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Introduction
In computer science, there exist a large number of optimization problems defined on 
graphs, e.g., maximal independent set (MIS) and minimum vertex cover (MVC) prob-
lems [1]. In these problems, one is asked to give a largest (or smallest) subset of the 
graph under some constraints. In statistical physics, finding the ground state configura-
tion of spin glasses model where the energy is minimized is another type of optimization 
problems on specific graphs [2]. Obviously, in the field of network science, there are a 
great number of optimization problems defined on graphs abstracted from real-world 
networks. For example, modularity maximization problem [3] asks to specify which 
community one node belongs to so that the modularity value is maximized. According 
to the definition given in [4], these optimization problems can be categorized as limited 
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global optimization problem, since we want to find the global optimal point for our 
objective function. In general, the space of possible solutions of mentioned problems is 
typically very large and grows exponentially with system size, thus impossible to solve by 
exhaustion.

There are many algorithms for optimization problem. Coordinate descent algorithm 
(CD) which is based on line search is a classic algorithm and solves optimization prob-
lems by performing approximate minimization along coordinate directions or coordi-
nate hyperplanes [5]. However, it does not take gradient information into optimizing 
process and can be unstable on unsmooth functions. Particle swarm optimization (PSO) 
is another biologically derived algorithm that can be effective for optimizing a wide 
range of functions [6]. It is highly dependent on stochastic processes, and it does not 
take advantage of gradient information either. Other widely used methods such as simu-
lated annealing (SA) [7], genetic algorithm (GA) [8], and extremal optimization (EO) [9] 
are capable of solving various kinds of problems. However, when it comes to combinato-
rial optimization problems on graphs, these methods usually suffer from slow conver-
gence and are limited to system size up to thousand. Although there exist many other 
heuristic solvers such as local search [10], they are usually domain-specific and require 
special domain knowledge.

Fortunately, there are other optimization methods based on gradient descent that are 
able to work without suffering from these drawbacks. However, these gradient-based 
methods require the gradient calculation which has to be designed manually throughout 
the optimization process for each specific problems; thereafter, they lack flexibility and 
generalizability.

Nowadays, with automatic differentiation technique [11] developed in deep learn-
ing area, gradient descent-based methods have been renewed. Based on computational 
graph and tensor operation, this technique automatically calculates the derivative, so 
that back propagation can work more easily. Once the forward computational process 
is well defined, the automatic differentiation framework can automatically compute the 
gradients of all variables with respect to the objective function.

Nevertheless, there exist combinatorial optimization problems on graphs whose 
objective functions are non-differentiable; therefore, cannot be solved using automatic 
differentiation technique. Some other techniques developed in reinforcement learn-
ing area seek to solve the problems directly without training and testing stages. For 
example, REINFORCE algorithm [12] is a typical gradient estimator for discrete opti-
mization. Recently, reparameterization trick, which is a competitive candidate of REIN-
FORCE algorithm for estimating gradient, is developed in machine learning community. 
For example, Gumbel-softmax [13, 14] provides another approach for differentiable 
sampling. It allows us to pass gradients through sampling process directly. It has been 
applied on various machine learning problems [13, 14].

With reparameterization trick such as Gumbel-softmax, it is possible to treat many 
discrete optimization problems on graphs as continuous optimization problems [15] and 
apply a series of gradient descent-based algorithms [16]. Although these reinforcement 
learning and reparameterization tricks provide us a new way to solve discrete problems, 
when it comes to complicated combinatorial optimization problems on large graphs, the 
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performances of these methods are not satisfying, because they often stuck with local 
optimum.

Nowadays, a great number of hybrid algorithms taking advantage of both gradient 
descent and evolution strategy have shown their effectiveness over optimization prob-
lems [17, 18] such as function optimization. Other population-based algorithms [19] 
also show potential to work together with gradient-based methods to achieve better 
performance.

In this work, we present a novel general optimization framework based on automatic 
differentiation technique and Gumbel-softmax, including Gumbel-softmax optimiza-
tion (GSO) [20] and Evolutionary Gumbel-softmax optimization (EvoGSO). The original 
Gumbel-softmax optimization algorithm applies Gumbel-softmax reparameterization 
trick on combinatorial problems on graphs directly to convert the original discrete prob-
lem into a continuous optimization problem, such that the gradient decent method can 
be used. The batched version of GSO algorithm improves the results by searching the 
best solution in a group of optimization variables undergoing gradient decent optimi-
zation process in a parallel manner. The evolutionary Gumbel-softmax optimization 
method builds a mixed algorithm that combines the batched version of GSO algorithm 
and evolutionary computation methods. The key idea is to treat the batched optimiza-
tion variables—the parameters as a population, such that the evolutionary operators, 
e.g., substitution, mutation, and crossover, can be applied. The introduction of evolu-
tionary operators can significantly accelerate the optimization process.

We first introduce our method proposed in [20] and then the improved algorithm: 
evolutionary Gumbel-softmax (EvoGSO). Then, we give a brief description of four dif-
ferent optimization problems on graphs and specify our experiment configuration, 
followed by main results on these problems, compared with different benchmark algo-
rithms. The results show that our framework can achieve competitive optimal solutions 
and also benefit from time consumption. Finally, we give some concluding remarks and 
prospect of future work.

The proposed algorithm
In [20], we proposed Gumbel-softmax optimization (GSO), a novel general method for 
solving combinatorial optimization problems on graphs. Here, we briefly introduce the 
basic idea of GSO and then introduce our improvement: evolutionary Gumbel-softmax 
optimization (EvoGSO).

Gumbel‑softmax optimization (GSO)

Considering an optimization problems on graph with N nodes, each node can take K 
different values, i.e., selected or non-selected for K = 2 . Our goal is to find configuration 
s = (s1, s2, . . . , sN ) that minimizes the objective function. Suppose we can sample from 
all allowed solution space easily, we want those configurations with lower objective func-
tion to have higher probabilities p(s) . Here, p(s) is the joint distribution of solutions, 
which is the key for the optimization.

There are a large number of methods to specify the joint distribution, among which the 
mean field factorization is the simplest one. That is, we factorize the joint distribution of 
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solutions into the product of N independent categorical distributions [21], which is also 
called naive mean field in physics:

and the marginal probability p(si) ∈ [0, 1]K  can be parameterized by a set of parameters 
θi which is easily generated by Sigmoid or softmax function.

It is easy to sample a possible solution s according to Eq. 1 and then evaluate the objec-
tive function E(s; θ) . However, due to the non-differentiable nature of sampling, we 
cannot estimate the gradients of θ unless we resort to Monte Carlo gradient estimation 
techniques such as REINFORCE [12]. Gumbel-softmax [13], also known as concrete dis-
tribution [14], provides an alternative approach to tackle the difficulty of non-differenti-
ability. Consider a categorical variable si that can take discrete values si ∈ {1, 2, . . . ,K } . 
This variable si can be parameterized as a K-dimensional vector (p1, p2, . . . , pK ) where θi 
is the probability that θi = p(si = r), r = 1, 2, . . . ,K  . Instead of sampling a hard one-hot 
vector, Gumbel-softmax technique gives a K-dimensional sampled vector where the ith 
entry is:

where gi ∼ Gumbel(0, 1) is a random variable following standard Gumbel distribution 
and τ is the temperature parameter. Notice that as τ → 0 , the softmax function will 
approximate argmax function and the sampled vector will approach a one-hot vector. 
And the one-hot vector can be regarded as a sampled solution according to the distribu-
tion (p1, p2, . . . , pK ) , because the unitary element will appear on the ith element in the 
one-hot vector with probability pi ; therefore, the computation of Gumbel-softmax func-
tion can simulate the sampling process. Furthermore, this technique allows us to pass 
gradients directly through the “sampling” process, because all the operations in Eq. 2 are 
differentiable. In practice, it is common to adopt a annealing schedule from a high tem-
perature τ to a small temperature.

In a concise manner, we randomly initialize a series of learnable parameters θ which 
are the variables for optimization and the probabilities p are generated by Sigmoid func-
tion over these parameters. Then, we sample from p with Gumbel-softmax technique 
to get solutions and calculate objective function. Finally, we run back propagation algo-
rithm to update parameters θ . The whole process is briefly demonstrated in Fig. 1.

Parallel version of GSO

We point out that our method can be implemented in parallel on GPU: Nbs different 
learnable parameters θ can form a group which is called a batch. These parameters are 
initialized and optimized simultaneously. Therefore, we have Nbs candidate solutions in 
a batch instead of one. When the optimizing procedure is finished, we select the solution 
with the best performance from this batch. In such a way, we can take full advantage of 
GPU acceleration and obtain better results more likely.

(1)p(s1, s2, . . . , sN ) =

N
∏

i=1

pθ (si).

(2)p̂i =
exp

((

log (pi)+ gi
)

/τ
)

∑K
j=1 exp

((

log
(

pj
)

+ gj
)

/τ
)

for i = 1, 2, . . . ,K ,
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The whole process of optimization solution is presented in Algorithm (1). 

Algorithm 1: Gumbel-softmax Optimization (GSO)
Input: Problem size N , batch size Nbs, learning rate η, and Graph G for optimization.
Output: solution with the best performance
Initialize θ = (θ1, θ2, · · · , θN ) ∈ RNbs×N×K ;
repeat

s ← Gumbel-softmax sampling from pθ(pθ = Sigmoid(θ));
E ← E(s; θ);
Backpropagation;
θ ← θ − η ∂E

∂θ
;

until Convergence;
Select solution with the best performance;

Evolutionary Gumbel‑softmax optimization (EvoGSO)

In parallelized GSO, simply selecting the result with the best performance from the batch 
cannot take fully advantage of other candidates. Therefore, we propose an improved ver-
sion of algorithm called Evolutionary Gumbel-softmax optimization (EvoGSO) by com-
bining evolutionary operators and Gumbel-softmax optimization method. The key idea 
is to treat a batch as a population, so that we can perform population-based evolution 
strategies [19] to improve this algorithm.

Evolution strategy and evolution programming [22] have shown their capability of 
solving many optimization problems, and they bring diversity to the population and 
can potentially overcome the difficulty of local minima. In this work, we introduce two 
types of simple but effective operations to our original GSO algorithm: selective substi-
tution inspired by swarm intelligence and evolutionary operators from genetic algorithm 
including selection, crossover, and mutation.

Selective substitution

During the process of gradient descent, we replace the parameters of worst 1/u individu-
als with a series of alternative parameters every T1 steps. Where, the ratio of substitu-
tion 1/u and the evolution cycle T1 are hyper-parameters which are varying according to 
specific problems. The alternative parameters can be the parameters with the best per-
formance in the population, or the best ones with stochastic disturbance, or the ones 
randomly re-initialized in the problem domain [22]. This operation is particularly effec-
tive on population with high deviation and problems with severe local minima.

Parameter(θ) Probablility(p) Solution(s) Objective 
function

Sigmoid Gumbel-softmax

Back propagation

Fig. 1  Process of Gumbel-softmax optimization
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Selection, crossover, and mutation

When GSO reaches convergence where further optimized solutions cannot be found, 
we introduce these operators from the classic genetic algorithm to the population for 
the purpose of diversity and preservation of excellent genes (certain bits or segments 
of parameters). Here, we adopt roulette wheel selection, single-point crossover and 
binary mutation, as well as elitist preservation strategy [8]. Since this operation sig-
nificantly changes the structure of parameters which works against gradient descent, 
the good performance can be achieved if the evolution operators are implemented 
after each convergence and with cycle T2 long enough for the population to converge.

We present our proposed method in Algorithm (2). 

Algorithm 2: EvoGSO
Input: Problem size N , batch size Nbs, learning rate η, and Graph G for optimization.

Evolution cycle T , substitution ratio 1/u, mutation rate m.
Output: solution with the best performance
Initialize θ = (θ1, θ2, · · · , θN ) ∈ RNbs×N×K ;
repeat

s ← Gumbel-softmax sampling from pθ(pθ = Sigmoid(θ));
E ← E(s; θ);
Backpropagation;
θ ← θ − η ∂E

∂θ
;

do
select best 1/u solutions and worst 1/u solutions;
replace the parameters of the worst solutions by the parameters of the best solutions;

while Every T1 steps and the variance of populations is larger than the threshold ;
do

retain elite individuals;
perform crossover and mutation operation and replace parents;

while Every T2 steps after the first convergence of the gradient based steps;
until Convergence;
Select solution with the best performance;

In Table 1, we show a comparison between our proposed methods and some of the 
optimization algorithms mentioned in introduction section.

Table 1  Comparison between  our proposed methods and  some general optimization 
algorithms

Optimization algorithms Pros Cons

Genetic algorithm Population-based, easily implemented, 
commonly used on various problems

Do not use gradient information, do not 
scale well with complexity, unable to 
deal with constraints effectively

Simulated annealing Suitable for optimization problems 
where search space is discrete, unlikely 
stuck with local optimum

Do not use gradient information, slow 
convergence, limited to system size up 
to thousand

Greedy Fast and easily implemented, results are 
usually satisfying

It may fail to find global optimal on 
certain problems

GSO Taking advantage of gradient informa-
tion using relaxation techniques, with 
automatic differentiation technique, 
it is much more faster than classic 
algorithms

There is still room for improvement of 
the solution, because it may stuck with 
local optimum sometimes

EvoGSO Both gradient and population-based 
algorithm, with evolution strategy, it 
is able to overcome local optimum 
to some extent and obtain better 
solutions

Usually more time consumption than 
original GSO in exchange for better 
results
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Experiments
A simple example

To show the importance and the efficiency of combining evolutionary operators and 
gradient-based optimization method, we use a functional optimization problem as an 
example at first. We test the hybrid algorithm of evolutionary method and gradient-
based method on functional optimization problem for Griewank and Rastrigin functions 
(Fig. 2). These functions are classic test functions for optimization algorithms, since they 
contain lots of local minima, and the global minimum can be hard to find.

We run three different optimization algorithms on these functions: gradient descent 
(GD) with learning rate η = 0.01, GD with random initialization with cycle T = 1000 
and hybrid algorithm of GD and evolution strategy with population size Nbs = 64, 
evolution cycle T = 1000, and the substitution ratio 1/u = 1/4 (see Fig. 3a). In gra-
dient descent algorithm, candidates usually stuck in local minima after convergence 

a Rastrigin function  b Griewank function
Fig. 2  Images of two test functions

Fig. 3  a–e Five key frames that illustrate how four candidate individuals with different colors converge to 
the global minimum at (0, 0) under the hybrid algorithm on the contour of Griewank function. a The initial 
positions of the four candidates. b The positions of the four candidates after the first convergence of gradient 
decent but without evolutionary operation. c The positions of the four candidates after the first evolutionary 
operation. d The positions of the four candidates after the second evolutionary operation. e The final 
positions of the four candidates. The bar graph in f shows the number of global minimums found by GD, GD 
with random initialization, and GD with selective substitution algorithms in 100 instances, respectively
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(see Fig.  3b). After we add random initialization operation, candidates are able to 
jump out of these local minima and have more chance to find global minimum (see 
Fig. 3c, d). However, it is stochastic and candidates are unable to share information 
with each other. Finally, we test a hybrid algorithm of GD and evolution strategy. We 
adopt selective substitution operation inspired by swarm intelligence, in which candi-
dates are able to communicate, so that the good results can be preserved and inher-
ited (see Fig. 3e). Figure 3 illustrates five key frames on contour of Griewank function 
during the optimizing process of this hybrid algorithm and a comparison bar graph 
shows the number of global minimum found by different optimization algorithms in 
100 instances. We can clearly see that the hybrid algorithm outperforms its two com-
petitors and obtain global minimum more likely.

Combinatorial optimization problems on graphs

To further test the performance of our proposed algorithms, we conduct experi-
ments on different optimization problems on graphs. We perform all experiments on 
a server with an Intel Xeon Gold 5218 CPU and NVIDIA GeForce RTX 2080Ti GPUs. 
For comparison, we mainly test the three general optimization algorithms: extremal 
optimization (EO) [9], simulated annealing (SA) [7], and genetic algorithm (GA).

Modularity maximization

Modularity is a graph clustering index for detecting community structure in complex 
networks [23]. Suppose a graph G(V , E) is partitioned into K communities, the objec-
tive is to maximize the following modularity function, such that the best partition for 
nodes can be found:

where |E | is the number of edges, ki is the degree of node i, si ∈ {0, 1, . . . ,K − 1} is a label 
denoting which community of node i belongs to, δ(si, sj) = 1 if si = sj and 0 otherwise. 
Aij is the adjacent matrix of the graph. Maximizing modularity in general graphs is an 
NP-hard problem [24].

We use the real-world datasets that have been well studied in [3, 25, 26]: Karate, 
Jazz, C. elegans, and E-mail to test the algorithms. We run experiments on each data-
set with the number of communities Ncoms ranging from 2 to 20. We run 10 instances 
for each fixed Ncoms. After the optimization process for the modularity in all Ncoms 
values, we report the maximum modularity value Q and the corresponding Ncoms in 
Table 2. Our proposed methods have achieved competitive modularity values on all 
datasets compared to hierarchical agglomeration [25] and EO [26].

Figure  4 further shows the modularity value with different number of communi-
ties on C.elegans and E-mail. Comparing to GA and SA, our proposed methods have 
achieved much higher modularity for different number of communities.

(3)E(s1, s2, . . . , sN ) =
1

2|E |

∑

ij

[

Aij −
kikj

2|E |

]

δ(si, sj),
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Sherrington–Kirkpatrick (SK) model

SK model is a celebrated spin glasses model defined on a complete graph [27]. Each node 
represents an Ising spin σi ∈ {−1,+1} , and the interaction between spins σi and σj is Jij 
sampled from a Gaussian distribution N (0, 1/N ) , where N is the number of spins. We are 
asked to give an assignment of each spin, so that the objective function, or the ground state 
energy:

(4)E(σ1, σ2, . . . , σN ) = −
∑

1≤i<j≤N

Jijσiσj

Table 2  Results on modularity optimization

We report the maximum modularity value Q and the corresponding number of communities Ncoms in the form of 
(Q/Ncoms)

The best and the second best results are denoted in italic and asterisk, respectively
a  Configuration: batch size = 256, initial τ  = 0.5, final τ  = 0.1, learning rate = 0.01, instance = 10
b  Configuration: batch size = 256, initial τ  = 0.5, final τ  = 0.1, learning rate = 0.01, instance = 10, cycle T1 = 100, cycle T2 = 
5000, substitution ratio 1/u = 1/8, mutation rate m = 0.001, and elite ratio = 0.0625

Graph Size [25] EO [26] GSOa EvoGSOb

Karate 34 0.3810/2 0.4188*/4 0.4198/4 0.4198/4

Jazz 198 0.4379/4 0.4452/5 0.4451*/4 0.4451*/4

C.elegans 453 0.4001/10 0.4342*/12 0.4304/8 0.4418/11

E-mail 1133 0.4796/13 0.5738/15 0.5275/8 0.5655*/15

Fig. 4  Results on modularity optimization. In experiments, we suppose that the graph is partitioned into 
K communities with K ranging from 2 to 10 and report the maximum modularity value Q. We only perform 
experiments on two larger graphs: C.elegans and E-mail, since the sizes of karate and Jazz are too small. 
Experiment configuration: (GSO/EvoGSO): batch size = 256, initial τ = 0.5, final τ = 0.1, learning rate = 0.01, 
instance = 10, cycle T1 = 100, cycle T2 = 5000, substitution ratio 1/u = 1/8, mutation rate m = 0.001, elite 
ratio = 0.0625. (GA): population size = 64, crossover rate = 0.8, mutation rate = 0.001, and elite ratio = 0.125
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is minimized. It is also an NP-hard problem [2].
We test our algorithms on SK model with various sizes ranging from 256 to 8192. 

The state-of-the-art results are obtained by EO [9]. The results are shown in Tables 3 
and 4. From Table 3, we see that although EO has obtained lower ground state energy, 
it only reported results of system size up to N = 1024 , because it is extremely time-
consuming. In fact, the algorithmic cost of EO is O(N 4) . In the implementation of 
SA and GA, we set the time limit to be 96 h and the program failed to finish for some 
N in both algorithms. Although the results of SA are much better than GA, they are 
still not satisfying for larger N. For SK model, we adopt only selective substitution in 
EvoGSO.

We also compare Gumbel-softmax based algorithms with different batch sizes and 
the EvoGSO. From Table 4, we see that with the implementation of the parallel ver-
sion, the results can be improved greatly. Besides, the EvoGSO outperforms GSO for 
larger N.

Maximal independent set (MIS) and minimum vertex cover (MVC) problems

MIS and MVC problems are canonical NP-hard combinatorial optimization problems 
on graphs [1]. Given an undirected graph G(V , E) , the MIS problem asks to find the 
largest subset V ′ ⊆ V , such that no two nodes in V ′ are connected by an edge in E . 

Table 3  The results on  optimization of  ground state energy of  SK model compared 
to extremal optimization (EO), genetic algorithm (GA), and simulated annealing (SA)

The best results are denoted in italic. Corresponding standard error of the mean is given in brackets
a  Configuration: population size = 64, crossover rate = 0.8, mutation rate = 0.001, and elite ratio = 0.125
b  Configuration: initial τ  = 20, final τ  = 1, and learning rate = 1

N I EO [28] GAa SA GSO ( Nbs = 1)b

256 5000 −0.74585(2)/∼268 s −0.6800(3)/16.3 s −0.7278(2)/1.28 s −0.7267(2)/0.99 s

512 2500 −0.75235(3)/∼1.2 h −0.6580(3)/60.06 s −0.7327(2)/3.20 s −0.7405(2)/2.16 s

1024 1250 0.7563(2)/∼20  h −0.6884(4)/236.21 s −0.7352(2)/15.27 s −0.7480(2)/4.49 s

2048 400 – – −0.7367(2)/63.27  s −0.7524(2)/7.23 s

4096 200 – – −0.73713(6)/1591.93 s −0.7551(2)/10.46 s

8192 100 – – – −0.7562(1)/25.15 s

Table 4  The results on optimization of ground state energy of SK model

We show that the parallel version of our proposed methods and EvoGSO can greatly improve the performance

The best results are denoted in italic. The corresponding standard error of the mean is given in brackets.
a  Configuration: initial τ  = 20, final τ  = 1, and learning rate = 1
b  Configuration: initial τ  = 20, final τ  = 1, learning rate = 1, cycle T1 = 100, and substitution ratio 1/u = 1/8

N I GSO ( Nbs = 1)a GSO ( Nbs = 128)a EvoGSO ( Nbs = 128)b

256 5000 −0.7267(2)/0.99 s −0.7369(1)/0.96 s −0.7364(1)/0.89 s

512 2500 −0.7405(2)/2.16 s −0.7464(1)/2.14 s −0.7462(1)/2.01 s

1024 1250 −0.7480(2)/4.49 s −0.7521(1)/4.66 s −0.7516(4)/4.41 s

2048 400 −0.7524(2)/7.23 s −0.7555(2)/8.07  s −0.7557(1)/7.51 s

4096 200 −0.7551(2)/10.46 s −0.7566(5)/12.78  s −0.7569(3)/12.80 s

8192 100 −0.7562(1)/25.15 s −0.7568(8)/49.13 s −0.7578(5)/49.04  s
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Similarly, the MVC problem asks to find the smallest subset V ′ ⊆ V , such that every 
edge in E is incident to a node in V ′ . MIS and MVC are constrained optimization 
problems and cannot be optimized directly by our framework. Here, we adopt penalty 
method and Ising formulation to transform them into unconstrained problems.

We can place an Ising spin σi on each node and then define the binary bit variable 
xi = (σi + 1)/2 . Here, xi = 1 means that node i belongs to the subset V ′ and xi = 0 oth-
erwise. Thus, the Ising Hamiltonians for MIS problem is:

Similarly, the Ising Hamiltonians for MVC becomes:

where α > 0 . The first term on right-hand side is the number of selected nodes and the 
second term provides a penalty if selected nodes violate constraint. α is a penalty param-
eter and its value is crucial to the performance of our framework. If α is set too small, 
we may not find any feasible solutions. Conversely, if it is set too big, we may find lots 
of feasible solutions whose qualities are not satisfying. In this work, we set α to 3, which 
assures both quality and amount of feasible solutions.

We test our algorithms on three citation graphs: Cora, Citeseer and PubMed. Beyond 
the standard general algorithms like Genetic Algorithm and Simulating Annealing, we 
also compare with other deep learning-based algorithms including (1) Structure2Vec 
Deep Q-learning (S2V-DQN) [29]: a reinforcement learning method to address optimi-
zation problems over graphs, and (2) Graph Convolutional Networks with Guided Tree 
Search (GCNGTS) [30]: a supervised learning method based on graph convolutional 
networks (GCN) [31], as well as the well-known greedy algorithms on MIS and MVC 
problems like (3) greedy algorithm (Greedy) and Minimum-degree greedy algorithm 
(MD-Greedy) [32]: a simple and well-studied method for finding independent sets in 
graphs.

(5)E(x1, x2, . . . , xN ) = −
∑

i

xi + α
∑

ij∈E

xixj ,

(6)E(x1, x2, . . . , xN ) =
∑

i

xi + α
∑

ij∈E

(1− xi)(1− xj),

Table 5  Results on  MIS and  MVC problems compared to  classic methods and  supervised 
deep learning methods.1

The best and the second best results are denoted in italic and asterisk, respectively
a  Configuration: batch size = 128, fixed τ  = 1, learning rate = 0.01, α = 3, and instance = 20
b  Configuration: batch size = 512, fixed τ  = 1, learning rate = 0.01, α = 3, instance = 20, cycle T1 = 100, substitution ratio 
1/u = 1/8, cycle T2 = 10,000, mutation rate m = 0.001, and elite ratio = 0.0625

Graph Info Classic Supervised Proposed

Name Size MD-Greedy Greedy SA S2V-DQN GCNGTS GSOa/EvoGSOb

MIS Cora 2708 1451 672 1390 1381 1451 1443*

Citeseer 3327 1818* 1019 1728 1705 1867 1795

PubMed 19,717 15,912 5353 14,703 15,709 15,912 15, 886*

MVC Cora 2708 1257 2036 1318 1327 1257 1265*

Citeseer 3327 1509* 2308 1599 1622 1460 1533

PubMed 19,717 3805 14,364 5014 4008 3805 3831*
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We run 20 instances and report results with best performance. The results of MIS and 
MVC problems are shown in Table  5. Our proposed algorithms have obtained much 
better results compared to the classical general optimization methods including greedy 
and SA on all three datasets. Although our methods cannot beat MD-Greedy algorithm, 
they do not use any prior information about the graph. However, MD-Greedy requires 
to compute degrees of all nodes on the graph. Furthermore, we do not report the results 
of GA algorithm, because without heuristic and specific design, the general GA failed to 
find any feasible solution, since MIS and MVC are constrained optimization problems.

It is necessary to emphasize the differences between our framework and other deep 
learning-based algorithms such as S2V-DQN and GCNGTS. These algorithms belong 
to supervised learning, which thus contain two stages of problem solving: training the 
solver at first, and then testing. Although relatively good solutions can be obtained effi-
ciently, they must consume a great deal of time for training the solver and the qualities 
of solutions depend heavily on the quality and the amount of the data for training. These 
features can hardly extend for large graphs. Comparatively, our proposed framework is 
more direct and light weight; it contains only optimization stage. It requires no training 
part and has no dependence on data or specific domain knowledge at all; therefore, it 
can easily be generalized and modified for different optimization problems.

Influence maximization problem

Influence maximization is one of the most representative and attractive problems in 
computational social science. There are some classical models such as Independent 
Cascade(IC) and Linear Threshold(LT) as well as some innovative models such as the bi-
objective optimization model in [33]. However, these models often contain many indif-
ferentiable operations during the propagation process which can be very tricky for our 
proposed method to perform effectively. Therefore, we bring up a simple model to simu-
late the influence propagation, and the whole process is differentiable and Markovian, 
which is able to clearly demonstrate the performance of our method.

In this model, node’s value can be interpreted as how much it is influenced or the 
probability that it is activated in IC or LT model. The range is limited between 0 and 1. 
Message passing which occurs along existing social networks is continuously. That is, 
every node may forward messages to its neighbor on each time step. Each node receives 
and sends message to its neighbor at the same time. The amount of message that one 
node sends equal to its current value, and they are equally distributed to its neighbors.

With these assumptions, we can easily analog the propagation process by matrix mul-
tiplication of states’ vector X and a transfer matrix T. Obviously, such computation is 
differentiable. Therefore, we have:

However, we still need a penalty function to restrict the number of initial nodes. Here, 
we simply use a quadratic function with its minimum point num being the number of 
initial nodes we want and the coefficient α being a hyper-parameter that can be adjusted. 
The objective function is:

(7)X(t) = min(X(t − 1) . . .T , 1).
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We test our algorithms on four networks compared to SA and Greedy algorithms. The 
results are shown in Tables 6 and 7. Our method performs similarly as SA and Greedy 
methods on small graphs. On Karate network, our method obtains the global maximum, 
while Greedy failed. Although, on large graphs, our method usually performs not as well 
as Greedy, ours is much faster, because it does not go through the whole propagation 
process on each attempt like Greedy. These experiments on influence maximization 
problems aim not to defeat other algorithms, but to show the great potential on solving 
various social computational problems, for considerably less time consumption and rela-
tively satisfying results. 

Sensitivity analysis on hyper‑parameters

We also perform experiments to test how hyper-parameters in evolution operation 
affects the performance of our algorithms. We have tried different population size Nbs , 
evolution cycle T1 , and substitution ratio 1/u on SK model with 1024 and 8192 nodes. 
The default configurations are: initial τ = 20 , final τ = 1 , learning rate η = 1, Nbs = 128 , 

(8)E(x1, x2, . . . , xN ) = −

N
∑

i

xi(t)+ α(

N
∑

i

xi(0)− num)2.

Table 6  Results on influence maximization problems compared to classic methods

The best and the second best results are denoted in italic and asterisk, respectively
a  Configuration: batch size = 128, fixed τ  = 1, learning rate = 1, α = 5, instance = 10, and epoch = 2000

Graph Size Algorithm Number of initial nodes

1 2 3 4 5

Karate 34 Greedy 7.573 13.632* 18.438* 21.320* 23.446*

SA 7.573 13.770 18.467 21.843 24.205

GSOa 7.573 13.770 18.467 21.843 24.205

Jazz 198 Greedy 80.283 109.707 125.922 135.396 143.803

SA 80.283 109.707 125.922 135.396 143.803

GSOa 80.283 109.707 125.922 135.396 143.803

Email 1133 Greedy 19.392 34.859 50.322 65.774 81.137

SA 19.392 34.859 50.322 65.774 81.137

GSOa 19.392 34.859 50.317* 65.515* 80.576*

Government 7057 Greedy 4070.021 4507.093 4725.925 4869.137 5008.638

SA 4070.020 4296.233 4331.295 4375.324 4452.940

GSOa 4070.021 4433.256* 4639.054* 4788.753* 4905.063*

Table 7  Time consumption on influence maximization problems

The best results are denoted in italic
a  Configuration: batch size = 128, fixed τ  = 1, learning rate = 1, α = 5, instance = 10, and epoch = 2000

Graph Size Algorithm Number of initial nodes

1 2 3 4 5

Government 7057 Greedy 155.3 s 315.7 s 470.3 s 618.2 s 776.8 s

SA 3387.1 s 3432.5 s 3352.6 s 3468.2 s 3341.2 s

GSOa 38.6 s 40.8 s 38.4  s 41.6 s 41.0  s
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T1 = 100 , and 1/u = 1/8 , and then, we change one hyper-parameter every time for test. 
The results are shown in Fig. 5 . We can see that our framework shows different sensitiv-
ity to these hyper-parameters as they changes, and a relatively satisfying combination of 
hyper-parameters can be given from this research.

Conclusion
In this work, we present a simple general framework for solving optimization problems 
on graphs. Our method is based on advanced automatic differentiation techniques and 
Gumbel-softmax technique which allows the gradients passing through sampling pro-
cesses directly. We assume that all nodes in the network are independent, and thus, 
the joint distribution is factorized as a product distributions of each node. This enables 
Gumbel-softmax sampling process efficiently. Furthermore, we introduce evolution 
strategy into our framework, which brings diversity and improves the performance of 
our algorithm. Our experiment results show that our method has good performance 
on all four tasks and also take advantages in time complexity. Comparing to the tradi-
tional general optimization methods such as GA and SA, our framework can tackle large 
graphs easily and efficiently. Though not competitive to state-of-the-art deep learning-
based method, our framework has the advantage of requiring neither training the solver 
nor specific domain knowledge. In general, it is an efficient, general, and lightweight 
optimization framework for solving optimization problems on graphs.

However, there is much space to improve our algorithm on accuracy. In this paper, we 
take the mean field approximation as our basic assumption; however, the variables are 
not independent on most problems. Therefore, much more sophisticated variational dis-
tributions can be considered in the future. Another way to improve accuracy is to com-
bine other skills such as local search in our framework. Since our framework is general 

Fig. 5  Results on hyper-parameters tuning of population size Nbs , evolution cycle T, and substitution ratio 
1/u on SK model with 1024 and 8192 nodes. Experiment configuration: initial τ = 20 , final τ = 1 , and learning 
rate η = 1. The results are averaged for 1250 instances with 1024 nodes and 100 instances with 8192 nodes, 
respectively
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and requires no specific domain knowledge, it shall be tested for solving other complex 
optimization problems in the future.

Abbreviations
GSO: Gumbel-softmax optimization; EvoGSO: Evolutionary Gumbel-softmax optimization.
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