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Introduction
The recent years of research in networks science have been characterized by many and 
more attempts to generalize the traditional network theory by developing and validating 
a novel framework for the study of multilayer networks, i.e., graphs where constituents 
are nodes, and several layers of connections have to be taken into account to accurately 
describe the nodes interactions. Multilayer networks explicitly incorporate multiple 
channels of connectivity and constitute the natural environment to describe systems 
interconnected through different categories of connections: each channel (relationship, 
activity, category, etc.) is represented by a layer and the same node or entity may have 
different kinds of interactions (different set of neighbors in each layer). For instance, in 
social networks, one can consider several types of different relationships: friendship, 
vicinity, kinship, membership of the same cultural society, partnership or coworker-ship, 
etc [1].

Such a change of paradigm that was termed in disparate ways (multiplex networks, 
networks of networks, interdependent networks, hypergraphs, and many others), 
already led to a series of very relevant and unexpected results [1].

Using the headers of scientific papers, we have represented and analyzed three net-
works: researchers, laboratories and institutions networks. Header of a paper is the 
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name of the researchers(authors) and theirs affiliations. The term institution is used here 
to refer to an university, a research center or a research institution. The networks are 
interdependent because of the affiliation relationship between the entities of the three 
networks. In fact, a researcher is affiliated to at least one laboratory and a laboratory 
affiliated to at least an institution. We therefore say that these networks are hierarchical 
and are induced from collaboration between researchers (see Fig. 1). In order to under-
stand and simulate these systems we have to master both how the actors interact and the 
rules of affiliations to organizations.

We generalize this hierarchical co-publication network by a complex system where an 
actor is affiliated to an organization that can also be affiliated to a higher level organiza-
tion and so on. The relationships between entities at the same level are deduced from 
interaction of those at the lower level. The interaction between the actors (at the lowest 
level) is the process that induces the relationship between the organization at the other 
levels. i. e, two researchers are not connected because they are members of the same lab-
oratory but because they co-published a paper. This is the main difference between affili-
ation network used in this paper and those of Silvio Lattanzi et al. [2] who consider that 
in social networks there are two types of entities, actors and societies, that are linked by 
affiliation of the former to the latter.

After some definitions and the state of the art presented in "Multilayer networks 
generation models" section, the method applied for the work conducted in this paper 
was firstly to use the headers of 70224 scientific papers of the HAL archives to build 
co-publications networks. We measured various structural properties of these networks 
such as degree-distributions, average distance, clustering coefficient, ..."Co‑publications 
multilayer networks" section is dedicated to this first part of our contribution. From this 
study, we derived a hierarchical network generation model that can reproduce the meas-
ured properties. The model is presented in "The hierarchical network generation model" 
section with some mathematical results regarding the number of nodes, the number of 
edges and exponent of the power law degree-distribution of the generated networks. 
Finally in "Simulations" section, we present some simulations results of the proposed 
generation model and discussions concerning the comparison between the properties of 

Fig. 1  Generated multilayer network by header of a scientific paper
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the simulated networks and those of the real-world networks (built from the HAL data-
set). "Conclusion" section concludes the paper.

Multilayer networks generation models
The last 15 years have seen the birth of a movement in science: the complex networks 
theory. It involved the interdisciplinary effort of some of our best scientists in the aim 
of exploiting the current availability of big data in order to extract the ultimate and opti-
mal representation of the underlying complex systems and mechanisms. The main goals 
were (i) the extraction of unifying principles that could encompass and describe (under 
some generic and universal rules) the structural accommodation that is being detected 
ubiquitously, and (ii) the modeling of the resulting emergent dynamics to explain what is 
actually seen and experienced from the observation of such systems.

Network theory provides various tools for investigating the structural or functional 
topology of many complex systems found in nature, technology and society. There are 
many applications of multilayer graphs in various areas such as biology, transportation 
and social network [3–7].

Definitions and notations

A network (or graph) is a pair G = (X ,E) , where X set of items, which we will call nodes 
and E is a set of connections between the nodes, called edges. A set of nodes joined by 
edges is only the simplest type of network; there are many ways in which networks may 
be more complex than this. For instance, there may be more than one different type of 
node in a network or more than one different type of edge. Nodes or edges may also have 
a variety of properties, numerical or categorical associated.

Graphs of directed edges [8] are themselves called directed graphs or sometimes 
digraphs. One can also have hyperedges—edges that join more than two nodes together. 
Graphs containing such edges are called hypergraphs [9]. Graphs may also be naturally 
partitioned in various ways. For example bipartite graphs: graphs that contain nodes of 
two distinct types, with edges running only between unlike types [10, 11]. So-called affil-
iation networks in which people are joined together by common membership of groups 
take this form, the two types of nodes representing the people and the groups [2].

There is no consensual definition of multilayer graphs. There are several definitional 
approaches in the literature [1, 12, 13]. In this work, we will use the definition of [1]. A 
multilayer network is a pair M = (G, C) , where G = {Gα;α ∈ {1, . . . ,M}} is a family of 
(directed or undirected, weighted or unweighted) graphs Gα = (Xα ,Eα) (called layers of 
M ) and

is the set of interconnections between nodes of different layers Gα and Gβ with α  = β . 
The elements of C are called crossed layers, and the elements of each Eα are called intra-
layer connections of M in contrast with the elements of each Eαβ (α  = β)that are called 
interlayer connections.

This mathematical model is suited to describe phenomena in social systems, as well as 
many other complex systems. By using this representation, we simultaneously take into 

C = {Eαβ ⊆ Xα × Xβ;α,β ∈ {1, . . . ,M},α �= β}
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account: the links inside the different groups, the nature of the links and the relation-
ships between elements that (possibly) belong to different layers and the specific nodes 
belonging to each layer involved.

It is important to notice that the concept of multilayer network extends that of other 
mathematical objects, such as: Multiplex network [14], Temporal networks [15], Inter-
acting or interconnected networks [16], Multidimensional networks [17], Interde-
pendent (or layered) networks [18, 19], Multilevel networks [20], Hypernetworks (or 
hypergraphs) [9].

The degree of a node [21] i ∈ X of a multiplex network M = (G, C) is the vector 
ki = [k1i , . . . , k

M
i ] , where kαi  is the degree of the node i in the layer α . This vector-type 

node degree is the natural extension of the established definition of the node degree in a 
monolayer network.

We say that node i, with i = 1, 2, . . . ,N  is active at layer α if kαi > 0 . We can then asso-
ciate to each node i a node-activity vector bi = {b

[1]
i , b

[2]
i , . . . , b

[M]
i } , where b[α]i = 1 if 

kαi > 0 , while b[α]i = 0 otherwise. We call node-activity Bi of node i the number of layers 
on which node i is active.

Properties of real‑world complex networks

It has been recently shown that most real-world complex networks have some essential 
properties in common. Three properties received much attention due to the fact that 
they have unexpected behaviors in real-world complex networks: the average distance 
between nodes, the clustering and the degree distribution.

Most of real-world complex networks have the small-world property, i.e., short aver-
age distance [22, 23]. The small-world concept originated from the famous experience 
made by Milgram [24]. Another property of many real-world networks is the presence of 
high average clustering coefficient.

The degree distribution which is, for each k, the probability pk that a randomly chosen 
node has degree k, is completely different from what was expected. Indeed, for almost 
all real-world complex networks, the degree distribution follows a power law: pk ≈ k−α . 
The exponent α of the power law is generally between 2 and 3. Such a distribution means 
that although most nodes have a small degree, the number of nodes with degree k decays 
only polynomially with k, and therefore there is a significant number of nodes with high 
degree. It has been shown in the literature that many co-authorship networks follow 
power law degree distribution [25–27].

The state of the art of generation models

There are basically two ways to propose a model for network generations:

•	 The first may consider a set of observed properties as essential, and then sample ran-
domly objects among the ones which have these properties. Proceeding this way, will 
yields a typical object with the concerned properties [28–30]. It is then possible to 
determine if the retained set of properties is sufficient (do the random objects pro-
duced by the model fit well the real one? ) and to study the expected behavior of the 
object of interest. The relevance of the set of properties is generally checked using 
other known properties or behaviors of the object.
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•	 The second define’s a construction network generation models process inspired from 
the way the object is really constructed [2, 31–33]. This construction process is gen-
erally iterated from an initial state, and eventually leads to an appropriate object. The 
analysis then concerns the properties induced by the construction process: do they 
fit real-world properties?

For more details, the reader can refer to [34] for a large overview on the model of simple 
network. Similarly to monolayer networks, most of the models for generation of multi-
layer networks can be divided also into two classes:

•	 Growing multilayer networks models, in which the number of the nodes grows, and 
there is a generalized preferential attachment rule [35–37]. These models explain 
multilayer network evolution starting from simple, and fundamental rules for their 
dynamics.

•	 Multilayer network ensembles, which are ensembles of networks with N nodes in 
each layer satisfying a certain set of structural constraints [38–40]. These ensembles 
are able to generate multilayer networks with fully controlled set of degree–degree 
correlations and of overlap.

In [33] Meleu and Melatagia proposed a networks generation model based on the forma-
tion of cliques to reproduce collaboration networks. At each step of the model, a clique 
of �η existing nodes and (1− �)η new nodes is created and added in the network; P is the 
distribution of the number of nodes per collaboration, η is the mathematical expectation 
of P and � is the proportion of old nodes per clique. The old nodes are selected accord-
ing to preferential attachment. The main difference between the model of Zhang et al. 
[41] and those of Meleu et  al. is that, Zhang et  al. consider only one new node while 
Meleu et al. define a parameter � that controls the proportion of new nodes. The model 
of Meleu et al. is thus the generalization of the model of Zhang et al. (see [33] for details).

In [35, 36] a growing multiplex model has been proposed: the network has a dynamics 
dictated by growth, and generalized preferential attachment. Starting at time t = 0 from 
a duplex network with n0 nodes (with a replica in each of the two layers) connected by 
m0 > m links in each layer, the model proceeds as follows:

•	 Growth: At each time t ≥ 1 a node with a replica node in each of the two layers is 
added to the multiplex. Each newly added replica node is connected to the other 
nodes of the same layer by m links.

•	 Generalized preferential attachment: The new link in layers α = 1, 2 is attached to 
node i with probability �α

i  proportional to a linear combination of the degree k[1]i  of 
node i in layer 1 and k[2]i  of node i in layer 2.

Growing multiplex network models have been proposed in [20, 42], where the multiplex 
network grows by the addition of an entire new layer at each step. In [20], two nodes i 
and j in the new layer are linked with a probability pij that depends on the quantity there 
called node multiplexity Qij . In particular, pij can be either positively correlated with Qij 
, or negatively correlated to it. In the first case two nodes that are active at the same time 
in many layers are more likely to be connected in the new layer, in the second case two 
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nodes that are active at the same time in many layers have small probability to be con-
nected in the new layer. In [42], instead, every node i of the new layer will be active with 
a probability Pi proportional to the activity of the node Bi : Pi ≈ A+ Bi(t) , where A is a 
parameter of the model. This model enforces a sort of “preferential attachment” of the 
new layers to nodes of high activity Bi , and a power law distribution P(Bi) of the activi-
ties of the nodes.

The simplest way to obtain a static generative model for multiplex networks is to gen-
eralize the existing methods for single-layer ones [1]. Fixing the degree sequence in each 
layer, one can use a configuration model to obtain a particular realization of the given set 
of connectivities. In [43] the authors have made the choice to add interlayer links arbi-
trarily. A different approach is to keep using a configuration model, but to specify the 
edges between the layers by means of a joint-degree distribution [44–46].

A similar method is to specify the degree sequences together with a probability matrix 
whose element (i, j) is the fraction of interlayer links between layers i and j. The actual 
link placement is still achieved via uniform random choice [47]. A generalization of this 
approach has been proposed in [48]; the authors impose the degree correlations within 
and between layers by means of a set of matrices that specify the fraction of edges 
between nodes of given degrees in given layers.

Co‑publications multilayer networks
By browsing the headers of scientific papers, we can represent and analyze three net-
works namely: authors’ networks, laboratories’ networks and institutions’ networks. We 
referred by header of paper, the description of the title of the paper, the names of authors 
and their affiliations (Fig. 2 is an example of paper’s header). The networks are defined as 
follows: 

Fig. 2  Example of a paper’s header
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1.	 The network of authors. A node represents an author and, if an author i co-authored 
a paper with author j, the graph contains an undirected edge from i to j. If the paper 
is co-authored by k authors this generates a completely connected (sub)graph on k 
nodes.

2.	 The network of laboratories. A node represents a laboratory in which at least one 
author published a paper, an edge links two laboratories if it exists at least one paper 
co-authored by authors of these two laboratories.

3.	 The network of institutions. A node represents an institution of the authors who 
have published at least one paper and, an edge links two institutions if it exists at 
least one paper co-authored by authors from two laboratories each related to these 
institutions. The term institution is used to refer to a university, research center or a 
research institution.

Because of a reciprocal collaboration, these networks are undirected. They can be 
weighted by the number of publications between the two entities or not according to the 
goal that is given to the study. In this study, they are unweighted. Note that, for the type 
of nodes (author, laboratory or institution) considered, network construction is summa-
rized in the subsequent creation of clique. The three generated networks are interde-
pendent because of the affiliation relationship between their entities. So, in addition to 
the above description, we add new edges that represent affiliations’ relations between 
authors and laboratories and affiliations’ relations between laboratories and institutions.

We then say that these networks are multilayered (see Fig. 1) and are deduced from 
collaboration between authors. Indeed, the actors involved in co-publication are the 
authors. In theses networks, we have two types of relationship: collaboration(at the same 
level) and affiliation(between two levels).

The studied networks can be formally represented by M = (G, C) , where: 
G = {Gα;α ∈ {1, 2, 3}} is a layers of M with G1 is network of researchers, G2 is network 
of laboratories, G3 is network of institutions. Each Gα;α ∈ {1, 2, 3} is a collaboration net-
work and C is a set the affiliations edges.

We have built multilayer networks from the publications of the open archive HAL1 
between 2006 and 2016. HAL is an open archive where authors can deposit scholarly 
documents from all academic fields. The total number of papers used in this dataset is 
70224 organized in eight research fields.

We have analyzed the average number of entities affiliated to an organization. Pre-
cisely, we looked the average number of researchers affiliated to a laboratory of a given 
degree and the number of laboratories affiliated with an institution of a given degree 
(see Fig. 3). Using linear regression model, we approximated the relation between the 
average number of entities affiliated to an organization of a given degree and the degree 
of organization. So the number of node at layer α , affiliated to an organization at layer 
α + 1 with collaboration degree k can be defined as follows:

(1)Nα(k) =ραk + nα0 .

1  https​://hal.archi​ves-ouver​tes.fr/.

https://hal.archives-ouvertes.fr/
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We have compared the degree distribution of the three layer (Fig. 4). We found that all 
the three layers have a degree distribution that follows power law. Looking the densities 
δα and the average distance lα;α ∈ {1, 2, 3} (Table 1), we found that, for all the fields of 
the HAL dataset:

As shown in Table 1, each of the three networks layers has a high clustering coefficient 
( C ≈ 0.83 ), a low average distance ( l ≈ 7 ); they are small-world networks.

From all the observations made by analyzing the hierarchical network of the HAL 
dataset, we designed a network generation model that will reproduce the main proper-
ties of such type of networks.

The hierarchical network generation model
Collaboration and affiliation algorithms

Consider that each actor (elements involve in a collaborations) of our model is affiliated 
to at least one organization. An organization is also affiliated to at least one higher level 

(2)δ3 ≥ δ2 ≥ δ1 and l3 ≤ l2 ≤ l1.

Fig. 3  Correlation between collaboration degree of an organization and the number of members affiliate to 
this organization

Fig. 4  Degree distribution of the three layers on the studied multilayer networks
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of organization. For simplification purpose, we suppose that, each actor or organization 
is affiliated to only one organization and the mobility of the actors (as for the authors in 
laboratories) is not considered. In this context, a node xα = (id, aff ) at layer α is repre-
sented by its ID id and the ID aff of his affiliation yα+1 at a layer α + 1 . The actors belong 
to layer 0. The affiliations of actors are in layer 1. The affiliations of organizations at layer 
1 is in layer 2 and so on.

To generate edges between node in the same layers, we propose a growth model for 
the multilayer collaboration network similar to that of Meleu et al. [33] (Algorithm 1). 
It is an iterative model that simulates at each step a collaboration between actor (node 
of layer 0) and creates relationships in networks. The collaboration at any layer α ≥ 1 is 
deduced by the affiliations of the nodes at layer α − 1 . 

Table 1  Properties of the layers: total number of nodes n; total number of edges m; mean 
degree d̄ ; mean node–node distance l; exponent γ of  degree distribution; clustering 
coefficient C; Transitivity T, Density δ

Chem, Info, Math, Phys, Shs, Sdu, Sdv, Stat are academic fields of the HAL dataset

Network n m d̄ l γ C T δ

Chem Researchers 19794 80144 8.1 7.07 2.43 0.87 0.43 0.0004

Laboratories 5064 14653 5.8 3.56 2.43 0.85 0.07 0.0011

Institutions 4563 32045 14.058 2.10 2.44 0.9 0.03 0.003

Info Researchers 26492 485275 36.6 10.2 2.44 0.92 0.74 0.0013

Laboratories 9658 125832 26.0 4.48 2.43 0.87 0.84 0.0026

Institutions 10463 163545 31.2 4.08 2.44 0.86 0.75 0.0029

Math Researchers 9199 14236 3.09 13.8 2.40 0.80 0.54 0.0003

laboratories 3164 8167 5.16 3.61 2.43 0.75 0.09 0.0016

Institutions 3558 12299 6.91 3.49 2.43 0.75 0.11 0.0019

Phys Researchers 19920 160915 16.1 9.32 2.43 0.89 0.80 0.0008

Laboratories 4793 18199 7.59 4.19 2.43 0.82 0.34 0.0015

Institutions 5161 22623 8.76 4.00 2.44 0.82 0.30 0.0016

Shs Researchers 3955 6193 3.13 5.46 2.39 0.86 0.83 0.0007

Laboratories 1729 3021 3.49 5.98 2.42 0.73 0.29 0.0020

Institutions 1903 4142 4.35 5.12 2.43 0.73 0.23 0.0022

Sdu Researchers 20873 98593 9.44 7.49 2.43 0.87 0.67 0.0004

Laboratories 7781 29238 7.51 3.69 2.43 0.87 0.12 0.0009

Institutions 8217 35408 8.61 3.63 2.44 0.86 0.12 0.0010

Sdv Researchers 31557 154416 9.78 11.8 2.43 0.92 0.81 0.0003

Laboratories 11010 46084 8.37 4.89 2.43 0.89 0.61 0.0007

Institutions 11594 50942 8.78 4.69 2.43 0.88 0.52 0.0007

Stat Researchers 2867 5876 4.10 9.41 2.40 0.87 0.57 0.0014

Laboratories 1301 3229 4.96 4.20 2.41 0.80 0.25 0.0038

Institutions 1541 5458 7.08 3.81 2.43 0.79 0.22 0.0045
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In Algorithm 1, the selection of old nodes is made according to preferential attach-
ment; an old actor i of degree ki (in-layer degree) is selected with probability propor-
tional to Pi = ki/

∑

j kj . To create edges in other layers, we proceed recursively: from 
level 0, we select in layer 1 the affiliation of the nodes in the collaboration then, we 
create a clique with these nodes at level 1. We create edges in level 2 using the pre-
vious affiliation nodes and select their affiliation nodes at layer 2. . . This process is 
given in Algorithm 2.

Let us define the affiliation vector by the set V = {�0, �1, . . . , �M−1} , where �α ,α > 0 
is a probability of a new node at level α − 1 to be affiliated to an old node at level α 
and �0 is the proportion of old nodes by collaboration at level 0. We can observe that, 
if M = 1 , this model (represented by Algorithm  2) is the same as to Meleu et  al. ’s 
model [33]. So the network at layer 0 has the properties described in model [33]. 

When we create node at level 0, we decide, using affiliation vector to affiliate this 
node to old or new node at level 1. In the case of affiliation to a new node, we create 
node at level 1 and then decide (using the affiliation vector) to affiliate this node to an 
old or a new node at level 2. This is done recursively for the upper layers. We propose 
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in Algorithm 3, a process to create nodes and affiliate them to their organizations. The 

node affiliation to organizations follows a preferential attachment. 
A generated multilayer network is a pair M = (G, C) , where

•	 G = {Gα;α ∈ {0, 1, . . . ,M − 1}} is a family of collaborations graphs Gα = (Xα ,Eα) . 
This can be a collaboration networks of actors or collaboration network at each 
organization’s level.

•	 C = {Eαβ ⊆ Xα × Xβ;α,β ∈ {0, 1, . . . ,M − 1},α �= β} is the set of affiliations 
between actors and organizations or between organizations and sub-organization 
Gα .

Properties of the generated networks

Let M = (G, C) be a multilayer network generated by our model.

Proposition 1  The number of nodes in Gα = (Xα ,Eα) is:

where t is the number of collaborations generated.

Proof 1  We proceed by induction. 

1	 At layer 0, the network is the same as networks generated by Meleu et al. ’s model 
[33], so: 

2	 Consider that, at layer α , 0 ≤ α ≤ M , we have 

 We will show that we have |Xα+1| = t(1− �)(1− �1) . . . (1− �α)η at layer α + 1.

(3)|Xα| = t(1− �)(1− �1) . . . (1− �α)η = tη

α
∏

i=0

(1− �i) ∀α ∈ {0, 1, . . . ,M},

|Xα| = t(1− �0)η.

Xα = t(1− �0)(1− �1) . . . (1− �α)η.
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	 In fact, at each step

•	 (1− �)η new nodes are added at layer 0.
•	 Those nodes generate (1− �0)(1− �1)η new nodes at layer 1 by affiliating new 

nodes of layer 0 with the new nodes in this layer 1. Since, each new node in layer 0 
has the probability 1− �1 (using Algorithm 3 and affiliation vector) to be affiliated 
to a new node in layer 1.

•	 By recurrence, at layer α we have (1− �0)(1− �1) . . . (1− �α)η new nodes 
are added as affiliation of (1− �)(1− �1) . . . (1− �α−1)η new nodes of layer 
α − 1 . Those (1− �0)(1− �1) . . . (1− �α)η new nodes of layer α will generate 
(1− �0)(1− �1) . . . (1− �α)(1− �α+1)η new nodes in layer α + 1.

	  Hence, for t steps, we find: 

� �

Proposition 2  The number of edges |Eα| in the network is:

where t is the number of collaborations generated.

Proof 2  While selecting or/and creating η actors by collaboration in layers 0, it is pos-
sible that all of them will be affiliated to different organizations in all the other layers 
α ≥ 1 . Thus, the maximum number of edges created by a collaboration in each of the 
layer α ≥ 1 is then:

On other hand, at each step let us consider that all the old nodes of layer 0 involved in 
the clique creation are affiliated to the same organization i. e (1− �0)η actors are affili-
ated to the same node x at layer 1. At this level(1), the number of new edges will be equal 
to the number of edges that link the organization x to all the new organizations added by 
the creation of a new node at level 0 (i. e affiliation of new actors). This number is:

We have shown that, at layer α , 0 ≤ α ≤ M − 1 , we have 
∏α

i=0(1− �i) new nodes. These 
new nodes generate 

∏α+1
i=0 (1− �i) new nodes at layer α + 1 and we have assumed that, 

old nodes are affiliated to the same node at layer α + 1 , thus, the edges added at layer 
α + 1 is the edges of the clique of 1+ η

∏α
i=0(1− �i) nodes which is:

The result is deduced by considering t steps.�  �

|Xα+1| = t(1− �0)(1− �1) . . . (1− �α+1)η.

(4)
{

t
2
η
∏α

i=0(1− �i)
(

1+ η
∏α

i=0(1− �i)
)

≤ |Eα| ≤
t
2
(η − 1)η if α ≥ 1

t
2
(1− �)η[(1− �)η − 1] + t�(1− �)η2 ≤ |Eα| ≤

t
2
(η − 1)η if α = 0

1

2
η(η − 1).

1

2
(1− �0)(1− �1)(1+ (1− �0)(1− �1)).

1

2
η

α
∏

i=0

(1− �i)

(

1+ η

α
∏

i=0

(1− �i)

)

.
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Proposition 3  The average degree d̄α of Gα = (Xα ,Eα) is:

Proof 3  By definition:

The proposition is deduced from Eq(3) and Eq. (4).�  �

Theorem 1  If the average degree at layer α is d̄α = (η − 1)/

(

α
∏

j=0

(1− �j)

)

, the degree 

distribution in layer α of a generated multilayer network follows a power law of parame-
ter γα as:

Proof 4  For α = 0 , the result is shown in Ref. [33]. For α > 0 , according the hypothesis 
on the average degree: the probability that a new node at layer α will connect to a node 
of the layer α + 1 is proportional to the degree of this last node in this α + 1 layer.

Since we assume Eq 1, the probability that a node xα−1 is affiliated to an organization yα 
of degree kαy  is proportional to the degree of this node, i.e.:

The variation of the nodes of degree k in layer α is impacted by:

•	 the selection of nodes in layer α − 1 affiliated to node of layer α having degree k.
•	 the selection of old nodes of degree k to affiliate new nodes of layer α − 1 using 

affiliation vector.

It follows that, the number of nodes of degree k at step t in layer α that gain an edge 
when the algorithm creates a new collaboration is:

Using Eq. 7 we obtain

(5)











1+ η
�α

i=0(1− �i) ≤ d̄α ≤
η−1

α
�

j=0

(1−�j)

if α ≥ 1

(1+ �0)η − 1 ≤ d̄α ≤
η−1

1−�0
if α = 0

d̄ =
2|Eα|

|Xα|
.

(6)γα =











1+ 1
�0

if α = 0

1+ 1

�0+
α
�

i=1

�i
�

j<i(1−�j)

if α ≥ 1

(7)P(xα−1
, yαk exists) =

Nα(k)
tα
∑

Nα(k
α
t )

≈
k

∑

tα
kαt

.

Nk = η



�+

α−1
�

i=1

�i

�

j<i

(1− �j)



P(xα−1 ∈ yαk )+

η�α
�

i<α

(1− �i)

�

x
xPx

kPk .
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If we denote by pk ,t the value of pk when the network has nt vertices, then the variation 
in ntpk per 

∏α
i=0(1− �i)η vertices added is:

Looking for stationary solutions pk ,t+1 = pk ,t = pk as, the variation of the number of 
nodes of degree k at layer α is then:

with:

By simplifying in Eq. (9) we obtain:

where c = Pη−1 et B(a, b) = Ŵ(a)Ŵ(b)
Ŵ(a+b)  is Legendre’s beta-function, which goes asymptoti-

cally as a−b for large a and fixed b, and hence

� �

η

(

�0 +
α
∑

i=1

�i
∏

j<i(1− �j)

)

∑

x
xPx

kPk .

(8)

(

nt + η

α
∏

i=0

(1− �i)

)

pk ,t+1 − ntpk ,t

=

η

(

�0 +
α
∑

i=1

�i
∏

j<i(1− �j)

)

∑

x
xPx

(

(k − η + 1)pk−η+1,t − kpk ,t
)

.

(9)η

α
∏

j=0

(1− �j)Pk =

η

(

�0 +
α
∑

i=1

�i
∏

j<i(1− �j)

)

∑

x
xPx

[

(k − η + 1)Pk−η+1 − kPk
]

∑

x

xPx = d̄α =
η − 1

α
∏

j=0

(1− �j)

.

pk =
k − η + 1

k +
η−1

�

�0+
α
�

i=1

�i
�

j<i(1−�j)

�

Pk−η+1

=

k
η−1

− 1

k
η−1

+ 1
�

�0+
α
�

i=1

�i
�

j<i(1−�j)

�

. . .
1

2+ 1
�

�0+
α
�

i=1

�i
�

j<i(1−�j)

�

Pη−1

= cB









k

η − 1
, 1+

1
�

�0 +
α
�

i=1

�i
�

j<i(1− �j)

�









,

pk ≈

�

k

η − 1

�

−






1+ 1

�0+
α
�

i=1

�i
�

j<i(1−�j )







.
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Theorem 2  If the average degree is 1+ η
∏α

i=0(1− �i), the degree distribution in layer 
α > 0 of a generated multilayer network follows a power law of parameter γα as:

Proof 5  Let θ =
α
∏

j=0

(1− �j) ; similarly to the previous case, and looking for stationary 

solutions pk ,t+1 = pk ,t = pk as, the variation of the number of nodes of degree k at layer 
α is:

with:

Thus:

By simplifying in Eq. (13), we obtain

where c = P
η

α
∏

j=0

(1−�j)
 et B(a, b) = Ŵ(a)Ŵ(b)

Ŵ(a+b)  is Legendre’s beta-function, which goes 

asymptotically as a−b for large a and fixed b, and hence:

(10)γα = 1+

1
η
+

α
∏

j=0

(1− �j)

�0 +
α
∑

i=1

�i
∏

j<i(1− �j)

.

(11)ηθPk =

η

(

�0 +
α
∑

i=1

�i
∏

j<i(1− �j)

)

∑

x
xPx

[

(k − ηθ)Pk−ηθ − kPk
]

∑

x

xPx = d̄α = 1+ η

α
∏

j=0

(1− �j).

(12)
ηθPk =

η

(

�0 +
α
∑

i=1

�i
∏

j<i(1− �j)

)

1+ ηθ

[

(k − ηθ)Pk−ηθ − kPk
]

,

(13)θ(1+ ηθ)Pk =



�0 +

α
�

i=1

�i

�

j<i

(1− �j)





�

(k − ηθ)Pk−ηθ − kPk
�

.

pk =
k − ηθ

k +
θ(1+ηθ)

�

�0+
α
�

i=1

�i
�

j<i(1−�j)

�

Pk−ηθ

=

k
ηθ

− 1

k
ηθ

+
1+ηθ

η

�

�0+
α
�

i=1

�i
�

j<i(1−�j)

�

. . .
1

2+
1+ηθ

η

�

�0+
α
�

i=1

�i
�

j<i(1−�j)

�

Pηθ

= cB











k

η
α
�

j=0

(1− �j)

, 1+

1+ η
α
�

j=0

(1− �j)

η

�

�0 +
α
�

i=1

�i
�

j<i(1− �j)

�











,
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� �

Simulations
We have implemented our model using a custom-written Java program. The outputs of 
this program were used by a custom program written in python and based

pk ≈











k

η
α
�

j=0

(1− �j)











−









1+

1
η+

α
�

j=0

(1−�j )

�0+
α
�

i=1

�i
�

j<i(1−�j )









.

Fig. 5  Correlation between degree of organization and the number of members affiliated on simulated 
network

Fig. 6  Comparisons of degree–degree correlation between consecutive layers on real networks (Statistic 
dataset field in HAL) and simulations
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on the libraries: NetworkX2, Pymnet3 and powerlaw [49]; to make most of the meas-
urement on the generated networks. To generate the networks, we extracted parameters 
such as number of collaborations to generate, the affiliation vector and the distribution 
of numbers of actors by collaboration from the different fields of HAL dataset.

Fig. 7  Comparisons of the degree distributions on the different layers of real-world network (Chemistry field 
in HAL dataset) and generated network

Table 2  Parameters of the model

Designation Description

M Number of layers

Na Number of collaborations to generate

P The distribution of the number of actors per collaboration

Pi = probability to have i actors in a collaboration

V = {�0, �1, . . . , �M} Affiliation vector

2  https​://netwo​rkx.githu​b.io/.
3  http://peopl​e.maths​.ox.ac.uk/kivel​a/mln_libra​ry/.

https://networkx.github.io/
http://people.maths.ox.ac.uk/kivela/mln_library/
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The first behavior that we wanted to observe on the simulated networks is the cor-
relation between the in-layer degree of an organization and the number of members 
affiliated. Using linear regressions, we compared this correlation between real networks 
(Fig. 3) and the generated one (Fig. 5) and, it appears that, their values are close.

Figure 6 shows the comparison of degree–degree correlation between consecutive 
layers. Layer 0 is the collaboration network of researchers, layer 1 is the collaboration 
network of laboratories and the layers 2 the collaboration network of institutions. We 
can see that on real networks and simulations the curves can correctly be approxi-
mated using linear regression. The positive slopes of the obtained regression line 
mean that researchers, with high number of collaborations are affiliated to organiza-
tions with strong capacity of cooperation. This is easily explained on the simulations 
by the fact that, since a node is affiliated to a single organization, each time this node 
participates in collaborations, it induces participation in the collaborations of its affil-
iations organizations.

In Fig. 7, we have depicted the degree distributions of the different layers. We found 
that the simulations reproduce the power law distributions observed on the three 
layers of HAL dataset. Indeed, the exponent ( γ ) of the power law degree-distribu-
tion in Tables 1, 2 and  3 are close. From Table 3 we observe that, the simulated lay-
ers networks have very high clustering coefficients(C ≈ 0.80 ) and high transitivities 
( T ≈ 0.2 ). This behavior contributes to create high density and high average degree 

Table 3  Properties of  the  simulated networks layers: total number of  nodes n; total 
number of  edges m; mean degree d̄ ; mean node–node distance l; exponent γ of  degree 
distribution; clustering coefficient C; Transitivity T, Density δ

Chem, Info, Math, Phys, Shs, Sdu, Sdv, Stat are academic fields of the HAL dataset

Network n m d̄ l γ C T δ

Shs Researchers 3220 6409 3.98 4.53 2.41 0.65 0.19 0.0012

Laboratories 2591 6290 4.85 3.95 2.42 0.62 0.13 0.0018

Institutions 2291 6175 5.39 3.76 2.43 0.60 0.12 0.0023

Stat Researchers 3310 6879 4.15 5.53 2.40 0.80 0.34 0.0012

Laboratories 2066 6765 6.55 3.77 2.43 0.68 0.14 0.0031

Institutions 1363 6534 9.59 3.21 2.43 0.63 0.14 0.0070

Math Researchers 9137 15813 3.46 5.67 2.42 0.71 0.20 0.0003

Laboratories 7134 15732 4.41 4.61 2.43 0.65 0.11 0.0006

Institutions 5710 15607 5.46 4.07 2.43 0.62 0.08 0.0009

Sdv Researchers 34698 164777 9.49 5.45 2.43 0.90 0.57 0.0002

Laboratories 20154 163133 16.1 3.52 2.44 0.79 0.16 0.0008

Institutions 13656 157545 23.0 3.07 2.44 0.75 0.12 0.0016

Phys Researchers 29681 527031 35.5 3.32 2.44 0.89 0.32 0.0011

Laboratories 22775 512941 45.0 3.05 2.44 0.86 0.22 0.0019

Institutions 17647 482890 54.7 2.87 2.44 0.85 0.20 0.0031

Sdu Researchers 21878 117614 10.7 4.06 2.43 0.83 0.26 0.0004

Laboratories 7069 98700 27.9 2.86 2.44 0.75 0.18 0.0039

Institutions 2430 62543 51.4 2.52 4.43 0.80 0.39 0.0211

Chem Researchers 20603 92155 8.94 4.36 2.43 0.80 0.22 0.0004

Laboratories 15326 91388 11.9 3.65 2.44 0.76 0.11 0.0007

Institutions 11321 89263 15.7 3.26 2.44 0.73 0.10 0.0013
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in the affiliation layers in comparison with the current layer. So the density grows 
inversely than average distance. We can conclude that, the simulated networks layers 
are the small-world network.

Conclusion
In this article, we have shown that headers of scientific papers can be used to build co-
publication networks that are multilayered networks of entities involved in research 
namely: authors, laboratories, and institutions. Indeed, in addition to the collaborative 
relationships that exist between entities of each type, there are affiliation relationships 
of authors to laboratories and laboratories to institutions. We have analyzed the proper-
ties of such networks built from data extracted from the HAL platform which is a free 
archive of scientific publications.

Following the observations made on the properties of co-publications multilayer net-
works, we generalized these networks to a system of actors and organizations such that 
an actor is affiliated to an organization and each organization is affiliated with a higher 
level organization. We then said that the graphs are hierarchical and are deduced from 
the collaboration between the actors. The actors collaborate together and the relation-
ships in the different layers are deduced from these collaboration and their affiliation 
relationships. We proposed an algorithmic model to build graphs presenting such prop-
erties. It is an iterative model that builds a collaboration clique and related affiliations at 
each step. We showed that the degree distribution in different layers follows a power law 
and the simulations carried out showed that the studied properties of the generated lay-
ers are close to those of the the real-world network built from HAL dataset.

In the future, we are planning to explore the structure and dynamics of communities 
in such co-publication networks. Indeed, the high clustering coefficient and high tran-
sitivity in these graphs suggest the existence of many communities. Before doing this, 
we will verify the robustness of our model by using other scientific publications archives 
and perform a more accurate evaluation of the gaps between the values of the properties 
of the generated networks and those of real-world networks.
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