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Abstract

Socio-technical systems usually consist of many intertwined networks, each connecting
different types of objects or actors through a variety of means. As these networks are
co-dependent, one can take advantage of this entangled structure to study interaction
patterns in a particular network from the information provided by other related
networks. A method is, hence, proposed and tested to recover the weights of missing
or unobserved links in heterogeneous information networks (HIN)—abstract
representations of systems composed of multiple types of entities and their relations.
Given a pair of nodes in a HIN, this work aims at recovering the exact weight of the
incident link to these two nodes, knowing some other links present in the HIN. To do so,
probability distributions resulting from path-constrained random walks, i.e., random
walks where the walker is forced to follow only a specific sequence of node types and
edge types, capable to capture specific semantics and commonly called a meta-path,
are combined in a linearly fashion to approximate the desired result. This method is
general enough to compute the link weight between any types of nodes. Experiments
on Twitter and bibliographic data show the applicability of the method.

Keywords: Heterogeneous information network, Random walk, Link weight,
Regression model

Introduction
Networked data are ubiquitous in real-world applications. Examples of such data are
humans in social activities, proteins in biochemical interactions, pages of Wikipedia or
movies-users from Amazon just to name a few [1,2]. These are abstracted by a network
where nodes represent the entities (e.g., individuals or pages) of the examined system
whilst (directed) links stand for existing physical or virtual ties between them. Weights
can also be put on the links to state, for instance, their importance [3,4]. In some cases, the
nodes and/or the links are of different nature. For example, in social activities, the links can
reflect online or offline communication or more obviously, in the movie-user case, nodes
represent two different objects. Taking these differences explicitly into account in the
modeling can only enrich the understanding of the inspected system.Thus, heterogeneous
information networks (HIN), abstract representations of systems composed of multiple
types of entities and their relations, are good candidates to model such data together with
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their relations, since they can effectively fuse a huge quantity of information and contain
rich semantics in nodes and links.
In the last decade, the heterogeneous information network analysis has attracted a

growing interest and many novel data mining tasks have been designed in such networks,
such as similarity search, clustering, classification and link prediction [5]. The latter can
sometimes refer to the term recovery, in the sense that links already exist but are missing
or imperfectly observed in the data. This could be due to sampling or depending on the
system under scrutiny, due to node/agent’s voluntary decision not to give access to all
their data (e.g., online social apps). Whatever the reason, capturing the presence of a
link is sometimes not enough sufficient. For instance, in a social network, knowing two
individuals are linked does not say anything about the frequency of their communication
or the strength of their friendship. Hence, recovering the actual link weight can bring
useful information as for instance, in recommendation systems where the weight can be
taken for the “rating” a user would give to an item [6,7]. The goal of this work is to recover,
for a given pair of nodes in a weighted HIN, the actual incident link weight to these two
nodes, knowing some other links present in the HIN.
Link prediction can be related to node similarity problem [8–13]. Indeed, the similarity

score between two nodes resulting from a particular function of these two nodes, can
be seen as the strength of their connection. Here, this function is related to particular
random walks on the graph and so, to the probabilities of reaching one node through
different paths, starting from another.
In HIN, most of similarity scores [14,15] are based on the concept of meta-path. In

simple terms, this corresponds to a concatenation of node types linked by corresponding
link types and the type of a node/link is basically a label in the abstract representation.
Meta-paths can be used as a constraint to a classic random walk: the walker is allowed to
take only paths satisfying a particular meta-path. These path-constrained random walks
have the sensitivity to explicitly take into account different semantics present in HIN. For
instance, in a bibliographic network, one can distinguish four types of entities: Authors
(A), Papers (P), Venues (V) and Topics (T). Starting from a particular paper, if a walker
follows the meta-path PVP, he is likely to end to any another paper published in the same
venue than the first. Now, if he follows the meta-path PTP, the ending paper will be about
the same topic. Even if the starting and ending papers are the same, the semantics behind
may be radically different.
Back to our goal, we can see it as a (linear) regression problemwhere the aim is to recover

the link weight, i.e., a continuous value. This is one step further compared with traditional
work that mainly treat this problem as a classification one, where the goal is to infer the
presence of a link, or as solely a similarity problem,where no explicit relation is established
between the similarity and the weight of the link. This means that the target link weight
between a pair of nodes is approximated by a linear combination of probabilities, which
results from path-constrained random walks performed on the HIN. These probabilities,
thus, translate the fact of being at a particular node starting from another one and are
the regressors of the linear regression. The linear combination is constructed step by step
(by maximizing a specific function), thus facilitating the understanding of the final model
as well as its interpretation. The weighting is, therefore, the result of an optimization
problem, and not that of the user’s choice, as it is often the case when one wants to
integrate several meta-paths into a single score.
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To make recovery tasks, data are commonly split into two sets: training set and test set.
The proposed method aims at finding a relevant set of meta-paths together with their
coefficient such that the difference between the exact link weight and its approximation
is minimized. Obtained coefficients are then tested on the test set to validate the method.
The rest of the paper is organized as follows. In “Preliminary concepts” section, some

basic concepts about HIN are presented and the problem statement is exposed. We
then review some related work in “Related work” section. “Method” section explains
our method and we apply it on empirical data in “Experiments” section. First, in “FIFA
WorldCup 2014 Twitter data” section. the method is tested to recover the link weights
between entities of different types into Twitter data. Then, in Sec. “Bibliographic Data”, it
is applied on bibliographic data where the target nodes are of the same type.1 We finally
conclude and discuss some perspectives in “Summary and discussion” section.

Preliminary concepts
In this section, we present some concepts of weighted HIN useful for the following and
define the “weight recovery” problem. Fig. 1 illustrates this section.

Definition 1 (Weighted directed graph) A weighted directed graph is a 5-tuple G :=
(V, E, w,μs,μt ) with V being the node set, E the link multiset, w : E → R

+ the function
that assigns to each link a real non negative weight, μs : E → V the function that assigns
to each link a source node, μt : E → V the function that assigns to each link a target
node.

This concept allows us to introduce the definition of HIN which basically is a weighted
directed graph with multiple types of nodes and links.

Definition 2 (Heterogeneous Information Network) A HIN H := (G,V , E ,φ,ψ) is a
weighted directed graph G along with V being the node type set, E the link type set,
φ : V → V the function that assigns a node type to each node and ψ : E → E
the function that assigns a link type to each link such that if two links belong to
the same link type, the two links share the same starting and target node type, i.e.,
∀ e1, e2 ∈ E,

(
ψ(e1) = ψ(e2)

) ⇒ (
φ(μs(e1)) = φ(μs(e2)) ∧ φ(μt (e1)) = φ(μt (e2))

)
.

Note also that if two links are of the same type and connect the same two nodes, they
are in fact only one with a certain weight.
Fig. 1a illustrates such a network composed of five node types and twenty link types.

However, disentangling the different entities present in the HIN is not necessarily a trivial
task. Indeed, it sometimes takes a broader view of the system in question to describe it.
For that purpose, the concept of network schema, i.e. the meta level description of the
HIN, is proposed. In simple terms, this corresponds to the graph defined over the node
and link types of the associated HIN. It is represented in Fig. 1b.

Definition 3 (HIN Schema) Let H be a HIN. The schema TH for H is a directed graph
defined on the node types V and the link types E . Formally, TH := (V , E , νs, νt ) with

1 Compared to the preliminary version presented in [16], this paper confronts the results with other similarity measures
present in the literature as discussed in “Using other similarity measures” section (see “Experiments” section), and
investigates the applicability of the proposed method on another dataset of a totally different nature and semantics (see
in particular Sec.“Bibliographic Data”), allowing to refer to other structural objects in graphs, that is to say: motifs.
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a b c

Fig. 1 a Example of HIN composed of multiple node types, represented by diverse shapes, an multiple link
types. Nodes are already grouped by shapes. b Its associated network schema composed by five nodes and
twenty links. Each node corresponds to a set of nodes in the corresponding HIN. In the same way, each link is
a set of links in the corresponding HIN. See for instance the paths and meta-path of length two in blue
� → � → �; the blue paths are said to satisfy the blue meta-path. c Illustration of the problem statement.
For each pair of nodes in (�,�), there is possibly a link connecting them. The link weight is approximated by a
linear combination of the path-constrained random walk results, i.e., probability distributions of being at a
particular node. Roughly speaking, the probabilities resulting from the random walk constrained by the target
meta-path Ec = � → �, denoted by PCRW(Ec ), are expressed as a linear combination F of probabilities
resulting from the random walks constrained by three different meta-pathsP1 = � → � → �,
P2 = � → � → �,P3 = � → � → � → �, denoted by PCRW(P1), PCRW(P2) and PCRW(P3),
respectively, whose real-valued coefficients are βP1 ,βP2 and βP3 , respectively, plus a possible independent
term β0, that is to say F((�,�);EP ) = β0 + ∑

P∈EP βP PCRW(P ). One can see that other meta-paths exist
between nodes in (�,�). The problem is to identify the “best” EP and a linear function F with respect to
PCRW(Ec )

νs : E → V : E∗ �→ νs(E∗) := φ
(
μs(e)

)
the function that assigns each link a source node

and νt : E → V : E∗ �→ νt (E∗) := φ
(
μt (e)

)
the function that assigns each link a target

node, where e ∈ E such that ψ(e) = E∗.

Note that we can effectively take any such element e ∈ E since {e ∈ E |ψ(e) = E∗} is
the equivalence class of any of its elements, with the equivalence relation “has the same
type of”. By definition of HIN, it is sufficient to take one member of the equivalence class
to know the node types that the link type E∗ connects.
Two entities in a HIN can be linked via different paths and these paths have different

semantics. These paths can be defined as meta-paths as follows.

Definition 4 (Meta-path [5]) A meta-path P of length n ∈ N is a sequence of node
types V0, · · · , Vn ∈ V linked by link types E1, · · · , En ∈ E as follows: P = V0

E1−→
V1 · · · Vn−1

En−→ Vn which can also be denoted as P = E1E2 · · ·En.

Given a meta-path P = V0
E1−→ V1 · · · Vn−1

En−→ Vn and a path P = v0
e1−→

v1 · · · vn−1
en−→ vn, if ∀ i ∈ {0, ..., n}, φ(vi) = Vi, ∀ i ∈ {1, ..., n}, μs(ei) = vi−1, μt (ei) = vi

andψ(ei) = Ei, then path P satisfies meta-pathP and we note P ∈ P . Hence, a meta-path
is a set of paths.

OnedenotesbyP−1 the inversemeta-pathofP , i.e.,P−1 = Vn
E−1
n−−→ Vn−1 · · · V1

E−1
1−−→

V0. The link type E−1
i is the inverse of Ei: when it links the same node types, it is equal

to itself, E−1
i = Ei while when the node types are different, the associated semantic is the

inverse in term of “active/passive”.
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In Fig. 1b, an example of meta-path is � → � → �, in blue, in the network schema.
Blue paths in the HIN in Fig. 1a are said to satisfy this meta-path since each one of their
segments respects the aforementioned conditions.

Problem 1 (Weight recovery) Let be a HIN H = (G,V , E ,φ,ψ), with G = (V, E, w,μs,μt )
a directed and weighted graph, and a target link type Ec between two node types. The
“weight recovery problem” is to find a set of relevant meta-paths EP and a linear function
F of probabilities resulting from random walks constrained by these meta-paths that best
quantifies, for each pair of nodes in H, the strength of their connection via the target link
type Ec.

Related work
Compared to previous work, which usually focuses on undirected and binary graphs, the
approach we present addresses the recovery of directed and weighted links in HIN. To
this end, our regression model directly estimates the weight of links without computing
any intermediate ranking on these links, or applying any threshold to reduce the recovery
task to binary graphs.
As previously explained, our work is based on node similarity measures and thus, is

also related to link prediction [8–13]. Similarity measures and link prediction have been
extensively studied in the past few years and for a deeper review of them, see [17,18].
Nonetheless, one often roughly differentiates two kinds of approaches: unsupervised ver-
sus supervised. For the first category, one often proposes different similarity measures
based upon either node attributes or the topology of the underlying graph. One can fur-
ther distinguish local from global indices. Local indices makes use of local neighborhood
information, e.g., Adamic-Adar index, Common Neighbor or Preferential Attachment
Index, Ressource Allocation just to name a few. By contrast, global indices are based on
global properties such as paths. These encompass Shortest Path, Katz or measures using
randomwalks, e.g., RandomWalk with Restart, PageRank, Hitting Time, Commute Time
and so on. Based on these aforementioned features, a plethora of supervisedmethods have
been conceived to predict links. Amongst them, one distinguishes feature-based classifi-
cation [19,20] from probabilistic model [21,22] and matrix factorization [23]. However,
all these measures are mostly used in homogeneous networks.
Recently, several measures have tackled the problem of node similarity in HIN which

takes into account not only the structure similarity of two entities but also the meta-paths
connecting them. Amongst these measures, PathCount (PC [15]) and Path Constrained
Random Walk (PCRW [14]) are the two most basic and gave birth to several extensions
[24–27].
Methods related to PC are based on the count of paths between a pair of nodes, given a

meta-path. PathSim [28] measures the similarity between two objects of same type along
a symmetric meta-path which is restrictive since many valuable paths are asymmetric
and the relatedness between entities of different types is not useless. Twomeasures based
on it [29,30] incorporate more information such as the node degree and the transitivity.
However, all these methods have the drawback of favoring highly connected objects since
they deal with raw data.
Methods related to PCRWare based on randomwalks and so the probability of reaching

a node from another one, given a meta-path. Considering a random walk implies a nor-
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malization and, depending on the data, offers better results. An adaptation, HeteSim [31],
measures themeeting probability between two walkers starting from opposite extremities
of a path, given a meta path. However, this method requires the decomposition of atomic
relations for odd-lengthmeta-paths. This decomposition allows the walkers tomeet at the
middle of themeta-path and at the same node type but it is very costly for large graphs. To
address this issue, AvgSim [32] computes the similarity between two nodes using random
walks conditioned by a meta-path and its inverse. But it is mostly appreciated in undi-
rected networks since in these cases, it is just as sensible to walk a path in one direction
as in the other.
In these cited works, when the similarity scores are used for link prediction/detection,

the scores are ranked and then, the presence of links is inferred based on this ranking.
Also some work try to (manually) combine meta-paths but the target values to recover
are binary; the networks are unweighted, making the problem a classification one. At
variance with these works, we set ourselves in the general framework of directed and
weighted HINs. We do not use any ranking or threshold but take directly the similarity
measures obtained by means of an adequate combination of PCRWs as link weights.
This combination is constructed step by step, allowing one to follow its evolution and,
hence, facilitating the understanding of the final result. This allows not only to perform
description tasks but also, to some extent, recovery tasks.
Other work with similar objectives to those pursued here are those relating to rec-

ommendation systems. These are software tools and techniques providing suggestions
for items to be of use to a user [33]. They are often based on one of the following two
paradigms [34–36]: collaborative filtering [37] or content-based filtering [38]. Due to the
richness (e.g., dimension) of many networked data, it is sometimes difficult to use them
directly for recommendation (or any other data mining task). Recently, network embed-
ding [39,40], the approach of learning latent low-dimensional feature representations for
the nodes or links in a network, has been successfully applied in a myriad of tasks and,
in this case, recommendation [36]. However, a disadvantage of node embedding is that
we lose some of the interpretability/explanability of the original data, which is a main
objective in the present work. Most of the embedding methods focus on homogeneous
information netoworks. However, very recently, some work propose methods to analyze
heterogeneous networks [41–43]. To combine these ideas, Shi et al. have proposed a het-
erogeneous network embedding based approach for HIN based recommendation, HERec
[44]. Meaningful node sequences for network embedding are generated by a meta-path-
based randomwalk strategy and are then integrated into an extendedmatrix factorization
method.

Method
We present our method for solving Problem 1 in three steps. Consider a HIN and let us
denote by Ec the target link type defined between V0 and Vn. We consider a meta-path
P = V0

E1−→ V1 · · · Vn−1
En−→ Vn different from Ec. There may be repetitions in this

sequence of nodes and links. Let us introduce the notation P ≡ P0,n and let us denote by
Pa,b the truncated meta-path of P from node type Va to Vb.
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Path-constrained randomwalk

Let Xi ∈ Vi be a random variable representing the position of a random walker in the
set Vi. A random walk starting from X0 constrained by the meta-path P corresponds to
a discrete-time Markov chain, i.e., a sequence of random variables X0, X1, ..., Xn with the
Markov property: ∀ i ∈ {0, ..., n}, ∀ (v0, ..., vn) ∈ V0 × ... × Vn,

P(Xi = vi |Xi−1 = vi−1, ..., X0 = v0) = P(Xi = vi |Xi−1 = vi−1).

Here, since theremay bemore than one link type between two node types, we introduce
the notation P((Xi = vi |Xi−1 = vi−1) |P i,i+1) =: P((vi | vi−1) |P i,i+1) = P((vi | vi−1) |Ei)
to emphasize the fact that the randomwalk is constrained by themeta-pathP . Thismeans
that for a walker to reach vi from vi−1, he has to follow only links of type Ei ≡ P i,i+1. The
probability P((vi | vi−1) |Ei), thus, defined is computed as

P((vi | vi−1) |Ei) = wEi (vi−1, vi)∑
k wEi (vi−1, vk )

, (1)

where wEi (vj, vk ) is the link’s weight of type Ei between nodes vj and vk , i.e., wEi (vj, vk ) =
w(e) such that e ∈ E,ψ(e) = Ei,μs(e) = vj and μt (e) = vk .
Thenceforth, given vn ∈ Vn and v0 ∈ V0, the probability of reaching vn from v0 following

the meta-path P , denoted by P((vn|v0) |P), is simply defined by the random walk starting
at v0 and ending at vn following only paths satisfying P . This conditional probability
may be expressed recursively (and by making use of eq. (1)) by means of the law of total
probability

P((vn|v0) |P) =
∑

vn−1∈Vn−1

[
P

(
(vn|vn−1) |En

)
× P

(
(vn−1|v0) |P0,n−1

)]

=
∑

vn−1∈Vn−1

[
wEn (vn−1, vn)∑
k wEn (vn−1, vk )

× P

(
(vn−1|v0) |P0,n−1

)]
, (2)

with P((v1|v0)|P0,1) = wE1 (v0, v1)/
∑

k wE1 (v0, vk ) the basis of recurrence. In the follow-
ing, we use the notation PCRW(P) to denote the column vector of such conditional
probabilities P((vn|v0) |P), ∀ v0, vn.
For instance, in the HIN in Fig. 1a, the probability for a walker to reach the green star
from the green square following the meta-path � → � → � equals 5/12.
Note that we forbid the walker to return to the initial node on the penultimate step of

the walk, i.e., if Vn−1 = V0, the sum in eq. (2) only holds for all vn−1 
= v0. When training
the model, we indeed need to remove from the data the pieces of information (links) we
aim to predict, before actually applying and evaluating the prediction scheme. In other
words, a link cannot be used to predict itself.

Remark 1 (Hole nodes) It is possible that a node vi ∈ Vi is not connected to any node vj ∈
Vj by the link type Eij and thus, the transition probability is not defined. To overcome this
problem, we provide each set Vk with a hole node hk on which point all the disconnected
nodes. Plus, all the holes are connected with each other and holes cannot point to another
node (i.e., no hole node). Formally, ∀Vk ∈ V , V h

k := Vk ∪ {hk}. ∀Eij ∈ E , if wEij (vi, vj) =
0, ∀ vj ∈ Vj then wEij (vi, hj) = 1, otherwise wEij (vi, hj) = 0. Furthermore, ∀Eij ∈ E ,
wEij (hi, hj) = 1 and

∑
vj∈Vj

wEij (hi, vj) = 0. In this fashion, transition probabilities are
always well defined.
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Linear regression model

SinceH is a HIN, multiple types of links can connect the nodes. Hence, there is no reason
to restrict ourselves to a single meta-path to compute the reachability of one node from
another. As a result, the similarity between vn and v0 is defined by several path-constrained
random walk results combined through a linear regression model of the form

F ((vn|v0) | EP ) := β0 +
∑

P∈EP
βP P((vn|v0) |P) (3)

where EP is the set of selected meta-paths and the vector β := [β0,β1, · · · ,β|EP |]T is real-
valued coefficients. The coefficients stress the contribution of each meta-path in the final
similarity score F ((vn|v0) | EP ). Since the components of β are not confined in [0,1] and
do not sum to 1, i.e., not a convex combination, F is a real-valued function whose image
is neither confined in [0,1].
Now,wehave a linear regression problem sincewewant to recover the exact linkweights

with respect to Ec. The dependent variable is, thus, PCRW(Ec) whilst the predictors are
PCRW(P), P ∈ EP . The choice of linear model is simply motivated by its interpretability
in our particular case. Given example node pairs and their link weights, β is estimated
by the least squares method which is appreciated for its applicability and simplicity. In
formulae, with 1 the column vector whose entries are 1:

PCRW(Ec)
↓

⎡

⎢⎢⎢
⎢⎢
⎣

⎤

⎥⎥⎥
⎥⎥
⎦

PCRW(Ec) =

1 PCRW(P0) . . .

↓ ↓ ↓
⎡

⎢⎢⎢
⎢⎢
⎣

⎤

⎥⎥⎥
⎥⎥
⎦

PCRW(EP )

⎡

⎢⎢⎢
⎢⎢
⎣

⎤

⎥⎥⎥
⎥⎥
⎦

β +

⎡

⎢⎢⎢
⎢⎢
⎣

⎤

⎥⎥⎥
⎥⎥
⎦

ε =
[
F (EP )

]
+

[
ε

]

and we choose β̂ such that the residual sum of squares RSS = εT ε = ‖ε‖2 is minimized.

Forward selection procedure

To determine the set EP , we use the forward selection with p-value and r2 criteria. This
is a greedy approach but very simple and intuitive. The p-values are used to test the
significance of each predictor. Given the hypothesis H0 : β = 0 against the hypothesis
H1 : β 
= 0, the p-value p is the probability, under H0, of getting a statistics as extreme
as the observed value on the sample. We reject the hypothesis H0, at the level α, if p ≤ α

in favor of H1. Otherwise, we reject H1 in favor of H0. Conversely, the r2 score is used to
test the quality of the entire model. It is the proportion of the variance in the dependent
variable that is predictable from the predictors. Note that the r2 = 1-RSS/TSS where TSS
is the total sum of squares, i.e., is the sum of the squares of the difference of the dependent
variable and its mean. Hence, maximizing the r2 is equivalent to minimizing the RSS.
So, given k predictors or explanatory variables which are the probability distributions

PCRW(Pk ), the forward selection procedure works as follows

• Start with a null model, i.e., no predictor but only an intercept. Typically, this is the
average of the dependent variable;
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• Try k linear regressionmodels (i.e.,modelswith only one predictor) and chose the one
which gives the bestmodel with respect to the criterion. In our case, the one thatmin-
imizes RSS or alternatively, the one that maximizes the coefficient of determination
r2;

• Search among the remaining variables the one that, added to the model, gives the
best result, i.e., the higher r2 such that all the variables in the model are significant,
i.e., their p-value is below the chosen threshold. Iterate this step until no further
improvement.

Note that by proceeding in this way, and contrary to meta-path fusion methods such as
in [44], we can easily check the significance of each explanatory variable, which ultimately
means testing the significance of eachmeta-path in the final model, not just their weights.
Finally, it should be mentioned that this method contains very few parameters, which is
appreciable since parameter tuning always depends on the data under consideration.

Validation

Since we would like to use the regression model as a prediction model (i.e., not only
a descriptive one), we use Monte Carlo cross-validation a.k.a. repeated random sub-
sampling validation [45]. Given a dataset of N points, the method simply splits them
into a training subset st and a test subset sv . The model is then trained on st and tested on
sv . This procedure is repeated multiple times and the results are then averaged over the
splits. Note that the results ofMonte Carlo cross-validation tend towards those of leave-p-
out cross-validation [46] as the number of random splits tends to infinity. The drawbacks
of thismethod are the possibility that someobservationsmay never be selected for training
or on the contrary, may be used at each split. Plus, the results depend on the different ran-
dom splits, i.e., it displays Monte Carlo variation. However, it has advantage (over k-fold
cross validation [46]) as the proportion of the split is independent of the folds (iterations).
It means Monte Carlo allows to explore somewhat more possible partitions, though one
is unlikely to get all of them since there exist Cst

N unique training subsets.

Remark 2 (Division of a node type) Given a HIN H with V = {V1, ..., Vk , ..., Vm} the set
of node types with Vk = {Vk,1, ..., Vk,q}, one can want to understand the “role” of each
Vk,r . Let two node types Vi and Vj (not necessarily distinct) be the target node types and
EP the set of meta-paths. Plus, let Vi and Vj be linked by a specific meta-path including
the node type Vk , namely, P = Vi · · · ek−→ Vk · · · ej−→ Vj with P ∈ EP . We can, thus,
construct q subsets Si,r = {vi ∈ V |φ(vi) ∈ Vi ∧ ∃P = vi · · · ek−→ vk,r · · · ej−→ vj} and
q subsets Sj,r = {vj ∈ V |φ(vj) ∈ Vj ∧ ∃P = vi · · · ek−→ vk,r · · · ej−→ vj} (r = 1, .., q)
such that with vk,r ∈ Vk,r ⊆ Vk (vj ∈ Vj and vi ∈ Vi resp.) and P ∈ P . We can,
thus, build q linear regression models: one for each HIN Hr formed from the node set
{
v ∈ V |φ(v) ∈ V \ {Vk, Vi, Vj}

}∪ {Si,r , Sj,r} with meta-paths EP \P . Analyzing the vector
β̂ of each final model can bring some insight about the “role” of each Vr .

Using other similarity measures

Until now, we directly take the probabilities resulting from random walks to compute the
similarity between nodes (eq. (2)). However, this is only one possible example of similarity
measure andmany others could be usedwithin the same framework. In particular, one can
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cite the following twomeasures, often used for comparison in otherworks and appreciated
for their wide applicability (see Sec. for a more extensive review of the literature on this
matter):

• Path Count (PC [15]): instead of computing the probability (i.e., normalizing), one
only considers the number of paths linking two nodes. In our case, we consider
the weighted paths. More precisely PC((vi | vi−1) |Ei) = wEi (vi−1, vi), and eq. (2) is
modified according to this. Note however it is no longer a probability and so, eq. (2)
is rather PC((vn|v0) |P);

• AvgSim (AS [32]): it is the average of two probabilities from two path-constrained
random walks where paths are the opposite of each other: AS((vn|v0) |P) =
[P((vn|v0) |P) + P((v0|vn) |P−1)]/2.

In this fashion, one can replace in the eq. (3), the probabilityP((vn|v0) |P) by the similar-
ity measures defined just above. Indeed, one can appreciate the generality of the proposed
framework by considering other similarity measures.
This way, we want to insist on the fact that the interest of this method is not so much

the fact of considering a particular way of calculating the similarity between two nodes
but rather its progressive construction of a model which integrates the meta-paths one by
one, allowing one to follow the evolution and clearly understand the final result. Plus, the
obtained similarities are used to infer the weights of links, not their mere presence or a
simple ranking tasks.
In the following, unless stated otherwise, the results are obtained with the simple path-

constrained randomwalks, i.e., eq. (2). This ismotivated by the simplicity of interpretation
in terms of probabilities and the analogy with a random surfer, abundantly used in the
literature and in many contexts.

Experiments
We test the proposed methods on two real-world datasets. The first one, related to FIFA
WorldCup2014Twitter data, allowus toperform tests between target nodeswithdifferent
types. The task consists in recovering the user-hashtag frequency. The second data set,
related to bibliographic data, focus on target nodes of the same types and tackles the
problem of co-authorship.

FIFAWorldCup 2014 Twitter data

We present the dataset on which we test the proposed method as well as the construction
of the resulting graphs. Then, we report our results concerning different tests namely, the
importance of meta-path length, a description task and eventually a recovery task.

Dataset description and setup

The data we use are a set of tweets collected from Twitter during the Football World
Cup 2014. This period extends from June 12 to July 13, 2014. Twitter allows multiple
kinds of interactions between its users. Here, we consider retweet (RT), reply (RP) and
mention (MT) actions plus the fact of posting hashtags (UH). The RT relationship means
that a user broadcasts a tweet previously posted by another user. The RP action is simply
a response tweet to another user in connection with her previous tweet. The last action
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Fig. 2 Illustration of the construction of graphs based on Twitter interactions where four users interact with
each other through three types of interactions: retweet RT, reply RP and mention MT; and write some
hashtags in their post UH. The underlying HIN is such that V ={users, hashtags} and E ={RT, RP, MT, UH}. The
four graphs associated with the types of actions are displayed separately for convenience

considered between users is theMT action. This happens when a user mentions explicitly
another user in her post. Finally, the UH action links users with their posted hashtags.
Based on these actions, we construct a HIN with two node types V ={users, hashtags}

and four edge types E ={RT, RP, MT, UH} as illustrated in Fig. 2. Each node represents a
user or a hashtag. We create a link from u1 to u2 if u1 retweets, replies (to) or mentions
u2 and the weight of the link correspond to the number of times u1 performs the specific
action towards u2 during the whole world cup. For the user-hashtag graph, a link exists
between u and h if h appears in u’s post and the weight of the link corresponds to the
number of times u post h during the whole world cup. Note that we exclude hashtags
present in the retweeted posts since in these cases, users do not write them themselves.
Furthermore, considering them would provoke a trivial correlation between UH and RT-
UH. All graphs are directed and weighted.
The dataset contains 13,826 users and 14,392 hashtags. The RT graph is composed of

6069 nodes and 19,495 links, the RP graph is composed of 8560 nodes and 11,782 links and
theMT graph is composed of 11,782 nodes and 60,506 links. Note that Pearson coefficient
between the stochastic matrices rises to 0.1776, 0.6783 and 0.4286 for RT/RP, RT/MT et
RP/MT, respectively. Thus, the retweet and mention relationships are clearly correlated
which may cause some problems for the proposed method, as we shall see, since it is well
known that least squares method is sensitive to that. Since the data is related to the world
cup, the most used hashtags of bipartite users-hashtags graph UH are those referring
to the 32 countries involved in the final phase as well as those referring directly to the
event (#WorldCup2014, #Brazil, #Brasil2014, #CM2014, etc.). The semi-finalists have the
greatest in-strength (the in-strength of the node j is sinj = ∑

i wij is the sum of inward link
weights).

Results

We apply the proposed method to find if the hashtags posted by users (UH) can be
explained by other relations (RT, RP, MT and their combinations). For instance, given a
user u, explaining UH by RT-UH and MT-RP-UH means that the hashtags posted by u
are, to some extent, a combination of those posted by the users retweeted by u and those
posted by the users who received a response from users mentioned by u. In other words,
we try to understand if, in the case of the football World Cup 2014, the probability that
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Table 1 Coefficients and p-values for linear regressions whose regressors correspond to
meta-paths of length 2 to explain the user-hasthag distribution (UH). Model A0
corresponds to the null model: no predictor but one intercept that is the average of the
explained variable

Mod. Meta-Paths Coef. p-values r2

A0 Average : 1.8704e−05 0

A1 RT-UH 0.6273 – 0.3594

B1 RP-UH 0.4291 – 0.2289

C1 MT-UH 1.0289 – 0.4606

A2 RT-UH 0.5795 0.0062 0.6116

RP-UH 0.3957 0.0105

B2 RT-UH −0.3578 0.0612 0.5943

MT-UH 1.4534 0.0087

C2 RP-UH 0.0051 0.0138 0.6111

MT-UH 0.9391 0.0057

A3 RT-UH −0.1283 0.0791 0.6818

RP-UH 0.0791 0.0113

MT-UH 1.1466 0.0111

users post hashtags can be explained by the relations these users have with other users
and the probability that these latter have to post these hashtags.

Meta-paths of length 2

Wetest linear regressionmodelswith all thepossible combinationsofmeta-paths of length
2 (seeTable 1).This test allows afirst glimpseof the contributionof the simplest predictors.
First, the more the predictors, the better the value of r2. It, thus, could be tempting to
consider themall. Nevertheless, it does notmean that all predictors are significant. Indeed,
the analysis of the coefficients and p-values makes it possible to realize the correlation
of some variables. In models B2 and A3, the RT-UH and MT-UH meta-paths are both
present. However, the p-value associated with RT-UH is greater than 0.05 which states
that we accept the null hypothesis for this predictor. This could be a consequence of the
correlation between RT-UH and MT-UH.
In summary and as it can be seen in Table 1, the best model according to the r2 and the

p-values with threshold α = 0.05 would be the model A2 whose predictors are RT-UH
and RP-UH. The gain in the r2 with respect to any other model with 1 regressor (and so
simpler model) is worth it, i.e., important r2 improvement and not really more complexity
added. This means that, for a given user, the hashtags they post can be explained by the
hashtags posted by the users they retweet with a contribution of 0.5795 and the users they
reply to with a contribution of 0.3957. This model accounts for 61.16% of the variance.

Importance of meta-path length

This subsection looks at the length of the meta-paths for a given link type. More specif-
ically, we compute, for each link type, the r2 score when the only predictor is associated
with a random walk of length l = 1, ..., 10 repeating the same link type. For instance, for
l = 2 and the retweet action, the predictor will be RT-RT-UH representing the hashtags
posted by people who are retweeted by people who are themselves retweeted. Intuitively,
the importance of a meta-path decreases with its length (= l+1) since considering longer
meta-paths means considering more extended neighborhoods, hence the information is
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Fig. 3 a Linear regression r2 scores with one predictor associated with a meta-path whose length varies
between 2 and 11. b Linear regression r2 scores according to the number of meta-paths of the same link type
(see main text for explanation)

more diffused. By way of illustration, the walker can attain a lot of nodes with some of
them really far from the starting node. This is corroborated in Fig. 3a where we can see a
tendency to decreasewith respect to themeta-path length. Each link type brings a different
quantity of information and the MT type is the more informative for our purpose.
Plus, this analysis exposes a characteristic of the reply dynamics: most of the time, the

replies involved only two people [47]. This is reflected through the oscillations of the reply
scores in Fig. 3a. The scores associated with odd length random walks are low since the
walker is forbidden to return to the initial node on the penultimate step of thewalk (Fig. 4).
For simpler hypothesis, we also draw in black the r2 scores when we do not differentiate

the link types (ALL), i.e., all the link weights between nodes are aggregated. This score is
below the average score of the three specific link types. One can see that just taking the
mention or retweet type is more informative than the aggregation which reinforces the
relevance of differentiating the link types.
Fig. 3b shows r2 scores when we combine variables of different lengths related to the

same link type in the model. Actually, the r2 associated with n number of variables is
related to the model whose predictors are all meta-paths of length smaller or equals to
n + 1 and whose the steps except the last are in the same type of links. For instance, for
n = 3 variables, the predictors are RT-UH, RT-RT-UH and RT-RT-RT-UH (for the RT
case). Again, the more the variables, the better the score. Also, the increase is not linear;
the best improvement happens when we combine length-1 and length-2 variables which
indicates the need to consider them together. We can also observe that scores given by
the RT and MT types are really similar when considering more than two variables while
there is a clear difference in the r2 score for single variable. It means that their respective
combinations have the same result in term of r2 although the underlying semantics are
different. Once again, the r2 score for the aggregation is shown and is far below the other
scores. This indicates the importance of distinguishing the types of links.
Since it is often desirable to keep a model simple both in term of interpretability and

computation time, there is a trade-off between the highest possible r2 and the cost to
attain it. The tests here performed tend to show that considering too long as well as too
many meta-paths is not necessarily useful in our case. Indeed, the gain in the r2 is not
worth it considering the complexity it brings. This is in accordancewithwork dealingwith
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Fig. 4 Typical example of reply case focused on user u2. The hashtags posted by u2 are h1 and h2. The
probabilities resulting from the random walk UH starting from u2 are then [1/2, 1/2, 0, 0]T . For meta-path of
length 2, a walker starting from u2 following meta-path RP-UH has to go, with probability 1, to u1 and then to
h1, h2 and h3. The resulting probabilities are [1/3, 1/3, 1/3, 0]T . Now, for meta-path of length 3, the walker can
not return to u2 after being on u1: he has to go to u3 or u4. But since these latter are not in connection with u2
via the reply action, their hashtags are more different. This time, the probabilities are [0, 0, 1/2, 1/2]T , which is
far from those obtained with UH: [1/2, 1/2, 0, 0]T . Consequently, the r2 is really low (in this case, it is null).
However, for meta-path of length 4, the walker can return to u2 after being on u1 so in the next step (the third
step), the walker can only jump to u1 who is a direct neighbor of u2. The rationale is the same for longer
meta-paths: for even lengths, the walker is not affected by the restriction on the penultimate step of the walk
while for odd lengths, it has huge importance

other purposes as node similarity or clustering: meta-path with relatively short length is
sufficient to evaluate similarity scores, and a longer meta-path may even deteriorate the
quality [28,31].

Forward linear regression for data description

We apply the proposed algorithm on the entire dataset with a threshold α = 0.05 for
p-values. As a reminder, the procedure stops when it is no longer possible to improve the
r2 by adding significant regressors. Since the length of meta-paths is unbounded, the set
of possible meta-paths is infinite. Here, the k potential predictors are those of length less
than or equal to 4. This is motivated by the test performed in the previous subsection. In
addition, the semantics of longer paths are less clear than shorter paths.
Results are reported in Table 2. The final model thus obtained contains five predictors

related to meta-paths whose length are no longer than 3 and no intercept. This regression
model accounts for 71.29% of the variance. To comfort the goodness of fit of the model,
we plot in Fig. 5 the density plot in log–log scale of the predicted probabilities versus
the observed ones in the data. The green line represents the ideal case where predicted
probabilitiesmatch observed ones.Most of the data points fall to this linewhich reinforces
the use of a linear model.
The best improvement with respect to r2 comes with the addition of the second variable

(see Mod. 2 of Table 2). The model with two predictors is actually a local extremum since
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Table2 Results of the forward stepwise linear regression

Mod. Meta-paths Coef. p-values r2

0 Average: 1.8704e−05 0

1 MT-UH 1.0289 − 0.4606

2 MT-UH 0.9391 0.0057 0.6112

RP-UH 0.0052 0.0137

3 MT-UH 0.8464 0.0062 0.6682

RP-UH 0.0335 0.0124

RT-RP-UH 0.1077 0.0138

4 MT-UH 0.8114 0.0063 0.6947

RP-UH 0.0362 0.0109

RT-RP-UH 0.0766 0.0142

RP-MT-UH 0.0676 0.0143

5 MT-UH 0.1974 0.0094 0.7129

RP-UH 0.5556 0.0146

RT-RP-UH 0.0650 0.0125

RP-MT-UH 0.1591 0.0160

MT-RT-UH 0.0074 0.0124

Fig. 5 Density plot of observed probabilities versus predicted probabilities for the Model 5, see Table 2. The
redder the dots are, the greater the density (referred to by the number of counts). The green line represents
the ideal situation where the predicted probabilities perfectly match those observed. Most of the points are
close to this line, underlining the relevance of the model used

the model with the best r2 is the one with RT-UH and RP-UH predictors (see Table 1).
Although the difference is tenuous, this allows to point two weaknesses of the method:
there is no guarantee of finding the best model and the order of the variable selection is
important. Note that the first two variables are part of themost direct relationships (meta-
paths of length 2) which is intuitive: the direct neighborhood of a user shares common
topics of interest with them. The last meta-path included in the model (Mod. 5) provokes



   15 Page 16 of 26 Botterman and Lamarche-Perrin Comput Soc Netw           (2021) 8:15 

Table 3 Summary of the final models for the three similarity measures considered: PCRW,
PC and AvgSim. For each similarity measure, we indicate the values of the coefficient
associated with themeta-path. The number before the coefficient indicates the order in
whichmeta-paths are included in the final model

Meta-Paths PCRW PC AvgSim

RT-UH 5) 0.1629

RP-UH 2) 0.5556 2) 0.2534

MT-UH 1) 0.1974 1) 0.5550 1) 0.5567

RT-RP-UH 3) 0.0650 3) 0.0289 3) 0.0380

RT-MT-UH 5) 0.0763

RP-RP-UH 2) 0.3840

RP-MT-UH 4) 0.1591

MT-RT-UH 5) 0.0074 4) 0.0216 6) 0.1070

MT-RP-UH 4) 0.1154

r2 0.7129 0.6778 0.7649

an important change in the other coefficients. After exploration, this is due to the presence
of outliers in this predictor, i.e., observations that differ greatly from the trend expressed
by the other observations. It is well known that ordinary least squares method is sensitive
to that. Indeed, after a quite rough identification of these outliers 2 and their imputation
by the mean of the values of the predictor in question, the meta-path MT-RT-UH is no
longer part of the model and the algorithm stops after the fourth iteration.
We apply the same procedure with other similarity measures, as explained in “Other-

Measures” section. As one can see inTable 3, results are different. However, themeta-path
MT-UH is always the first to enter into the model. PCRW and PC are the most similar
in term of the presence of meta-paths, a reason could be the fact they both just consider
the “one way random walk”, unlike AvgSim that computes a “round trip random walk”.
Finally it seems that for this dataset, the AvgSim similarity measure is more suited.

Forward linear regression for data recovery

We validate the method by performing a task aiming to recover the weights of missing
links. In other words, this part tries to answer the following question: is it possible to
know, in a quantitative way, the way some people post some hashtags knowing the way
other people do?
We perform Monte Carlo cross-validation with 80% of the users as the training set

and obtain the vector β for them. Then, we use it on the testing set, i.e., the remaining
20% and compute the r2 associated with each model. We proceed to ten splits, i.e., we
create ten training sets. The final models do not include the same variables as before.
Not surprisingly, it depends on the 80% selected. The number of predictors is five or six.
Nevertheless, whatever the training set, themeta-pathMT-UH is always the first predictor
to be selected. After, there is no more consensus on the second regressor but the RP-UH
and RT-RP-UH always compete for the second place. Again, it is not surprising to obtain
the RP-UH meta-path since, for a user, it is related to one of the closest neighbors with
respect to our graph construction and very weakly correlated to the MT-UH meta-path
already present in the model. Although the best r2 scores of the final models reach, on

2Data points outside the outer fences, i.e., outside the interval [Q1 - (3*IQR), Q3 + (3*IQR)] with Q1, Q3 and IQR=Q3-
Q1 the lower, upper quartile and interquartile range, respectively.
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Fig. 6 Boxplot of the r2 scores of training sets (black) and test sets (gray). The training set scores increase
with the number of predictors in the model while for the testing set, the scores seem to reach a threshold

average, 0.7 for the training sets, we only get, on average, a best score of 0.5 for the test
sets (Fig. 6). The method seems to reach a limit. One also observes that even if a model
better fits the training set, it does not mean that it will give the best recovery. Indeed, it is
sometimes better to consider a model with fewer regressors, and so a lower r2 for training
set, to better recover.
Since r2PC < r2PCRW for the description task (seeTable 3), we donot use it for the recovery

task. However, we apply the AvgSim for which we obtain, on average, r2rec,AS = 0.55, still
a little bit better than with PCRW.

Bibliographic data

Bibliographic networks are also good examples of heterogeneous information networks
since they contain multiple types of nodes and links. We here focus on scientific publica-
tions.

Dataset description and setup

Figure 7 illustrates an example of such networks where one can distinguish four types of
nodes that is authors, papers, venues and topics; and four types of links (eight when we
differentiate a type from its inverse) that is write, publish, cite and belong to.
TheHINanalyzed in this article is constructed fromDBLPpublications [48]. The dataset

contains 95,855 authors with 1,537,407 co-author relationships and 186,175 papers with
1,356,893 citation relationships. The papers belong to nine distinct topics: Artificial Intel-
ligence A.I., Computer Graphic: multimedia C.G., Computer Networks C.N., Database:
DataMining: Information Retrieval, Human Computer Interaction: Ubiquitous Comput-



   15 Page 18 of 26 Botterman and Lamarche-Perrin Comput Soc Netw           (2021) 8:15 

a b

Fig. 7 a Example of a bibliographic network. b Its associated network schema

Table 4 Meta-paths describing some notions of proximity between authors. The Features
gather somemeta-paths that are similar if the direction of the arrows is neglected or
alternatively, if one only considers the node types composing themeta-paths
[3]Distinct of the targeted authors

Meta-path Meaning Feature

A → P ← A Are co-authors

A→P←A→P←A Share co-authors[3] vA
A→P→P←A Cite the other’s paper vPP
A→P←P←A Are cited by the other’s paper

A→P→P←P←A Co-cite the same paper

A→P←P→P←A Are Co-cited by the same paper vPPP
A→P→V←P←A Have paper in the same conference vV
A→P→T←P→A Have paper about the same topic vT

ing H.C.I., Information Security I.S., Interdisciplinary Studies I.St., Software Engineering
S.E. and Theoretical Computer Science T.C.S.. These topics are represented in the 92
venues present in the dataset.
The presented method is used to find out if the co-author relationship A→P←A is

correlated with other directly extractable relationships of the underlying graph. Table 4
shows the different meta-paths used in the models selected according to their semantics
contrary to the previous experiment. Since there is only one directed type of links between
two given types of nodes, we only mention the types of nodes to describe the meta-paths.
As mentioned, meta-paths are no longer determined by their length but selected by a

more solid prior knowledge about the data. Here are given some motivations about the
selected meta-paths.

• A→P→A←P→Ameans that two authors have written with a third common author.
It represents a triangle when the AP-PA graph is projected onto A. This meta-path is
the most “social”;

• A→P→P←A and A→P←P←A state for the interest of a person (say a) for the work
of another (say b). It could be meaningful to think that if a is interested in b’s work
and cites it, a is eager to communicate with b and even to collaborate and to publish
with her. The same holds if a and b exchange their role;



Botterman and Lamarche-Perrin Comput Soc Netw            (2021) 8:15 Page 19 of 26    15 

• A→P→P←P←Ameans that two authors cite the same paper and are, thus, inspired
by the same ideas. This could be a good reason for a co-author relation;

• A→P←P→P←A is quite different since it states that a third person (say c) cites the
work of a et b but it does not mean that a and bwork on the same thing. So, we expect
this meta-path to be less significant than the previous one, albeit the structure is fairly
close;

• A→P→V←P←A and A→P→T←P←A mean that a’s paper and b’s paper are in
the same venue or belong to the same topic, respectively. Even if some venues can
gather a lot of people, being accepted in the same venue might trigger collaborations.
Plus, working on the same topic can also be a source of collaboration.

Starting from the data, we construct four matrices associated with four bipartite graphs.
Inparticular,APwhereAPap equals 1whenauthorsawrites paperp, 0 otherwise.PPwhere
PPpq equals 1when paper p cites paper q, 0 otherwise.PV wherePVpv equals 1when paper
p is published/presented in conference/venue v, 0 otherwise.PT wherePTpt equals 1when
paper p belongs to topic t, 0 otherwise. These matrices are binary but it does not imply
the co-author matrix (AA) is binary too. To compute the proposed variables/meta-paths,
matrices are transformed into row-stochastic matrices, i.e., normalized such that the sum
of each line equals 1. In this setting, we can consider these matrices as transition matrices
and perform random walks on it. For Fig. 7a, we have the following matrices:

AP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

0 1/3 1/3 1/3 0

0 0 1/2 1/2 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

PV =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

1 0 0

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

PP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1/2 1/2 0 0

0 0 1 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

PT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where the red entries (last columns and rows of each matrix) are related to the so-called
hole nodes (see Sec. ). Remark that paper p3 points to the hole node in the PP graph since
it does not cite any paper.
Furthermore, note that for meta-paths of the form A→P→ “node type” ←P←A with

“node type” in {P, V, T}, the walker is forbidden to return to the same paper in his second
and fourth step. It prevents us from using what we are looking for. For instance, in Fig. 7, a
walker constrained by the A→P→A←P←A meta-path and having traveled through the
path a1 → p1 → a3 cannot return on p1 at their next step but has to go to p3.

Results

As said, the aim of this experiment is to express the distribution of co-author relationship
of all the authors in the dataset by a combination of other distributions. The results are
once again divided into explanatory and recovery tasks.
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Table5 Results of the linear model for all selectedmeta-paths

Meta-Path Coefficient p-value
A→P←A→P←A 1.2507 0.0038

A→P→P←A 0.9237 0.0099

A→P←P←A – –

A→P→P←P←A 0.2813 0.0395

A→P←P→P←A – –

A→P→V←P←A 0.1539 0.0099

A→P→T←P←A – –

r2 0.6661

Table6 Results of the linear model for meta-paths aggregated into features

Feature Coefficient p-value
vA 1.2133 0.0028

vPP 1.8549 0.0034

vPPP - -

vV - -

vT - -

r2 0.5997

Forward liner regression for data description

Two tests are performed: first, we consider all the presented meta-paths as regressors
(Table 5) and second, we aggregate some meta-paths a.k.a. features (see third column
of Table 4) and utilize them into the algorithm (Table 6). We propose this aggregation
because if the direction of the arrows is neglected, the meta-paths composing a feature
are the same. In other words, the sequence of the node types is the same. The aim is
to quantify the quality loss (if any) of the prediction when aggregating meta-paths into
features.
Meta-paths as regressors Only three meta-paths are retained into the final model. This

latter is able to explain 66,61% of the variance in the dependent variable from the indepen-
dent variables. According to this model, the most significant meta-paths to explain the
co-author relationship are related to theway authors share the sameco-authors (somekind
of transitivity3), cite and co-cite, plus the venues in which papers are published/presented.
Meta-path related to “topic” is not included in the model.
Features as regressors When meta-paths are aggregated into features, those related to

citing the same paper and the venues are not included in the model (see Table 6). For the
first one, it could be explained by the fact that only one meta-path (A→P→P←P←A)
among two is imported in the first test.4

No immediate reason is given for the absence of vV variable. Plus, this second model
only accounts for 59.97% of the variance: each meta-path brings its own meaning and
even if some of them seem close to each other, wanting to aggregate them is not beneficial
for our purpose. Actually, we have already mentioned a fundamental difference between
variables of vPPP . As in the previous case, feature related to “topic” is not significant for the
specific objective when other variables (see Table 4) are considered in the forward linear
regression.

3Transitivity of the authors-authors graph equals 0.6948.
4Same remark can be made for the vPP meta-paths and yet, vPP is part of the model.
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Table 7 Results of the different topics

Topic #auth. #pap. #ven. r2 r2PC r2AS
A.I. 41538 65927 23 0.5914 0.5010 0.5372

C.G.M. 25989 18877 13 0.6358 0.5313 0.5226

C.N. 22374 30212 9 0.6321 0.5152 0.5730

Database 5865 9294 7 0.7349 0.6954 0.7570

H.C.I. 4660 10666 5 0.7723 0.7242 0.7830

I.S. 5298 6943 6 0.7211 0.6707 0.7919

I.St. 46111 2614 11 0.7838 0.7037 0.6759

S.E. 8147 20506 8 0.7222 0.6465 0.6509

T.C.S. 10824 21136 11 0.5796 0.4409 0.4266

No perfect answer exists to determine which predictors are the best between meta-
paths and features since there is always a trade-off between complexity and efficiency.
Nevertheless, results obtained with meta-paths are satisfactory and in addition, it is easier
to associate a semantics to these latter.
Topics under scrutiny The small number of considered topics, compared with the num-

ber of papers, could partly explain why the topic meta-path is not taken into account.
Indeed, only one topic is assigned to each paper so the meta-path P→T→P generate a
dense “paper-papermatrix”5 and when computing thematrix product A→P→T←P←A,
any relevant information is somewhat lost.
Thus, we think themeta-path A→P→T←P←A brings a too diffuse information. How-

ever, the idea of considering topics is not meaningless since an author interested in a topic
is often interested for a while and therefore, has the time to collaborate with other people,
who are themselves interested in the same subject. Authors writing about a same topic
might partly be co-authors.
So, we split the data into nine subsets, each one related to one topic, and apply the

methodwith the sixmeta-paths cited above, i.e., all except A→P→T←P←A (see Remark
2). Results are reported in Table 7. On average, we have a better descriptive model than
before: 〈r2〉 = 0.6970 (and σ= 0.0710). This could mean that inside some topics, there
are some patterns more homogeneous or frequent and we are more capable of explaining
them. However, for Artificial Intelligence and Theoretical Computer Science, it is harder
to find a model that matches the data.
For comparison, we also report the r2 obtainedwith PathCount andAvgSim. As one can

see, PathCount is always surpassed by the other two; and these latter compete depending
on the topic.
The final models’ coefficient values for the different topics are reported in Fig. 8. For the

sake of brevity, we only report the coefficients for PCRW.Meta-path A→P→A←P←A is
selected by each topic: sharing the same co-author is the most useful to explain co-author
relationship in a given topic. Meta-path A→P→V←P←A is important for 7 topics out
of 9. Only Computer Networks and Theoretical Computer Science do not take it into
account. Note that only Theoretical Computer Science includes A→P←P→P←A in its

5The same comment could be made for meta-path P→V→P since the number of venues is also limited - although to
a lesser extent since a topic encompasses several venues. The number of non-zero entries of the matrix APTPA (not
really the same as PTP but the final result is encompassed in APTPA) equals 6,515,232; while for APVPA, this number
raises to 3,940,634, which is still 1.6 times lower.
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Fig. 8 Coefficient values of the final models for PCRW of the different domains

finalmodel. This topic is also the only one forwhichA→P→A←P←Ahasnot the greatest
coefficient, it is surpassed byA→P→P←Aand closely followedbyA→P→P←P←A.The
paper relations seem highly important for this domain.
As one can see, meta-paths in the rectangle are less present than the other two. Indeed,

many possible configurations hide behind a single meta-path. An interesting point, thus,
lies in the self-citations. For instance, let’s take a look at A→P→P←A and the underlying
configurations where white (black) circles stand for authors (papers).

It is clear that A→P→P←A might encompass A→P←A; for the first, it takes a third
paper to be co-authors whilst for the other, they are already. So, a look at the sub-graphs
and then motifs (i.e., significantly overrepresented sub-graphs) would be informative.
However, this is not the scope of this work and it is left for future investigations.

Forward linear regression for data recovery

We are now interested in the recovery of link weights between authors. Average results
Monte Carlo cross-validations are reported in Table 8. All p-values associated with the
regressors are below the fixed threshold α = 0.05.
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Table 8 Results of the recovery task for the general case (all topics) and per topic. PCRW
and AvgSim are used as similarity measures

Topics 〈r2test ,PCRW 〉 〈r2test,AS〉
All topics 0.5508 0.5742

A.I. 0.4994 0.4290

Comp. Graph. Mult. 0.5133 0.4743

Comp. Net. 0.5322 0.4911

Database 0.7258 0.7057

Hum. Comp. Inter. 0.7338 0.7584

Info. Sec. 0.6509 0.7367

Interdisc. Std. 0.7440 0.7688

Software Eng. 0.6450 0.6130

T.C.S. 0.3557 0.3487

Since PathCount is always worst than the other two for descriptive purpose (Table 7),
we only compute the recovery scores for PCRW and AvgSim.
For Database, Human Computer Interaction and Interdisciplinary Studies, the recovery

is somehow achievable in the sense that the score of the test set is almost as good as
for the training set. For the other domains, the quality loss is more significant, even for
Information Security and Software Engineering which have a good r2 for the training set.
This time, 〈r2test,PCRW 〉 for Database is greater than 〈r2test,AS〉: this could come from the fact
that AS overfits the data, while the inverse for Interdisciplinary Studies. Finally, note that
for Theoretical Computer Sciences, the r2 for recovery is really low and its true relevance
can be somewhat even questioned (albeit the p-values are below 0.05). However, to be
sure of its relevance, the results computed from our dataset are compared with a null
hypothesis model that preserves some properties of the network topology (e.g., degree
distributions) but randomly reshuffles the links among the nodes. The aim is to show that
degree distributions only are not enough to generate such a correlation in the data and
that this correlation arises from the particular data or at least, from more involved topo-
logical properties. Indeed, results for such null models are not significant (no regressor
with p-value smaller than 0.12) and the average score 〈r2〉 over 15 generations of null
graphs are at most equal to 0.26.

Summary and discussion
Wehave considered a linear combination of probability distributions resulting from path-
constrained randomwalks to explain, to some extent, a specific relation in heterogeneous
information networks. This proposed method, highlighting the semantics present in the
graph, allows to express the weight of a link between two nodes knowing some other links
in a graph. This could be useful for prediction or recommendation tasks. For instance, we
can draw a parallel with collaborative filtering [37], where the idea is that people often
get the best recommendations from someone with similar tastes to their own. Concretely,
for a HIN composed of two nodes types: users U and items I, this could be related to
our method with the meta-path U→I→U→I. Indeed, the subpart U→I→U links users
who are interested in the same item while the last step: U→I presents a new item to be
recommended to the first users.
In our opinion, an interest of themethod presented here is the traceability of themodels’

construction. Indeed, it allows one to follow the steps of the algorithm, i.e., the order in
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which the meta-paths are integrated. The final model is, thus, clearly understandable and
its interpretability facilitated. Further, if one wants to use this method for recovery tasks,
one can only consider the first n steps of the algorithm if, e.g., one judges the training
model’s quality at the nth step sufficient (compared to the improvement until the final not
worthy/necessary, since one knows the final result on the training set).
In particular, we have shown by working on Twitter data, that the hashtags posted by a

specific user is mainly related to those posted by her direct neighborhood, especially the
mention and reply neighborhood. This method has also shown that the retweet relation
is not really useful for our purpose. Then, we have shown the applicability of the method
to bibliographic data to recover the co-author relationship. It has been found that (data
separated into) some topics are more suited to our method and so, the functioning of
co-authors seemed to differ from one topic to another. Looking closer to the meta-paths
included in the models together with their semantics has allowed us to realize that some
meta-paths might be encompassed in other. Considering motifs instead of meta-paths
could be a solution, thus paving the way for future work. Three similarity measures have
been tested in the procedure namely PathCount, Path-Constrained Random Walk and
AvgSim. Whatever the dataset, PathCount is below the other two and AvgSim performs,
on average, slightly better than PCRW.
Nevertheless, themain drawback of themethod is its sensitivity to outliers. Hence,more

robust least square alternatives could be envisaged such that Least Trimmed Squares or
parametric alternatives. Furthermore when there is no prior knowledge about the data, as
for the Twitter data experiment, we had to provide all the meta-paths whose length is no
longer than four. Even if it has been motivated by previous tests, this threshold is clearly
data related. Hence, it could be interesting to build a method able to find relevant meta-
paths by itself. Finally, data have been aggregated in time. Consequently, the chronology
of the events is ignored. Since it is possible to extract the time stamp of tweets or to
take into account the papers’ publication date, a future work could be the integration
of time by defining a random walk process on temporal graphs [49] or by counting the
temporal or causal paths [50,51] (plus normalization). The walker can, thus, only follow
time-respecting paths which can perhaps improve the quality of the model.
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