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Introduction
Information maximization has played a vital role in various areas in human history, 
including politics, marketing, and both cultural and military campaigns. One common 
way of maximizing influence is via information cascades among the targeting popula-
tion. Today, the rise of social media networks (e.g., Facebook, Twitter, and Snapchat) 
has greatly facilitated information dissemination in mass society; the literature has thor-
oughly and mathematically addressed this cascading spread of information. In mathe-
matical terms, a network (including nodes/vertices, arcs/links/edges, and their states) 
is used to describe the dynamics of a real-world social media network. When a node of 
a network adopts certain information, it is “activated” [1]. As the definition presented 
in [2] states, an activation sequence is an ordered set of nodes that captures the order in 
which network nodes will adopt a piece of information. The first node in the activation 
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sequence is the seed node, and a spreading cascade is a directed tree that has as its root 
that first node. The tree captures the influence between nodes (with branches that rep-
resent who transmitted the information, and to whom), and it unfolds in the same order 
as the activation sequence. There are two typical information diffusion models—namely, 
independent cascade [3] and linear threshold [4]. The differences between these two 
models are as follows:

•	 Independent cascade: if xt−1 is the set of newly activated nodes or we call it seed 
node at time step t − 1 , then, at each time step t, each node i belonging to xt−1 will 
infect the inactive neighbor j with the probability pij.

•	 Linear threshold: if each node i has a threshold θi in the interval [0, 1], then, at each 
time step t, each inactive node j becomes active if the total inference from all acti-
vated neighbors 

∑

i∈Ht−1
bij > θj , where Ht−1 is the set of nodes activated at time 

t − 1 or earlier.

Our study is based on the assumption of the independent cascade model. Among many 
pioneering studies, the authors of [5] propose the expectation maximization algorithm 
to predict information diffusion probabilities in the independent cascade model. The 
authors of [6] apply the influence maximization problem with an independent cascade 
model in prevailing viral marketing. Furthermore, the authors of [7] showed for the first 
time that the computing influence spread in the independent cascade model is NP-Hard; 
these studies have led to the design of a new heuristic algorithm that can easily scale up, 
relative to the greedy algorithm proposed in [1]. The influence maximization problem 
involves finding the nodes for the initial injection of information so as to maximize influ-
ence in a given social network with diffusion probabilities.

Our problem is a special case of the influence maximization problem. Our inde-
pendent cascade model is based on the assumption that there are multiple seeds that 
broadcast information to the whole network. Figure 1 shows the difference between 
the multi-seed independent cascade model and a traditional single-seed model. In the 
single-seed model, node 1 is selected as the seed, and the minimal time needed to 
broadcast to the whole network is 2. In the multi-seed model, however, both nodes 
1 and 2 are selected as seeds, and each node can receive the information within one 

Fig. 1  Information cascade based on seed type
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time period. If every node in the network is a seed, the minimal broadcast time will be 
0, but this is not an economical method (owing to the seed cost). We look to pinpoint 
an efficient means of seed selection that can balance seed cost and broadcast time.

Unlike previous research on the independent cascade model, we assume that infor-
mation diffusion probabilities or network topology probabilities dynamically change 
according to user behavior. Among the studies of dynamic user behavior, [8] intro-
duces the concept of behavior change support systems. Based on that work, the 
authors of [9] found ample evidence of the strong influence exerted by social interac-
tion on people’s behaviors. The authors of [10] conducted extensive statistical analysis 
on large-scale real data and found that the general form of exponential, Rayleigh, and 
Weibull distribution can effectively preserve the characteristics of behavioral dynam-
ics. The networked Weibull regression model for behavioral dynamics modeling is 
found to significantly improve the interpretability and generality of traditional sur-
vival models in [10].

Cascading phenomena are typically characterized by a dynamic process of information 
propagation among the nodes of a network, where nodes can repost information after 
seeing it posted by their neighbors. Moreover, the content and value of information may 
affect not only the reach (or depth) of a cascade, but also the topology of the underlying 
network; this is due to effects whereby nodes may either sever their ties with neighbor-
ing nodes (where the transmitted information is deemed unreliable, malicious, or both) 
or form new ties with nodes that transmit “reliable” information. In an independent cas-
cade, people observe the choices of others and make decisions based on these observa-
tions, while concurrently considering their own personal preferences.

This phenomenon arises frequently in the field of behavioral economics and other 
social sciences. One real-world example is viral marketing, in which an independent cas-
cade spreads information about a product with other people in their social networks, 
with the objective of promoting a product by leveraging existing social networks. A 
recent study of social networks [11] suggests that such processes may occur in a “bursty” 
fashion-that is, the patterns of network links change abruptly as a result of significant 
independent cascades. Thus, new information may create within a network a “burst” of 
node activations and edge activations/deactivations. In a decentralized autonomous net-
work, agents or nodes act independently and behave according to their utility functions. 
To model their autonomous behaviors, we implement the concepts of discrete choice 
models, as drawn from behavioral economics [12, 13].

Our contributions Bearing in mind the endpoint of maximizing the influence of the 
information provider within a limited time, we model our problem as a seed selec-
tion problem of information spreading in dynamic networks that feature a random 
topology. In a social network, each user can have as many as three roles—namely, 
source user, message sender (i.e., followee of neighbors), and message receiver (i.e., 
follower of neighbors). It is possible that one node can play these three different roles 
at different times. For example, Alice writes and posts a message on a social media 
network. At that moment, she is the source user. In this network, Alice and Bob are 
friends, which means Alice is following Bob and Bob is also following Alice. Bob 
sees Alice’s message, and so Bob is a receiver of Alice’s message. Bob likes this mes-
sage and reposts it to his own followers. At this point Bob is also message sender, 
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given his “repost” action. Since Alice is also Bob’s follower, she sees that her mes-
sage is reposted, and at this point she becomes a message receiver with respect to the 
reposted message.

Generally, we can decompose our problem into two steps, as follows:

•	 Seed selection: this can be controlled by the information provider, who selects a 
proper set of initial seeds that will receive the deemed information. In the previ-
ous example, Alice is the seed node.

•	 Information cascade: this includes two variables. One is the node activation status, 
which describes the process wherein the user receives a message from their fol-
lowee. The other one is the node repost decision, which is controlled by the message 
receiver. In our model, the repost decision depends on the user preference and the 
topic of the received message. In the previous example, Bob reposted the message 
because he likes it. However, if Bob dislikes this message, what will be happen? Since 
the message is coming from Alice, Bob may think Alice has tastes different from his, 
and so he might unfollow Alice. The “unfollow” action will break the information 
flow from Alice to Bob, which leads to a change in the network topology.

In this study, we propose an information maximization model through independent 
cascades, with random graphs. The network size and node preference is assumed to 
be given, while the friendship between any two users (i.e., arc connection) dynami-
cally changes. Our model can help decision-makers choose the optimal action when 
they face an uncertain network topology. The stochastic formulation considers endog-
enous uncertainty, which is represented by the binary choice probability distribu-
tion of arc connection between any two nodes. To solve this problem, we design two 
problem-specific algorithms: one involves two-stage stochastic programming with a 
myopic policy, while the other involves reinforcement learning and the Markov deci-
sion process. We summarize the contributions of this study as follows:

•	 We introduce the discrete choice model in the information maximization prob-
lem, where the network topology dynamically changes during the independent 
cascading process.

•	 We develop practical algorithms to solve the multistage stochastic programming 
problem under endogenous uncertainty.

•	 To avoid directly dealing with large state spaces of node activation, we exploit the 
implicit Monte Carlo-based partially observable Markov decision process.

•	 We compare the results using two algorithms and various sample sizes.

The remainder of this paper is structured as follows. After having briefly described 
information maximization and the independent cascade problem in random graphs 
within a finite-time horizon, we provide in “Mathematical models” section the origi-
nal multistage stochastic programming models with several assumptions. In “Solution 
approaches” section, we design two algorithms to solve this problem. The computa-
tional results are presented in “Computational experiments on algorithms’ conver-
gence” section, while “Conclusion” section provides concluding remarks.
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Mathematical models
In a social network, information spreads based on user-to-user interactions. Initially, 
some nodes will carry the designated information after being selected as seed nodes. 
During an independent cascade, each node plays two roles—namely, that of the mes-
sage receiver, who is activated by a certain message from neighbors, and that of the 
message sender, who reposts the received message to their own neighbors. Informa-
tion providers have several messages on hand, and they want to maximize their influ-
ence in a network. While the network users may have different preferences vis-à-vis 
the various messages, information providers face the problem of making the best 
selection of seed nodes (i.e., that which maximizes their influence).

In each period, the information provider will select the seed nodes by which to dis-
seminate a certain message in the social network. Sometimes, it is the initial post-
ing of a certain message, while sometimes it is a post repeated to increase network 
activity. Once the source user posts the message, the followers of the source users 
automatically receive the information. A follower make decisions based on their pref-
erences, with different types of decisions being made as users play multiple roles in 
the social network (i.e., simultaneously being a follower and a followee). Information 
always flows from the followee to the follower, and the track of information transmis-
sion has a major influence on the network topology, where user relationships or arc 
connections dynamically change due to user preferences and actions. Since the Infor-
mation maximization problem is subject to various uncertainties (e.g., network topol-
ogy and user actions), we model this problem with stochastic programming, with the 
objective of maximizing the expected total influence within a finite-time horizon.

Problem description

To clearly demonstrate the information cascade process of our problem, we provide 
a simple example. Consider viral marketing in a random network G(n,  p), where a 
company wants to promote two products in a network that features an uncertain 
topology. To maximize its influence, the company wants to select certain nodes as 
influencers who will post the promotion message in the network. Figures  2 and 3 
illustrate an example of the entire information cascade process in a four-node ran-
dom network with transition probability p = 0.5 . The symbols used in these figures 
are shown in Table  1. The network properties include the network sizes, transition 

Fig. 2  Given network properties
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probability, node preference, and initial activation status (Fig. 2). Figure 3 shows the 
dynamic network status for each information transition. The following symbols are 
using to explain the information cascade process.

Fig. 3  Information cascade (time t = 1 ); information cascade (time t = 2)



Page 7 of 22Chen et al. Comput Soc Netw             (2021) 8:9 	

Assume there are two message topics (i.e., BLUE and GREEN) and that the infor-
mation will cascade in the random network shown in Fig. 2a, which has four nodes 
and whose network topology dynamically changes with initial arc probability p = 0.5 . 
Before seed selection, we know about node preference in terms of message topic 
(Fig. 2b). Some nodes already knew of the messages before the information cascade, 
so we say these nodes have been “pre-activated”. In Fig. 2c, nodes (1) and (4) were pre-
activated by message BLUE at the initial state.

Within a single period, the information cascade usually includes four steps, as fol-
lows: seed selection, message transmission (the node sends messages), node activa-
tion (the node receives messages), and network topology probability updating. When 
the message provider selects the seed, the message is broadcast by the seed node in 
the network, but it cannot guarantee that all the other network nodes will receive 
the message: only followers are able to receive the message from the message sender. 
Following information transmission, the network topology may change. There is 
a strong likelihood that the link from the followee will be broken if there is a mis-
match between the received message and the follower’s preference. This means some 
directed arcs will break down, even if there were connections in the most recent time 
period; this is due to the uncertainty of the topology. This uncertain topology is mod-
eled by a discrete choice model with two alternatives.

At time t = 0 , node (1) is selected as the seed node of message BLUE, and node (2) is 
selected as the seed node of message GREEN. These two nodes then broadcast messages in 
the network. The initial probability of the directed arc connection between any two nodes 
is 0.5. When message transmission occurs, the real topology will be one scenario among 
all possibilities (Fig. 3b). The arc from node (1) to node (3) is disconnected, as is that from 
node (2) to node (4); this means node (3) cannot receive message BLUE and node (4) can-
not receive message GREEN. Since nodes (1) and (2) are seed nodes, they alone are acti-
vated. Node (2) is activated from message BLUE by node (1). Node (2) dislikes message 
BLUE, and this will break the friendship between nodes (1) and (2). We leverage the utility 
of measuring the friendship. When the node initially receives the message, we assume it 
has a double effect on change to the utility. We reduce the utility from node 1 to node (2), 
because this is the first time node (1) receives this message. Node (4) is also activated with 
message BLUE from node (1). Since node (4) likes this message and had not received this 
message in any previous time period, node (4) will become the new source node for mes-
sage BLUE and will repost message BLUE in the network (Fig. 3f). Similar to the arc utility 

Table 1  Notation of information cascade process

Symbol Definition

Node preference—like

Node preference—dislike

Node status—active

Node status—inactive

Seed/source node
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reduction between nodes (1) and (2), the utility from node (1) to node (4) will be increased 
by (2) due to effective message transition.

The topology probability of the directed arc connection at the next time period is updated 
by the utility changing. For example, the probability of a directed arc from note 1 to node 2 
is updated as

where at12 is the directed arc connection status at time t and ut12 is the utility at time 
t if at12 = 1 . The details of probability updating are explained in “Policy improvement” 
subsection.

Mathematical formulation

We formulate the Independent Cascade within Random Graph (ICRG) problem by using 
stochastic programming model. The authors of [14] introduce the modeling and solution to 
find optimal decisions in problems which involve uncertain data. In our problem, the inde-
pendent cascade process include 3 decision variables, seed selection x, node activation y, 
message transmission z and the uncertainty is the network topology. The notation is shown 
in Table 2.

The original stochastic programming model [SP] is shown below: 

Prob(at=1
12 = 1) =Prob(at=1

12 = 1|at=0
12 = 1) ∗ Prob(at=0

12 = 1)+

Prob(at=1
12 = 1|at=0

12 = 0) ∗ Prob(at=0
12 = 0)

=
1

1+ exp(−(0− 2))
∗ 0.5+ 0.5 ∗ 0.5 = 0.31,

(1a)[SP] max
x,y,z

&E (Q(x),R(y); ε) =
∑

s∈S

Ps(a) · (Rs(y)− Qs(x)),

(1b)s.t. &Ps(a) =
∏

t∈T

∏

i∈I

∏

j∈I\{i}

Prob(at,sij = 1) ∀ s ∈ S ,

(1c)Rs(y) =
∑

k∈K

∑

i∈I

wk · (2bki − 1) · (y
t=|T |,s
ki − cki) ∀ s ∈ S ,

(1d)Qs(x) =
∑

t∈T

∑

k∈K

∑

i∈I

xt,ski ∀ s ∈ S

(1e)xt,s = xt,s+1 ∀ t ∈ T , s ∈ S \ S̄ t ,

(1f )yt,ski = max{cki, x
t,s
ki } ∀ t = 0, k ∈ K, i ∈ I ,

(1g)zt,ski = xt,ski ∀ t = 0, k ∈ K, i ∈ I ,

(1h)yt,ski = max
{

xt,ski , y
t−1,s
ki , max

j∈I\{i}
{at,sji · zt−1,s

kj }
}

,
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In objective function (1a), the total influence has two parts: one is the seed cost 
Q(x), the other one is activation reward R(y). Constraint (1b) shows the probability 
of scenario s depend on the probability of arcs between any two nodes. The directed 
arc aij from node i to node j is random variable, which is following logit binary choice 
model with utility Uij.

Utility Uij is a function to measure the user friendship or the strength of arc con-
nection, which includes two term: observed utility uij and unobserved utility εij . The 
observed utility ut,sij  at time t and scenario s is cumulative impact from node i to node j 
with all kinds of message topic. The current direct arc at,sij  from node i to node j decide 
the impact happen or not, the impact sign is decided by the preference bkj of message 
k and node j, and the impact amount is decided by the transmission decision zt−1,s

ki  of 
message k and node i at last moment. The unobserved utility εt,sij  is assumed to have a 
logistic distribution.

(1i)
∀ t ∈ T , s ∈ S , k ∈ K, i ∈ I

zt,ski = max
{

xt,ski , bki · (y
t,s
ki − yt−1.s

ki )

}

,

(1j)
∀ t ∈ T , s ∈ S , k ∈ K, i ∈ I

x ∈ B, y ∈ B, z ∈ B.

Table 2  Notation of multistage stochastic programming model

Symbol Definition

Indices and sets

i ∈ I Node

k ∈ K Message

t ∈ T Time

s ∈ S Scenario

Parameters

at ,sij The directed arc from node i to node j

bki The information preference of node i with respect to message k

cki The pre-activation, that node i has known or has not known the message k before the seed 
selection

wk The influence weight of message k

Decision variable

xtki Binary variable, seed selection, whether the node i is selected as the seed node of message k 
at time t

yt ,ski
Binary variable, node activation, whether the node i is activated by message k at time t and 

scenario s

zt ,ski
Binary variable, message transmission, whether the node i decide to transmit message k to its 

neighbor at time t and scenario s

Other

Q(x) The total cost of seed selection x

R(y) The total reward of node activation y

P(a) The network topology probability of all the arcs a
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Before the information cascade, there is no message transmission and each node does 
not know anything from the other nodes. Whether connect or disconnect, the observed 
utility is always be 0.

At the initial time period t = 0 , seed node broadcast the message in the network, and 
some node may received message from the seed node.

From time t = 1 to the end of time horizon t = T  , except the seed node, the other node 
who received message also involve in the message transmission.

Ut,s
ij = ut,sij + ε

t,s
ij ∀ t ∈ T , s ∈ S , i ∈ I , j ∈ I \ {i}

Ū t,s
ij = ut−1,s

ij + ε̄
t,s
ij ∀ t ∈ T , s ∈ S , i ∈ I , j ∈ I \ {i}

at+1,s
ij =

{

1, Ut,s
ij > Ū t,s

ij

0, Ut,s
ij ≤ Ū t,s

ij

∀ t ∈ T , s ∈ S , i ∈ I , j ∈ I \ {i}

ε
t,s
ij ∼ Logistic ∀ t ∈ T , s ∈ S , i ∈ I , j ∈ I \ {i}

ut,sij = ūt,sij = 0 ∀ t = −1, s ∈ S , i ∈ I , j ∈ I \ {i}

Ut,s
ij = 0+ ε

t,s
ij ∀ t = −1, s ∈ S , i ∈ I , j ∈ I \ {i}

Ū t,s
ij = 0+ ε̄

t,s
ij ∀ t = −1, s ∈ S , i ∈ I , j ∈ I \ {i}

Prob(at+1,s
ij = 1) = Prob(Ut,s

ij > Ū t,s
ij ) = 0.5

∀ t = −1, s ∈ S , i ∈ I , j ∈ I \ {i}

ut,sij =
∑

k∈K

(2bkj − 1) · at,sij · xt,ski ∀ t = 0, s ∈ S , i ∈ I , j ∈ I \ {i}

ūt,sij = 0 ∀ t = 0, s ∈ S , i ∈ I , j ∈ I \ {i}

Ut,s
ij = ut,sij + ε

t,s
ij ∀ t = 0, s ∈ S , i ∈ I , j ∈ I \ {i}

Ū t,s
ij = 0+ ε̄

t,s
ij ∀ t = 0, s ∈ S , i ∈ I , j ∈ I \ {i}

Prob(at+1,s
ij = 1) = Prob(Ut,s

ij > Ū t,s
ij ) =

1

1+ exp(−ut,sij )

∀ t = 0, s ∈ S , i ∈ I , j ∈ I \ {i}

ut,sij =

t
∑

τ=0

∑

k∈K

(2bkj − 1) · at,sij · zt,ski ∀ t ∈ T , s ∈ S , i ∈ I , j ∈ I \ {i}

ūt,sij =

t−1
∑

τ=0

∑

k∈K

(2bkj − 1) · at,sij · zt,ski ∀ t ∈ T , s ∈ S , i ∈ I , j ∈ I \ {i}

�ut,sij = ut,sij − ūt,sij =
∑

k∈K

(2bkj − 1) · at,sij · zt,ski

∀ t ∈ T , s ∈ S , i ∈ I , j ∈ I \ {i}

Ut,s
ij = ut,sij + ε

t,s
ij ∀ t ∈ T , s ∈ S , i ∈ I , j ∈ I \ {i}

Ū t,s
ij = ūt,sij + ε̄

t,s
ij ∀ t ∈ T , s ∈ S , i ∈ I , j ∈ I \ {i}

Prob(at+1,s
ij = 1) = Prob(Ut,s

ij > Ū t,s
ij ) =

1

1+ exp(−�ut,sij )

∀ t = 0, s ∈ S , i ∈ I , j ∈ I \ {i}
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The total seed cost equals to the number of seed node. The reward equals to the 
weighted average of final active node amount. Constraint (1c) shows the activation 
reward depends on message weight, node preference and node activation status y at end 
of the time horizon t = |T | . Constraint (1e) is nonanticipativity constraint, and in [15] 
the author design an algorithm using Lagrangian dual method to solve the stochastic 
programming model with nonanticipativity constraint. For Constraint (1e), the scenario 
subset S̄ t define as below:

where the directed arc size is I · (I − 1) , the combination of all arcs status is 
|A| = 2I·(I−1) , and the scenario set cardinality |S| = |A||T | = 2|I|·(|I|−1)·|T |.

The information cascade process is limited by 4 constraints. Constraints (1f, 1g) 
define the initial node activation and transmission decision at time t = 0 . Constraints 
(1h, 1i) define the information diffusion rule from time t = 1 to the end t = |T |.

In constraint (1f ), some node are active node at beginning because it has already 
known this message cki or it is selected as seed xki . So the initial time period t = 0 , 
node is not active node if and only if it did not know the message before k and it is not 
selected as seed node. Due to the binary property, constraint (1f ) can be linearized by 
the equation below:

The initial message transmission happen if and only if the node is selected as seed node, 
shown in constraint (1g).

Except the seed selection, the node may also be activated by two causes from time 
t = 1 to the end t = |T | , shown in constraint (1h). One is once node i was activated by 
message k at previous time period t − 1 , it will be active node in the future. The other 
one is at least one of the followees transmit the message k at the previous time period 
t − 1 . Constraint (1h) can be linearized by the following inequalities:

Constraint (1h-L3) is based on independent cascade assumption, that means the node 
will be activated ( yt,ski = 1 ) if the neighbor node ( at,sji = 1 ) decide to transmit message 
( zt−1,s

kj = 1 ). For node i, we define the number of all the neighbors as degree 

S̄
t =

{

s ∈ S | s = |S| ·
τ

|A|t
∀ τ = 1, · · · , |A|t

}

∀ t ∈ T ∪ {0},

(1f-L)1− ytki = (1− cki) · (1− xtki) ∀ t = 0, k ∈ K, i ∈ I .

(1h-L1)yt,ski ≥ xtki ∀ t ∈ T , s ∈ S , k ∈ K, i ∈ I ,

(1h-L2)yt,ski ≥ yt−1,s
ki ∀ t ∈ T , s ∈ S , k ∈ K, i ∈ I ,

(1h-L3)yt,ski ≥ at,sji · zt−1,s
kj ∀ t ∈ T , s ∈ S , k ∈ K, i ∈ I , j ∈ I \ {i},

(1h-L4)
yt,ski ≤ xtki + yt−1,s

ki +
∑

j∈I\{i}

at,sji · zt−1,s
kj

∀ t ∈ T , s ∈ S , k ∈ K, i ∈ I .
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DEGi =
∑

j∈I\{i}

aji . Since one of the neighbor transmit message, the receiver node will be 

activated, constraint (1h-L3) for all neighbor node j can be aggregated by the receiver 
node i.

Constraint (1h-L4) shows the node is deactivated if all the possible activation causes are 
failed.

Constraint (1i) shows node i has two motivation to transmit message k. One is node 
i is selected as seed, the other one is node i is new active node of message k and like 
this message. Constraint (1i) can be linearized by the following inequalities:

Constraint (1i-L2) is based on independent cascade assumption, that means the node is 
willing to transmit message ( zt,ski = 1 ) if it likes this message ( bki = 1 ) and it just activated 
( yt,skj = 1 ) and never knew this message before ( yt−1,s

kj = 0 ). Constraint (1i-L3) shows the 
node decided not to transmit the message if all the transmission motivations are invalid.

The computation complexity of this model is O(2|K||I|·log|T ||S|·|T |) . To reduce the 
complexity, we add an assumption of seed selection, that the decision-maker only 
allows to select one seed node of each message within one time period. It is formu-
lated by the following constraint:

The computation complexity is reduced to O(|I||K|·log|T ||S|·|T |) after adding this assump-
tion, and the objective function (1a) can be simplified as below:

Solution approaches
Since the network topology is dynamically changed, the decision-maker is faced with an 
unstable node friendship. The uncertain directed arc connection leads to the scenario 
size exponentially growth with the network size |I | and time horizon |T|. To handle the 

(1h-L3-A)yt,ski ≥

∑

j∈I\{i}

at,sji · zt−1,s
kj

∑

j∈I\{i}

at,sji
∀ t ∈ T , s ∈ S , k ∈ K, i ∈ I

(1i-L1)zt,ski ≥ xtki ∀ t ∈ T , s ∈ S , k ∈ K, i ∈ I ,

(1i-L2)zt,ski ≥ bki · (y
t,s
ki − yt−1,s

ki ) ∀ t ∈ T , s ∈ S , k ∈ K, i ∈ I ,

(1i-L3)zt,ski ≤ xtki + bki · (y
t,s
ki − yt−1,s

ki ) ∀ t ∈ T , s ∈ S , k ∈ K, i ∈ I .

(1d-A)
∑

i∈I

xt,ski = 1 ∀ s ∈ S , t ∈ T ∪ {0}, k ∈ K.

(1a-A)

max
x,y,z

E (Q(x),R(y); ε) =
∑

s∈S

Ps(a) · (Rs(y)− Qs(x))

= −|T + 1| · |K| +
∑

s∈S

Ps(a) · Rs(y)).
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large-scale scenarios, we have two approaches to solve the information cascade in random 
graph problem:

•	 Myopic policy: does not explicitly use any forecasted network topology and separate the 
multistage into several two-stage problems (MYSP) by discrete time.

•	 Reinforcement learning: reformulates the stochastic programming model to Markov 
decision process (MDP)

Two‑stage stochastic programming with myopic policy

Contrary to the original model, the myopic model focuses on current network topology and 
ignores the future changing on arc. The seed selection ( xt ) is only based on current user 
connection ( at ) and aims to find the local maximal influence on node activation of next 
time period ( yt+1):

By using the myopic method, the multistage problem is decomposed to several two-
stage problems. The first stage variable is seed selection, and the second stage variable is 
node activation and node repost decision. The given parameters include the node pref-
erence, the probability of current network, and the node repost decision of the previ-
ous time period. Since we select seed to find the maximal expected influence at current 
time period, the decision only happens within one time period. Then the time index and 
set can be removed and the node repost decision of the previous time period should be 
added in the known parameter. The notation of myopic model is shown in Table 3.

The mathematical formulation of myopic model is shown below: 

xt = arg maxR(yt+1, at).

(2a)[MYSP] max
x,y

&E(R(y); ε) =
∑

s∈S

Ps(a) · Rs(y),

(2b)s.t. &Ps(a) =
∏

i∈I

∏

j∈I\{i}

Prob(asij = 1) ∀ s ∈ S ,

(2c)Rs(y) =
∑

k∈K

∑

i∈I

wk · (2bki − 1) · (yski − cki) ∀ s ∈ S ,

(2d)
∑

i∈I

xki = 1 ∀ k ∈ K,

(2e)yski ≥ cki ∀ s ∈ S , k ∈ K, i ∈, I ,

(2f )yski ≥ xki ∀ s ∈ S , k ∈ K, i ∈ I ,
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When time t > 0 , some known parameters is given by the previous myopic model.

 where ŷki is the activation status using the decision of previous seed selection x̂kj , ĉki is 
the parameter of previous myopic model, and d̂ki is the node repost decision using the 
decision of previous seed selection x̂kj . The parameter transition between two myopic 
models is shown in Fig. 4.

Reinforcement learning with Markov decision process

Our problem can be defined as a Markov decision process (MDP), that how information 
provider chooses a source user when facing the given information activation status of all 

(2g)
yski ≥

∑

j∈I\{i}

asji · (dki + xkj − dki · xkj)

∑

j∈I\{i}

asji
,

∀ s ∈ S , k ∈ K, i ∈ I ,

(2h)

yski ≤ cki + xki +
∑

j∈I\{i}

asji · (dki + xkj − dki · xkj),

∀ s ∈ S , k ∈ K, i ∈ I ,

x ∈ B, y ∈ B, z ∈ B.

cki = ŷki ∀ k ∈ K, i ∈ I ,

dki = bki · (ŷki − ĉki) ∀ k ∈ K, i ∈ I ,

uij =
∑

k∈K

(2bkj − 1) · âij · (d̂ki + x̂kj − d̂ki · x̂kj) ∀ i ∈ I , j ∈ I \ {i},

Prob(asij = 1) =
1

1+ exp(−uij)
∀ i ∈ I , j ∈ I \ {i},

Table 3  Notation of myopic two-stage stochastic programming model

Symbol Definition

Indices and sets

i ∈ I Node

k ∈ K Message

s ∈ S Scenario

Parameters

asij The directed arc from node i to node j

bki The information preference of node i with respect to message k

cki The pre-activation, that node i has known or has not known the message k before the seed 
selection

dki The node repost decision, that node i will repost message k in the network

wk The influence weight of message k

Decision variable

xki Binary variable, seed selection, whether the node i is selected as the seed node of message 
k at time t

yski Binary variable, node activation, whether the node i is activated by message k at time t and 
scenario s
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users in the network. We use the Reinforcement Learning to learn the policy based on 
state-action pairs ( s,a ). The notation of reinforcement learning with Markov decision 
process model is shown in Table 4.

In general, MDP is described by a 4-tuple (S, A, P, R), which are the states, actions, 
transitions, and reward. In our problem, these four terms are defined as below:

•	 S: the finite set of state, i.e., activation status, s ∈ S

•	 A: the finite set of action, i.e., source user selection, a ∈ A

•	 P: the probability of transition from s to s′ through action a, Pa(s, s′)
•	 R: the expected reward of transition from s to s′ through action a, i.e., weighted infor-

mation influence, Ra(s, s
′).

The probability function is not unknown since the network topology is uncertainty. The 
reward function is shown below: 

We will introduce the Q-learning algorithm to compute optimal policies, which includes 
policy evaluation and policy improvement.

Policy evaluation

If we have a policy, the probability of actions taken at each state are known. Then the 
MDP is turned into a Markov chain (with rewards). We can compute the expected total 
reward collected over time using this policy. For given policy π(s) , the state-value func-
tion Qπ (s,a) is used the evaluated the policy value.

 where γ is the discount factor and π(s,a) is the probability to take action a at state s.

(3a)R(s, s′) =
∑

k∈K

∑

i∈I

wK · (s′ki − ski).

(3b)Qπ (s,a) = E
π
(

R(s, s′)+ γ ·
∑

a
′∈A

π(s′,a′) · Qπ (s′,a′)
)

∀ s ∈ S, a ∈ A,

Fig. 4  Myopic model: parameter transition
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Consider a network with node size |I| = 4 and information size |K| = 2 . The size of 
state set is |S| = 2|K|·|I| = 256 and the size of action set |A| = |I||K| = 16 . Given initial 
state (no activation) s , the information provider has a trivial policy π(s) , that each node 
has equally probability to be seed.

We run several simulations of independent cascade with random actions and discount 
factor γ = 1 . The simulation uses the Monte Carlo method. Before cascade starting, 
we generate a large number of pseudo-random uniform variables from the interval 
[0,1], which is used to decide the network topology. If the value falls into the probabil-
ity interval of the π(s,a) , we will take action a when we meet state s. For example, we 
have 3 options for state s, action a1, a2, a3 , and the probability to take the actions are 
π(s, a1) = 0.1,π(s, a2) = 0.3,π(s, a3) = 0.6 . Based on the definition of Monte Carlo 
method, there are 3 probability intervals [0, 0.1],  (0.1, 0.4],  (0.4, 1] respect to different 
action. When we got the random number 0.5, it falls into the probability interval (0.4, 1], 
which means we will take action a3.

The average final influence of each action is shown in Table 5. Figure 5 shows the 
same policy is applied in different state to calculate the expected total reward, that is 
the total activated node at end of the time horizon.

Policy improvement

Based on the simulation result, we create a final reward (weighted total influence) list 
Q(s,a) by state and action, which is used to improve the policy. π(s,a) and π ′(s,a) are 

Table 4  Notation of reinforcement learning with Markov decision process model

Symbol Definition

Indices and sets

i ∈ I Node

k ∈ K Message

Parameters

bki The information preference of node i with respect to message k

wk The influence weight of message k

ρij The probability of arc connection from node i to node j

Variable

σki The element of state matrix s ∈ S in row k and column i, that 
the activation status of node i by message k

αki The element of action matrix a ∈ A in row k and column i, that 
the seed selection of node i by message k
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old policy and new policy. The action set A is splitted to two subset. A1 is the set of all 
happened action, A0 is the set of all unhappened action:

where � is the stepsize, which is decided by the iteration number and policy improved 
value.

For the example of Policy Evaluation, the updated policy is shown in Table 6. If we sum-
marized the policy by information k and user i, it will be

Computational experiments on algorithms’ convergence
Numerical experiments and results of different algorithms are presented in this section 
on solving the information maximization problem. We randomly generate and test three 
data sets, i.e.,

•	 data set (2,4) with 2 messages and 4 nodes
•	 data set (2,7) with 2 messages and 7 nodes
•	 data set (3,7) with 3 messages and 7 nodes (cannot converge within 24 h, the average 

computation time for each iteration will take 60000 s).

π ′(s,a) =















(1−
�

a∈A0

π(s,a)) ·
Q(s,a)− Q̂(s, a)

�

a∈A1

Qπ (s,a)− Q̂π (s,a)
, ∀ a ∈ A1, s ∈ S

π(s, a), ∀ a ∈ A0, s ∈ S

Q̂(s,a) = � · min
a∈A1

Q(s,a),

� =
m

itrn
·
∑

s∈S

∑

a∈A

(

πitr(s,a) · Q
πitr (s,a)− πitr−1(s,a) · Q

πitr−1(s,a)
)

Table 5  Example of policy evaluation

State Action Influence
s a Q

π (s, a)

(

0 0 0 0

0 0 0 0

) (

1 0 0 0

1 0 0 0

)

3.27869

(

1 0 0 0

0 1 0 0

)

3.09836

(

1 0 0 0

0 0 1 0

)

3.22414

.

.

.

.

.

.
(

0 0 0 1

0 0 0 1

)

3.90909
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Fig. 5  Reinforcement learning: policy evaluation
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The algorithms are coded in Microsoft Visual Studio 2019 C++ linked with CPLEX 
12.9. All the programs are run on the Microsoft Windows 10 Professional operating 
system with Intel Xeon CPU E-2186 2.90GHz and 32GB RAM. Since the computation 
of data set (3,7) cannot converge within practical time, we will only discuss the results 
of data set (2,4) and data set (2,7). All the computation results are shown in Table 7.

In Fig. 6, we show the results of total rewards when we increase the number of itera-
tions while implementing the algorithm of reinforcement learning with Markov deci-
sion process. In Fig. 6a, b, the results are based on experiments with 2 messages and 4 
nodes, while a 7-node case is shown in Fig. 6c, d. In all the figures, the left sides show 
the convergence results using a sample size of 10,000 for the Monte Carlo simulation 
in the algorithm, and with 1 million for the right sides. It can be easily observed that a 
larger sample size can converge faster and achieve policies with higher objective value 
in short amount of time. This is partially due the fact that a smaller sample size pro-
vides lower accuracy in approximation.

In Fig.  7, we compare the two proposed algorithms, i.e., the two-stage stochastic 
programming with Myopic policy (SP-MYOPIC) and the algorithm via reinforcement 
learning with Markov decision process (RL-MDP) using the different data set. In both 
cases (2 messages plus 4 nodes versus 2 messages plus 7 nodes), we use a sample size 
of 1 million. The SP-MYOPIC approach’s result is the straight, horizontal line in both 
sub-figures. Although it is faster to calculate and does not have convergence issues, it 

Table 6  Example of policy improvement

State Action Initial policy Updated policy
s a π(s, a) π ′(s, a)

(

0 0 0 0

0 0 0 0

) (

1 0 0 0

1 0 0 0

)

0.0625 0.0463788

(

1 0 0 0

0 1 0 0

)

0.0625 0.0515202

(

1 0 0 0

0 0 1 0

)

0.0625 0.0554653

.

.

.

.

.

.

.

.

.
(

0 0 0 1

0 0 0 1

)

0.0625 0.0737093

Table 7  Computation results

Method Best result Time (s) Best result Time (s)
Dataset (2,4) Dataset (2,7)

SP-MYOPIC 3.771 5.349 10.238 69.701

RL-MDP sample size 1E+04 3.6055 3.819 9.247 59.622

RL-MDP sample size 1E+06 3.8166 283.216 10.291 4364.74
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is trailing after the RL-MDP method in terms of total rewards when a certain amount 
of computational time is provided.

Conclusion
In this study, we presented multistage stochastic mixed integer nonlinear programming 
models with endogenous uncertainty to examine influence maximization in social net-
works that feature a dynamic topology decided by users. We proposed two methods, 
each featuring a network structure based on user preference in a finite-time information 
cascade. One makes use of classic two-stage stochastic programming, while the other 
leverages reinforcement learning. Information networks generally comprise autono-
mous nodes that make decisions when forming links with other nodes and transmitting 

Fig. 6  Computation result using RL-MDP

Fig. 7  Algorithm comparison
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information. We used the discrete choice model to build the node preference distribu-
tion; additionally, we modeled dynamic changes to the network structure by using sto-
chastic dynamic programming, which can be solved via the Markov decision process. 
Our models accurately describe and predict user behavior so as to ensure dynamic 
optimization under uncertainty; as such, they act as tools by which to analyze dynamic 
changes to network structure by controlling information flow, and can be used in the 
information maximization problem. The results of our computational experiments show 
that large sample sizes can provide better and more stable results when one implements 
the reinforcement-learning based approach, which performs better than the two-stage 
stochastic programming (i.e., myopic) approach.
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