
Influence network design via multi‑level 
optimization considering boundedly rational 
user behaviours in social media networks
Guanxiang Yun1, Qipeng P. Zheng1*  , Vladimir Boginski1 and Eduardo L. Pasiliao2

Introduction
With the rapid development of information technology, social media platforms play a 
vital role in most people’s life. For some commercial users or non-profit organizations, 
their profits can increase by extending their influence via the social media system [1, 2]. 
This is especially useful for important commercial users that highly depend on social 
media platforms. It is also true for individual users as many people are willing to expand 
their network connection in social media to expand their influences. The behaviour of 
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a user to form connection with an information provider is primarily influenced by two 
aspects [3]: the content of the information posted by the information provider [4], and 
the personality of the user who might follow the information provider. Thus, to learn 
how an information provider’s network can be expanded, both information content and 
the users must be studied. Follower growth will highly depend on what kind of informa-
tion providers post. We define users that determine posting plans as information pro-
viders. In this paper, we optimize the information provider’s information post plan to 
expand its network connections. We consider an information posting plan as the deci-
sions made during each time period regarding what content to post. Since the criteria 
for what is considered an interesting (and therefore, effective) post differs depending on 
the personality of a user, posting plans must also take user type into account.

One user can only influence another if the other user is able to view the informa-
tion the original user posts. Thus, we must consider information cascading. The linear 
threshold model [5–7] and the independent cascading model [8] are two widely used 
models for information cascading. In this paper, the linear threshold propagation model 
is used representing information cascading. This model was first proposed by Granovet-
ter [9] to describe people’s behaviour. In this model, when the linear summation of the 
influence of one user’s followees exceed the threshold of this user, then this user will 
become active. In our study, it means that when some user’s followees re-post informa-
tion and the linear summation of these followees’ influence exceeds the threshold of this 
user, then this user will re-post that information.

After information cascades in the network, users then decide whether they wish to 
change their followers. Users determine their followees based on utility, they want to be 
in a network that provides them with their desired information. However, they also wish 
to avoid redundant information. We apply the concept of bounded rationality user equi-
librium (BRUE) as the decision principle of user’s for actions of connectivity. In essence, 
it means that users seek a connection network that achieves the high utility without 
exceeding the maximum utility.

This idea of BRUE originally came from Simon’s Theory [10] in 1957. In this paper, 
human behaviour is restricted by bounded rationality. In 1972, Simon published another 
paper [11] which provides a fundamental illustration about the theory of bounded 
rationality. The theory states that human behaviour is based on a behaviour’s ability to 
achieve a percentage of a human’s optimal goals, rather than the optima, with given con-
ditions and constraints. Simon continuously worked on bounded rationality [12, 13] to 
expand the application of the theory.

The concept of bounded rationality can also be applied in many fields, such as energy 
[14], psychology [15], military [16], transportation [17–19], etc. [20–22]. However, to the 
best of our knowledge, it has rarely been applied on information network systems. We 
propose that user actions in information networks corresponds to BRUE, that is, users 
are not obligated to seek the highest information utility they can get, but simply greater 
than a certain percentage of the maximum. Any connection plan can be chosen if it ful-
fills this criteria.

Some researchers used a game theoretical model in social media network to determine 
a user’s decisions [23, 24]. However, we theorize that the BRUE model will more closely 
match reality than the game theoretical model. This is due to the fact that real users are 
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not concerned with small changes in utility. In addition, functions in network utility sys-
tems only have approximate values, thus, it is an inexact function. Based on reinforce-
ment learning, users in the information network system will obey the BRUE principle. 
Finally, the BRUE model should be used over the game theoretic model since the topol-
ogy of a network system changes before a user reaches a utility value equilibrium. 
Recent research suggests that a user’s bounded rationality influences their network. 
Kasthurirathna and Piraveenan [25] developed a simulation for a number of strategic 
games. Then, they regenerated the network so that the network, on average, converged 
towards a Nash equilibrium, despite the bounded rationality of nodes. The link between 
bounded rationality distributions and social structure is important for explaining social 
phenomena.

We generate a three-level mathematical optimization model. The first level optimizes 
the information posting plan of an information provider to maximize its connections. 
The second level optimizes the human behaviours of other users under BRUE. It has two 
formats, optimistic and pessimistic conditions. In the optimistic condition, we maximize 
human behaviours for the connections of an information provider. In the pessimistic 
condition, we minimize these variables. The reason for two conditions is because, as dis-
cussed before, by introducing BRUE, users’ behaviours will drop in an uncertainty set. 
We seek to determine how the best and the worst uncertainty will influence an informa-
tion provider’s network connections, which is why both conditions are necessary. The 
third level calculates the maximum information utility for one user, which needs to be 
used in second level for BRUE constraints.

We solve a small-scale synthetic network by exact algorithms. However, for large-scale 
networks, calculation time increases exponentially. We tackle this problem using large 
neighbourhood search (LNS) algorithms. It is a heuristic algorithm [26] used to solve 
large-scale problems. It is an effective way to find a good solution quickly when the time 
to find a global optimal solution is unrealistically long. This method determines the gen-
eral area of a local solution and then looks within this area to find a new solution. This 
new solution may actually be worse than the original, however, it can get rid of the local 
optimal and block other possible solutions, gradually leading to better solutions.

Mathematical programming model
We propose the following model of an information network system. Our objective is to 
maximize our information provider’s connections by controlling its information post-
ing plan. With different posting plans, the information cascading path will be different. 
In addition, after information cascades, some users may connect to a new followee or 
disconnect from an exiting followee. Different information posting plans will lead to dif-
ferent numbers of followees. We utilize the linear threshold principle to determine users’ 
information re-posting behaviour, we apply the BRUE principle to users to simulate the 
network reconstruction after information cascading.

In this section, we first give the introduction of the nomenclature. Second is the 
detailed discussion for the linear threshold principle which is used to determine whether 
or not a user re-posts the information. Third is the description of the mathematical 
model.
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Nomenclature
A. Sets and indices

N	� Set of users in information network system indexed by j, k , k ′.
L	� Set of information index by l.
O	� Set of information provider index by o, this model is supposed to have only one 

information provider.

B. Variables

pol	� Binary variable to indicate information provider o whether or not post infor-
mation l.

pjl , pk ′ l	� Binary variable to indicate user j or user k ′ whether or not re-post informa-
tion l.

xko	� Binary variable to indicate user k whether or not to follow information pro-
vider o after information cascading.

xk ′k	� Binary variable to indicate user k ′ whether or not to connect to user k after 
information cascading.

zkl	� Integer variable to indicate the number of times user k receives information l.
Uk	� Utility value from all information for user k.
Ukl	� Utility value from information l for user k.
U∗
k 	� Maximum utility for user k can get based on the information provider’s post-

ing plan. It can be get in third-level model with fixing information posting 
plan.

C. Parameters

dko	� Benefit for information provider o from user k if user k follows o.
x̂ko	� Whether user k follows information provider o before information posting.
x̂kk ′	� Whether user k follows user k ′ before information posting.

D. Functions

Fkl(·)	� Function for the relation between number of times user k receives information 
l to the utility user k gets from information l.

G(·)	� Function for the relation between information provider’s posting plan to the 
user’s re-posting actions. It’s defined by the linear threshold principle.

E. Concepts

Information network	� The network to cascade information.
Information provider	� The user in the information network to post information. We 

suppose it has only one information provider in the network.
Users	� Customers in the network.
Connections	� The connection among users or information provider in the 

network.
Social network graph	� The topology of the information network include the users and 

connections.
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Linear threshold model for information cascading

We use the linear threshold propagation model to determine whether a user decides to 
re-post information after they receive it one or several times. When the summation of 
the influence of one user’s followees who post the information exceeds this user’s thresh-
old, it will re-post that information. The linear threshold constraint inside the mathe-
matical CPo model will be described later. Figure 1 gives one example of the information 
cascading process and the final connection network after the information cascades.

Figure 1a is the initial network. If node i has an arrow point to node j, it means node i 
follows node j. Some links between two users have two directions of arrows, this means 
that these two users follow each other. In our model, we assume it has only one informa-
tion provider in the network. In this example, node 10 is our information provider. It 
is shown in black color. Here, we only simulate the cascading of one information. The 
influence and threshold values are not listed in this example. We can just suppose their 
values based on the following logic. This is just an example to show the cascading pro-
cess based on linear threshold. Figure 1b is the first step cascading. By principle of the 
linear threshold, the influence of node 10 is greater than the threshold of node 5 and 
node 11. After node 10 posts information, node 5 and node 11 re-post it. We mark the 
re-post node in red color. Figure 1c is the second step of cascading. We find that node 
3 and node 8 also re-post this information. Even though node 3 already follow node 10 
directly in the initial network, but in the first step, the single influence of node 10 does 
not beat the threshold of node 3. At that time, the influence of 10 to 3 is less than the 
threshold of node 3. However, after the first step, node 5 also re-posts this information 
and node 3 receives this information from both node 5 and node 10. Currently, the sum-
mation of the influence of node 5 and node 10 is over the threshold of node 3. Thus, 
node 3 re-posts this information in the second step. Figure 1d is the third step of cascad-
ing. Node 9 and node 7 now re-post the information with the similar reasons of node 
3. After Fig. 1d, the information cascading stops, because nodes 1, 2, 4, and 6 will no 
longer re-post the information. Thus, the network becomes stable. Figure 1e adds two 
new followers to our target node 10 after the cascading based on our BRUE model. Fig-
ure 1f shows that node 9 un-follows node 10 based on the BRUE model. We suppose the 
follow–unfollow action can only occur after cascading is finished for all information in 
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Fig. 1  Cascading for the information and the final connection network
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information set L. In real case, the topology may change any time, but to simplify, we just 
make such assumptions in our model. Figure 1e, f just gives an example after the infor-
mation cascading, the topology of the network may change. The definition for users’ util-
ities to influence the connect–disconnect action is discussed later in the mathematical 
programming model section.

BRUE model

BRUE is the mathematical model’s equilibrium constraints from the bounded rational-
ity. We suppose that one user in the system has multiple choices, and for choice i, it has 
utility U(i). Without loss of generality, we can set choice i∗ with the optimal utility value. 
Then, BRUE tells us that for any choice i has the following property that determines the 
possible choice for this user,

where ρ is called the bounded rationality coefficient. We must have ρ ≤ 1 because of the 
optimality of the choice i∗ . From this constraint, we can know that by introducing BRUE 
to our math model, we will have an uncertainty feasible region for the users. In addi-
tion, when ρ = 1 , it is the perfect rationality user equilibrium (PRUE), and is the Nash 
equilibrium. This means the user accepts the plan’s utility to be the maximum utility, and 
thus has no motivation to move to another plan. Actually, the Nash equilibrium is a spe-
cial condition of BRUE when ρ = 1.

In this paper, after information cascades, users may change their connections. We 
assume a user’s choice to connect or disconnect will obey BRUE constraints, which is 
closer to reality when compared to the Nash equilibrium.

Pessimistic condition

The following model ( CPo ) works for our information provider o to maximize the con-
nections by determining its post plan. It is constructed under the pessimistic condition by 
introducing the BRUE constraints. In the pessimistic condition under BRUE constraints, 
the behaviour of the other users in the system acts in the worst case for our information 
provider. The other users’ choice to connect or dis-connect will lead to the minimization of 
the information provider’s connections. The first level finds the best choice for the informa-
tion provider to maximize its connections in the worst case. The second level minimizes 
the connections based on the users decision variables. The reason to use maximization in 
second level is because we want to research with the pessimistic condition to the informa-
tion provider. Based on the theory of BRUE, customer’s behaviour is not certainty. They 
should drop within their bounded rationality. Thus, in pessimistic condition, we want to 
find the worst influence from customers to the information provider. We want to help the 
provider to find a posting plan which has best customer benefit under the worst case. In 
second level, the decision variable is the customer’s behaviour, which cannot be controlled 
by the information provider, but can be influenced by the information posting plan. With 
the certain information posting plan, each user can have the new connection or disconnec-
tion action to get their best information utilities, which is shown as U∗

k  in model CPo . But 
the actual action of one’s decision must have the information utility that is dropped within 
the bounded rationality, which is defined in constraint (2h). The method to calculate the 

(1)U(i) ≥ ρ ·U(i∗),
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information utility is defined from constraint (2c–2g). In this model, it also has third level, 
which maximizes the information utility of each user to get the U∗

k  that need to be used in 
level 2. The details of third-level model is shown in model (TL): 

In model CPo , the objective function is the total connection benefit the information pro-
vider o can get from the network.

The first level’s decision variable pol is a binary variable which indicates whether the 
information provider o will post information l to the system. This kind of variables can be 
controlled by the information provider.

In the second level, xko is a binary variable. When it is equal to 1, user k follows infor-
mation provider o in the network. Otherwise, xko = 0 . Constraint (2b) states that the total 
information utility received by user k equals the summation of the utility from all informa-
tion in the system. We denote the function as Fkl(·) . k is the index for customers, it is in set 
N. l is the index of information, it is in set L.

(2a)
(CPo) :

max
pol

min
xko

BP(xko) =
∑

k∈N

dkoxko

(2b)s.t. Uk =
∑

l

Ukl , ∀k ∈ N ,

(2c)Ukl = Fkl(zkl),∀k ∈ N , ∀l ∈ L

(2d)zkl =
∑

j∈N ,j �=k

xkj · pjl + xko · pol , ∀k ∈ N , ∀l ∈ L

(2e)pjl = G(pol),∀j ∈ N , ∀l ∈ L

(2f )
xko ≤

∑

l

∑

k
′
∈N ,k

′
�=k

pk ′ l ∗ xk ′k + x̂ko, ∀k ∈ N , ∀l ∈ L

(2g)xkj , xio ∈ {0, 1},∀k , j ∈ N

(2h)Uk ≥ U∗
k ∗ ρk , ∀k ∈ N

(2i)U∗
k = max

x
′

kj

U
′

k , ∀k ∈ N

(2j)s.t. (2b
′

)− (2g
′
).

Fkl(zkl) =

{

vkl − (zkl − 1) ∗ bkl , if zkl ≥ 1
0, if zkl = 0
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The definition of variables and parameters in function Fkl(·) is shown in nomenclature. 
Figure 2a shows one example of the utility function. It means if user k receives information l 
0 times. It can get 0 utility from this information. If it gets l 1 time, it can have the maximum 
utilities. But if it receives l multiple times. The utility from this information should decreas-
ing linearly. The reason of decreasing is because this user should get boring by receiving the 
same information multiple times. This is just one assumption to the utility function. It is a 
logic function, we will linearize it later.

In addition, we propose another kind of utility function of all users k ∈ N  for information 
l. It is shown in Fig. 2b. It means when a user receives the same information multiple times, 
it’s utility is increasing. In this case, we consider that if one user receive the information 
from other user’s re-post, it means the other user likes this information. Then, this infor-
mation can have commonality among the user’s friend circle. Then, the initial value of the 
information will be larger if this user receive the information more times. For example, if 
one user has a lot of friends who re-post one information of the result of super bowl, then 
this user should feel this information will have more utility value to him/her. Since if he/she 
gets this information, it is more easy to chat about it with his/her friends. After considering 
this issue and the boring influence to receive same information multiple times, people with 
personality having strong boring feelings will obey Fig. 2a. The people with strong personal-
ity having strong feeling for friend circle will obey Fig. 2b. Actually in this case, we can see 
that this user has negative boring coefficient.

The following is the linearization of the logical function Fkl , this function should be 
applied to ∀k ∈ N , ∀l ∈ L : 

(3a)
(LN) Fkl(zkl) :

zkl ≤ M ∗ gkl ,

(3b)gkl ≤ zkl ,

(3c)Ukl ≥ vkl − (zkl − 1) ∗ bkl +M(gkl − 1),

(3d)Ukl ≤ vkl − (zkl − 1) ∗ bkl −M(gkl − 1),

Decreasing utility function Increasing utility function(a) (b)
Fig. 2  Relation of information utility to times user receive this information
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These constraints give that when zkl = 0 , we will get gkl = 0 and Ukl) = 0 . When 
zkl > 0 , we will get gkl = 1 and Ukl = vkl − (zkl − 1) ∗ bkl.

Constraint (2d) shows the total times for user k to receive information l equal to the 
summation of user k’s followee who re-post l plus whether user k connects to o and o 
posts information l.

The relation of the variable pjl to variable pol is restricted by the linear threshold 
principle, we denote their relations in function G(·) . This function does not need to be 
written in formula based on our solution method large neighbourhood search will be 
used. The reason is once the posting plan of the information provider is decided, we 
can directly get the re-posting plan based on the linear threshold principle. However, 
the posting plan in model CPo is the decision variable. This is the reason we write it as a 
constraint but do not write out the detailed constraints. We thus show the mechanism to 
determine pjl from pol in the algorithm section. If we get the value of pol , we can directly 
get the value of pjl by the linear threshold principle.

Constraint (2f ) shows that user k does not have the choice to follow the information 
provider o if it does not follow user o originally and no followee of user k re-posts any 
information generated by information provider o. x̂ko is the original connection from 
user k to user o. If the right hand side is 0, it means user k can not get any information 
from o, it does not even know the existence of o, thus it can not make the choice to con-
nect to o.

Constraint (2h) is the BRUE constraint. It states that user k can accept any follow–
unfollow plan for which the information utility drops within the BRUE gaps. ρk is the 
BRUE coefficient for user k. Constraints (2i) and (2j) are the third-level model. It calcu-
lates the maximum information utility that user k can get in the system. The constraints 
of the third level have the same formula as the constraint (2b–2g) in the second level. 
However, they do not share the same variable xjk and Uk . We denote all variables in level 
three with ∗′ . The third-level model is shown below in model TL: 

(3e)0 ≤ Ukl ≤ M ∗ gkl ,

(3f )gkl ∈ {0, 1}.

(4a)
(TL) :

U∗
k = max

x
′

kj

U
′

k

(4b)s.t. U
′

k =
∑

l

U
′

kl , ∀k ∈ N ,

(4c)U
′

kl = Fkl(z
′

kl),∀k ∈ N , ∀l ∈ L

(4d)z
′

kl =
∑

j∈N ,j �=k

x
′

kj · pjl + x
′

ko · pol , ∀k ∈ N , ∀l ∈ L
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Model ( CP2o ) gives the model to combine model ( CPo ) and the linearization part. 

(4e)pjl = G(pol),∀j ∈ N , ∀l ∈ L

(4f )x
′

ko ≤
∑

l

∑

k
′
∈N ,k

′
�=k

pk ′ l ∗ x
′

k
′
k
+ x̂ko, ∀k ∈ N , ∀l ∈ L

(4g)x
′

kj , x
′

io ∈ {0, 1},∀k , j ∈ N

(5a)
(CP2o) :

max
pol

min
xko

BP(xko) =
∑

k∈N

dkoxk0

(5b)s.t. Uk =
∑

l

Ukl , ∀k ∈ N ,

(5c)zkl ≤ M ∗ gkl , ∀k ∈ N , ∀l ∈ L

(5d)gkl ≤ zkl , ∀k ∈ N , ∀l ∈ L

(5e)Ukl ≥ vkl − (zkl − 1) ∗ bkl +M(gkl − 1), ∀k ∈ N , ∀l ∈ L

(5f )Ukl ≤ vkl − (zkl − 1) ∗ bkl −M(gkl − 1), ∀k ∈ N , ∀l ∈ L

(5g)0 ≤ Ukl ≤ M ∗ gkl , ∀k ∈ N , ∀l ∈ L

(5h)gkl ∈ {0, 1}, ∀k ∈ N , ∀l ∈ L

(5i)zkl =
∑

j∈N ,j �=k

xkj · pjl + xko · pol , ∀k ∈ N , ∀l ∈ L

(5j)pjl = G(pol),∀j ∈ N , ∀l ∈ L

(5k)
xko ≤

∑

l

∑

k
′
∈N ,k

′
�=k

pk ′ l ∗ xk ′k + x̂ko, ∀k ∈ N , ∀l ∈ L

(5l)xkj , xio ∈ {0, 1},∀k , j ∈ N

(5m)Uk ≥ U∗
k ∗ ρk , ∀k ∈ N

(5n)U∗
k = max

x
′

kj

U
′

k , ∀k ∈ N
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Optimistic condition

Even though we should take more concerns for the pessimistic condition, we still have 
a model for the optimistic condition. Under optimistic condition, the users in the sys-
tem will choose the schedule which will be the best case for our information provider 
i. Therefore, the optimistic model ( CO2o ) will just make change for the objective func-
tion in model ( CP2o ). 

 where all the constraints will keep the same with model ( CP2o).

BRUE model with budget restriction

In this model, we will consider the edit and post budget for different information. In 
addition, also consider in the objective function for the cost to edit and post the infor-
mation. Here, just write out the model under pessimistic condition. 

Set P is set of post plan restricted by the budget. It is defined as 
P = {pil |

∑

l∈L cl · pol <= Bo} . Parameter Bo is the budget for information provider o 
to edit and post information. Parameter cl is the cost to post information l. Parameter 
so is the total information post cost for o.

Algorithm
We use the linear threshold principle to determine the information cascading pro-
cess. When the summation of the influence of user j′s followees who post information 
l is greater than the threshold of user j for information l, user j will re-post informa-
tion l.

The following algorithm is to determine user’s re-post decision based on the linear 
threshold principle and known post plan of information provider o. 

(5o)s.t. (2b
′

)− (2g
′
)

(6a)
(CO2o) :

max
pol

max
xko

BP(xko) =
∑

k∈N

dkoxko

(6b)s.t. (5b)− (5o),

(7a)
(CPBo) :

max
pol∈P

min
xko

BP(xko) =
∑

k∈N

bkoxko − so

(7b)s.t. so =
∑

l∈L

cl · pol ,

(7c)(5b)− (5o).
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Remark 1

By applying the process of cascading with threshold principle n times, the cascading must 
stop.

Prove: 1, we can not just apply the cascading process one time. The reason is for exam-
ple, user k cannot be activated with the first time cascading, but one of its followee gets 
activated. Then, perhaps with the summation of this followee’s influence and the pri-
mary influence, user k can be activated. Thus, we need to apply multiple times for the 
cascading until the influence for re-post in the network becomes stable.

2, If after one round cascading, the information post decision of all users keep the same. 
Then, it means the cascading already finished, there will have no extra cascading. Even 
if we apply more rounds of cascading under this condition, the re-posting behaviour 
among users will not change any more. If after one round cascading, some information 
post decisions of all users have changes. It means at least one user changes their deci-
sion, so if we run the cascading process for n times. In addition, each time, it has at least 
one change in re-posting behaviour. The re-post behaviour must be changed more than 
n times. But we know the behaviour can change at most n times since it just n users in 
the network. Thus, either the re-posting already becomes stable before running n times 
or every users choose to re-post the information. No matter under which condition, the 
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re-posting must get stable after n times to run the cascading. Number n is the number of 
total users in the system.

Due to Remark 1, we run the cascading n times with the for loop at line 9 in 
algorithm 1.

In model ( CP2o ), it is a three-level optimization problem, and in constraint (5i), it has 
the quadratic terms. However, we can notice that if we know the value of variables pol 
in the first level, the problem will decompose to several one-level mixed linear integer 
program (MILP) problem. We can imagine if we have the value of {pol |∀l ∈ L} , we can 
get all values of {pjl |∀j ∈ N , l ∈ L} . Then, constraint (5i) becomes a linear constraint. In 
addition, we can also calculate the value for the third-level problem. It means we can get 
the value of {U∗

k |∀k ∈ N } . Then, the total problem is decomposed to (n) one-level MILP 
problem in the third level. In addition, (1) MILP problem in the second level, where n is 
the number of total users in the system.

One possible method to solve this problem is to numerate all possible plans for the 
first-level problem. However, we can know that the number of different schedules to 
post information for user i is 2|L| , where |L| is the number of information our informa-
tion provider may post. When |L| is increasing, the number of schedule will increasing 
exponentially. It is not a good method for the problem with large number of information 
to decide whether or not to post.

For large-scale problem, we use the idea of large neighbourhood search method for the 
first level. The detailed algorithm is shown in algorithm 2 ALG-LNS. These two methods 
can be used for both pessimistic and optimistic conditions. The following algorithm just 

shows the pessimistic condition. 
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In algorithm 2 ALG-LNS, S is the set for all possible schedule to post information of 
user i. The number of elements in S is 2|L| . K is the number of iterations needed for the 
problem. we can know that the calculation complexity for it is O(|L| ∗ K ) . Based on dif-
ferent requirements of accuracy, we can use different K. The value h[s] is an indicator 
whether the plan s already seems as the location maximum before. ct is the calculation 
time. TL is the time allowance for calculation.

From the algorithm, we can know that within each iteration k, the post plan pol is actu-
ally becoming an input. In addition, based on the linear threshold principle, we can get 
all of the variables’ value pjl in the math model. Therefore, all the users’ post behaviour is 
input now. This is the reason we do not need to linearize constraint (5i).

Computation result
Dataset

We use the synthetic network to calculate the model. We generate the network with dif-
ferent types of information, different numbers of users in the network. The following 
Table  1 gives the structure of the network. We have 3 different types of dataset to be 
calculated.

The coefficient bkl is the coefficient for user k to get boring about information l. We 
generate it by using the random function in [0, 2]. The coefficient vkl is the coefficient 
for user k to get how much value of the information l if just receive it for one time. We 
generate it randomly in [0, 10]. The coefficient dko is the importance of user k to provider 
o. We generate it using the random function in [0, 100]. The threshold values for each 
user to re-post the information are generated in two categories. First category includes 
the user with high threshold. With probability of 40% in total users. we generate them 
randomly in [2, HT]. The second category includes the users with low threshold. We 
generate them randomly in [2, LT], where HT = 10000 ∗ N ∗ D and LT = N ∗ D . N is 
the number of users in the network. D is the density of arcs in the network. The influ-
ence between two users is generated randomly between [1, HI], where HI = N ∗ D/2 . 
The posting cost for information l is cl . It is generated randomly between [0,300]. The 
total budget for the posting cost is $2000.

All models and algorithms are programmed in Python 3.7 and solver Gurobi 7.5.2. All 
results are calculated on a personal computer. It has Intel Core i7-7820 HQ processors 
with CPU at 2.90 GHz and RAM with 24.0 GB.

Result of connection utility for information provider

Post plan of information provider

Figure 3a gives out the maximum utilities for different post plan under BRUE coefficient 
ρ = 0.8 using the dataset under case 1 shown in Table 1. It uses the information utility 

Table 1  Dataset

Case Node Information Density

1 20 5 0.3

2 100 20 0.1

3 1000 5 0.1
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function in Fig. 2a. We can find out that maximum plan has the index 13, which means 
the post plan is pmax = [0, 1, 1, 0, 0] . Under this case, the maximum utility for post plan 
is to post information 2 and 3 and not post information 1, 4, and 5 for our information 
provider. This is the result for a simple example that can be enumerate all schedules to 
remove the first level in our model. But in large-scale problem, we will use algorithm 2 
ALG-LNS to give out the heuristic solutions.

Figure 3b gives out the result using the information utility function in Fig. 2b. We can 
see that under this case, more post plans can get the maximum utility of connection for 
the information provider. It means the users in the system will easily choose connecting 
to others because this user can have more information utility when he or she will get the 
information more times.

Influence of BRUE coefficient ρ

Figure 4 shows the result of the influence of BRUE coefficient ρ in worst condition and 
best condition with case 1 in Table 1. We can see that under worst condition, when ρ is 
increasing, the total utility is also increasing. This is because by increasing of ρ , the feasi-
ble region of BRUE constraint is decreasing. For worst case, the objective function value 
is increasing. In addition, for best case is a horizon line, this is because when ρ = 1 , it 
already get the maximum utility under this condition. In addition, the values of utility 
under best case and worst are also equal when ρ = 1 . Which means under the condition 
game theory, worst case and best case are the same case.

Information provider’s utility for Dif-
ferent Post Plan by decreasing information
utility

Information provider’s utility for Dif-
ferent Post Plan by increasing information
utility

(b)(a)

Fig. 3  Utility for different post plan

Worst Case of BRUE

BRUE Model

Influence of BRUE coefficient ρ in worst
case

Influence of BRUE coefficientρ in best
case

(a) (b)

Fig. 4  Influence of BRUE coefficient ρ
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Compare BRUE model and game theoretical model

In this section, we calculate the post plan for our information provider if we use the game 
theoretical model to forecast the users’ behaviour in the network under the worst condi-
tion. Then, we use this post schedule in our BRUE model, under different BRUE coeffi-
cients, we will get different maximum or minimum connection utilities for our information 
provider. We compare the relative difference to show how much the system will perform 
better using BRUE instead of game theoretical model under different BRUE coefficients.

Figure 5 is the comparison the connection utility of BRUE and game theoretical model 
with dataset case 1 in Table 1 under different BRUE coefficient ρ . We can see that using 
the post behaviour got from game theoretical model and use it in BRUE, the total utility 
is less or equal to the post behaviour directly obtained from BRUE model. By decreasing 
of ρ , the relative difference generally becomes larger.

Figures  6, 7 are the solutions that is obtained relatively from case 2 and case 3 in 
Table 1. We can see that the larger the number of nodes in the system, the more smooth 
the curves are.

Result using large neighbourhood search method

We calculate the result using the dataset in case 2. In addition, we also use different ini-
tial solutions when use large neighbourhood search.

Compare of Game Theoretical Model and
BRUE Model

Relative Difference(b)(a)

Fig. 5  Comparison of BRUE model and game theoretical model 1

Compare of Game Theoretical Model and
BRUE Model

Relative Difference(a) (b)

Fig. 6  Comparison of BRUE and game theoretical model 2
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Result without budget and cost penalty

Figure 8 is the result without budget and penalty in the objective function using large 
neighbourhood search method under case 2. The value is the same after about itera-
tion 8 is the same is because for different information post schedule, it may lead to the 
same connection of the network. Then, the result of different iterations in large neigh-
bourhood search just keep the same. This result is obtained from the initial solution 
0, which means the information provider will not post any information at the first 
iteration. The calculation time we set is 1 h. We can also get the result from enumer-
ate method, which is to enumerate all possible post schedules. Compared to the large 
neighbourhood search method, it gets the same solution. But the calculation time is 
about 2 days. It is much longer then LNS.

Compare of Game Theoretical Model and
BRUE Model

Relative Difference(a) (b)

Fig. 7  Comparison of BRUE and game theoretical model 3

Fig. 8  Large neighbourhood search without budget
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Result with budget and cost penalty

Figure  9a is the result from data case 2. We solve it from the starting point ’1’, which 
means the information provider posts all information at the first iteration. We can see 
the optimal solution actually already obtained at iteration 10. In addition, the optimal 
solution value is 4798.84. The time cost for the first one is 1 h. For the second one, it is 
just 10 min that can get the optimal solution. After we enumerate all possible sched-
ules, we also get the global optimal solution is 4798.84. But the time cost is about 2 days, 
which is much longer than the time using large neighbourhood search method.

Figure  10 is the result with budget and cost penalty, and the starting point is ’0’. It 
means the first post plan is to post nothing to the network. We can first know that the 
total objective value is smaller than the model without budget. It is obviously because in 
this case actually some post plan is prohibited by the budget.

Long Time Range Short Time Range(a) (b)
Fig. 9  Result of large neighbourhood search without budget and with cost penalty

Fig. 10  Large neighbourhood search with budget with cost penalty1
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The starting point from ’0’ can get the optimal solution more quickly than start from 
’1’. This is because under this example, the final post schedule does not need to post too 
much information to get the optimal solution.

Conclusion
This paper develops several multi-level optimization models, based on boundedly 
rational user behaviours, to calculate the best posting plan for information providers 
seeking to build the strongest influence network. Using the best plans, the information 
provided can maximally expand its connections with users. Through extensive numeri-
cal experiments, we found that in the BRUE model, the smaller BRUE coefficient ρ , the 
less connections our information provider has in pessimistic conditions. Thus, no matter 
what kind of information the information provider posts, it is easier to lose such users 
in the network. Therefore, the information provider should pay more attention to the 
users with high BRUE coefficient ρ . The BRUE model performs better than the game 
theoretical model for maximizing the information provider’s connections, especially 
when BRUE coefficient ρ is relatively small. In addition, we found that the large neigh-
bourhood search method is a useful algorithm for large-scale problem, consuming a rea-
sonable computational time. The local optimal from LNS is equal to the global optimal 
solution in our case study, but much less time is spent in obtaining the optimal solu-
tion. Another advantage using LNS is seen when the variable of the first level is fixed. 
The three-level optimization problem can be directly decomposed to several single-level 
MILP problems. The initial solution when using LNS can also impact convergence speed 
to an acceptable local optimal solution. In general, when we have more people with a 
high boring coefficient, it is better to start from the plan that posts zero information. But 
when we have more people with a low boring coefficient or negative coefficient, it is bet-
ter to start from the posting plan that posts all information within the cost budget.
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