0.4902: CARPER 
D‑DE

0.51: BALDWIN D‑WI 0.5368: MANCHIN 
D‑WV

 Closeness (10) 0.5075: CASEY D‑PA 0.4878: HELLER R‑NV 0.5075: KIRK R‑IL 0.5368: KIRK R‑IL

Betweenness centrality

 Betweenness (1) 0.0552: MANCHIN 
D‑WV

0.0483: MENENDEZ 
D‑NJ

0.0521: LEE R‑UT 0.0541: PAUL R‑KY

 Betweenness (2) 0.0513: CORKER R‑TN 0.046: HELLER R‑NV 0.0502: TESTER D‑MT 0.0467: CARPER D‑DE

 Betweenness (3) 0.0365: CRUZ R‑TX 0.0435: FLAKE R‑AZ 0.0467: DONNELLY 
D‑IN

0.0415: DURBIN D‑IL
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Table 7 (continued)

Sphere 1 Sphere 2 Sphere 3 Sphere 4

 Betweenness (4) 0.0346: HELLER R‑NV 0.0428: KING I‑ME 0.039: KLOBUCHAR 
D‑MN

0.0335: MORAN R‑KS

 Betweenness (5) 0.0339: ENZI R‑WY 0.0427: LEE R‑UT 0.0331: FLAKE R‑AZ 0.0331: MCCASKILL 
D‑MO

 Betweenness (6) 0.0337: HEITKAMP 
D‑ND

0.0415: HEITKAMP 
D‑ND

0.0311: KIRK R‑IL 0.0321: TESTER D‑MT

 Betweenness (7) 0.0334: KING I‑ME 0.0401: TESTER D‑MT 0.0293: HELLER R‑NV 0.0305: MANCHIN 
D‑WV

 Betweenness (8) 0.0302: LEE R‑UT 0.0369: MANCHIN 
D‑WV

0.0292: PAUL R‑KY 0.0281: LEE R‑UT

 Betweenness (9) 0.0264: BALDWIN 
D‑WI

0.0314: CARPER 
D‑DE

0.0286: SANDERS 
I‑VT

0.028: MCCONNELL 
R‑KY

 Betweenness (10) 0.0262: PAUL R‑KY 0.0284: DONNELLY 
D‑IN

0.0286: HEITKAMP 
D‑ND

0.0273: DONNELLY 
D‑IN

Eigenvector centrality

 Eigenvector (1) 0.2016: LEE R‑UT 0.2159: MANCHIN 
D‑WV

0.2174: TESTER D‑MT 0.22: MCCASKILL 
D‑MO

 Eigenvector (2) 0.1908: MANCHIN 
D‑WV

0.2128: HEITKAMP 
D‑ND

0.1995: KING I‑ME 0.2109: CARPER D‑DE

 Eigenvector (3) 0.1874: BALDWIN 
D‑WI

0.1926: GARDNER 
R‑CO

0.1801: DONNELLY 
D‑IN

0.1908: HARRIS D‑CA

 Eigenvector (4) 0.1873: SCHATZ D‑HI 0.1884: KING I‑ME 0.1719: HEITKAMP 
D‑ND

0.1852: PAUL R‑KY

 Eigenvector (5) 0.1819: COLLINS 
R‑ME

0.1864: FLAKE R‑AZ 0.169: CARPER D‑DE 0.1766: TESTER D‑MT

 Eigenvector (6) 0.1675: SANDERS 
I‑VT

0.1697: HATCH R‑UT 0.1677: KIRK R‑IL 0.1696: KIRK R‑IL

 Eigenvector (7) 0.1671: BOOKER 
D‑NJ

0.1642: ALEXANDER 
R‑TN

0.1643: HELLER R‑NV 0.1674: STABENOW 
D‑MI

 Eigenvector (8) 0.1623: CORKER R‑TN 0.1642: CARPER 
D‑DE

0.1573: GRAHAM 
R‑SC

0.166: MANCHIN 
D‑WV

 Eigenvector (9) 0.1577: HELLER R‑NV 0.1633: LANKFORD 
R‑OK

0.1549: KLOBUCHAR 
D‑MN

0.157: DURBIN D‑IL

 Eigenvector (10) 0.1442: PAUL R‑KY 0.1603: MENENDEZ 
D‑NJ

0.1536: COLLINS 
R‑ME

0.1566: WARREN 
D‑MA

Table 8 Distance between the average Ideal Point (normalized) of Republican and Democratic 
Senators

Sphere 1 Sphere 2 Sphere 3 Sphere 4

Distance 0.754 1.235 1.126 0.889
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