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Introduction
Centrality measures are an important tool in social and complex network analysis to 
quantify the eminence of nodes. These measures remain invariant under isomorphic 
transformation of a network [2]. By definition, a centrality measure is a quantification 
of the structural importance of a node based on its location, connectivity, or any other 
structural property. These have been used not only by the network scientists, but also 
by biologists, sociologists, physicists, psychologists, and economists over time. Several 
measures are coined in literature. The most popular centrality measures for network 
analysis (traditional measures) are degree, closeness, betweenness and eigenvector cen-
trality. Readers are referred to the books by Jackson [3] and Brandes and Erlebach [2] 
for a detailed survey on the centrality indices and their applications. There exist several 
other measures which either extend or generalize these traditional measures or limit 
them to a restricted application. Moreover, various variants of these centrality measures 
have been proposed which consider a set of nodes and compute its collective centrality, 
called group-centrality [4]. Yet another direction is to combine various centrality meas-
ures to achieve better results for answering more complex problems. Such measures 
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are termed as hybrid-centralities and few of them are summarized in section on related 
works.

In the last two decades, a major portion of the interdisciplinary work evolved just 
applying these measures to extract information from underlying network data. Each of 
the proposed centrality measures ranks nodes in a network based on a specific structural 
attribute, making them application specific. Due to this reason, choosing an appropriate 
centrality for a given application has been a key issue in network analysis. A major por-
tion of the research work done in this direction is concerned with selecting the best of 
the available measures for a particular application or defining a new measure that out-
performs the existing ones.

Most of the centrality measures proposed in literature were first defined for 
unweighted graphs, i.e., all of the nodes and all the edges were assumed homogeneous in 
the beginning of centrality computation. We refer these measures as unweighted central-
ity measures. After realizing the existence and understanding the necessity and impor-
tance of weights on the edges, centrality measures for unweighted graphs were extended 
to edge-weighted centrality measures. These measures take weights on the edges into 
consideration for ranking the nodes while analyzing the networks, but still assuming 
equal weights on the nodes. A substantial part of the present-day research in the analysis 
of weighted networks considers only edge weights to determine the topological signifi-
cance of nodes [5].

We call a network with nonuniform weights on both: edges and nodes, as a fully 
weighted networks. Several such networks surround us. The weights on the nodes in 
fully weighted networks can be understood as some sort of mapping of the character-
istics or attributes of the nodes to some real value. At times, these weights can also be 
dependent on the structure around the nodes. Let us understand the possibility of exist-
ence of weights on the nodes with the help of some popular networks around us. In 
these networks weights on the edges have already been discussed above. Therefore, here, 
we only discuss regarding the existence of nonuniform weights on the nodes. 

1. Friendship/social networks: in this type of networks, nodes represent persons and 
edges represent the friendship relationship between the considered set of persons. 
Here, weights on the nodes can be understood as a mapping of wealth, power, educa-
tion level, or some other attribute of persons. It is notable that existence of two per-
sons with identical attributes is highly unlikely and therefore all person’s attributes 
can be mapped to different real values based on the application specific mapping.

2. Public transit networks: road networks, train networks, metro rail networks, airline 
networks are some of the major public transit networks. In these types of networks, 
nodes represent locations (place) and edges represent direct connected traveling 
medium between the locations. In such a network, weights on the nodes can be 
understood as a mapping of the population, frequency of commuters, development 
status, popularity for tourism, etc., of the location represented by that node.

3. Communication networks: in communication networks, nodes are represented by 
the communicating devices and links represent the direct (wired or wireless) connec-
tion between these devices. Weights on the nodes in such networks can be under-
stood as the role, cost, location of these devices.
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4. Co-authorship network: in such type of networks, nodes represent authors and 
edges represent the co-authorship relation, i.e., at least one article was written by 
the authors across each edge as co-authors. In such a network, weights on nodes can 
represent the popularity, h-index, citations, awards, designation of the authors, etc.

Similar to the networks stated above, several other kinds of networks also fall into 
the category of fully weighted networks. It should be noted that in any network, all 
nodes (actor/devices/places/person) with same characteristics is highly unlikely. One 
basic reason to ignore the weights on nodes is the hardness and complexity in figur-
ing out the non-trivial mapping from attributes of nodes to real values. Another rea-
son is to avoid the complexity of the analysis process, but sometimes the ignorance of 
node weights might lead to a wrong analysis of the given network. We show through 
toy examples that the unweighted and edge-weighted centrality measures may exhibit 
limitation in correctly analyzing the fully weighted networks. Therefore, it becomes 
essential to also consider weights on nodes in the process for a better analysis of fully 
weighted networks. Due to this reason, there was a need to upgrade the previously 
defined unweighted and edge-weighted centrality measures so that weights at the 
nodes can also be taken into account for the analysis.

Therefore, while considering the weights on the nodes, there can be two possible 
extensions of the unweighted and edge-weighted centrality measures:

• Node-weighted centrality measures: consider only the node weights for the analy-
sis while taking all edge weights as one.

• Fully weighted centrality measures: consider both types of weights, edge weights 
and node weights for the analysis.

In most of the studies done so far on fully weighted networks, while considering 
weighted edges, weights on the nodes were completely ignored. Meanwhile, only a 
little work has been accomplished while considering the weights on nodes in the real-
world networks [6–9]. The main contribution of this paper is to motivate the analysis 
of networks while considering the weights on the nodes. In order to overcome the 
challenges in figuring out the weights on the nodes, we propose to use appropriate 
centrality measures to generate the weights and then further use these weights in the 
node-weighted centrality measures to analyze a given network. We give two applica-
tions based on this principle of hybridization.

In the next section, we provide the basic notations and provide definitions of tradi-
tional unweighted centrality measures. Two toy examples pointing out and motivat-
ing the necessity of considering weights on the nodes is discussed after that. Next, 
node-weighted centrality measures and related works are summarized. Afterwards, 
new hybridization of centrality measures are introduced for solving two complex 
computational problems in networks based on the definitions of node-weighted cen-
trality measures. The experimental comparison between the newly proposed hybrid 
centrality measures and traditional centrality measures on real-world networks is 
comprised in the respective sections on problems. Finally, we conclude and discuss 
the prospective future directions.
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It is an expanded and extended version of the results that appeared in CSoNet 2019 [1]. 
The conference version titled “Hybrid Centrality Measures for Service Coverage Prob-
lem” discussed a hybridization of centrality measures to solve Service Coverage prob-
lem based on the formulation for node-weighted centrality measures. In this version, we 
have extended the concept of this type of hybridization to solve another problem called 
spread maximization problem. Due to this, the structure of the paper has been revised 
and this version is focused on motivating hybridization of centrality measures based 
on the formulation of node-weighted centrality measures. Application of the proposed 
measures to more than one problem in this version exhibits the potential for this kind of 
hybridization and motivates for several open directions in this area.

Unweighted centrality measures
This section first defines the basic notations used through out the paper. Then, we briefly 
summarize traditional centrality measures; degree, closeness, betweenness, and eigen-
vector. We also describe in brief harmonic centrality that is highly correlated to close-
ness centrality.

Let G = (V ,E) be an undirected unweighted network, where V is the set of nodes and 
E is the set of links. Let the number of nodes in the network, i.e., the cardinality of set V 
be |V | = n and the number of links, i.e., the cardinality of set E be |E| = m . Let A be the 
adjacency matrix of size n× n in network G, where entry aij denotes whether there is a 
link between node i and node j. aij = 1 if there exists a link between node i and node j, 
otherwise aij = 0 . Let dij be the geodesic distance, length of the shortest path, between 
node i and node j. Next, we discuss in brief some of the widely used centrality measures.

• Degree: Freeman’s [10] degree centrality considers that a node’s importance is pro-
portional to its degree, number of links connected (starting/ending) to that node. 
Mathematically, degree centrality of a node u, 

 Degree centrality can be normalized by dividing the above expression with n− 1 . 
In a social network, degree centrality of a node represents that node’s popularity. 
A higher degree node has many followers/friends which shows the strength of the 
node. Lower degree nodes are the actors who are nearly isolated from the population 
of the network and are least popular.

• Closeness: Freeman’s [10] closeness centrality considers a node’s importance to be 
inversely proportional to the sum of its distance to other nodes. Mathematically, 
closeness centrality of a node u can be represented as 

 Closeness centrality can be normalized by multiplying the above expression with 
n− 1 . The concept of closeness centrality was first given by Freeman [10] for social 
networks, but the concept has existed for a long time as status of a node [11]. Close-
ness centrality of a node in a network represents the node’s average distance, i.e., the 

DC(u) =
∑

v∈V \{u}

auv .

CC(u) =
1∑

v∈V \{u} duv
.



Page 5 of 33Singh et al. Comput Soc Netw             (2020) 7:6  

expectation of how much time, a piece of information that started flowing from any 
node in the network, will take to reach that node or vice-versa. A higher closeness 
central node gets updated very early when some information is spreading and nodes 
with low closeness centrality have to wait longer for getting updated with the flowing 
information.

• Harmonic: harmonic centrality [5, 12] considers that a node’s importance in a net-
work is proportional to the sum of inverse of its distances from other nodes. Math-
ematically, harmonic centrality of a node u is 

 Freeman’s [10] closeness centrality was not applicable on disconnected networks. 
Harmonic centrality is highly correlated to closeness centrality [12] and works well 
on disconnected and directed networks.

• Decay: this centrality works on same principle as harmonic centrality but at place of 
penalizing the contribution of nodes linearly, it does exponentially [3]. Mathemati-
cally, decay centrality of a node u is, 

 where δ lies between 0 and 1. δ is called decay parameter.
• Betweenness: Freeman’s [10] betweenness centrality considers that a node’s impor-

tance is proportional to the number of times that node occurs in the shortest paths 
between all possible pairs of nodes in a network. Mathematically, betweenness cen-
trality of a node u, 

where σst is the total number of shortest paths from node s to node t and σst(u) is 
the total number of shortest paths from node s to node t passing through node u. 
Betweenness centrality can be normalized by dividing with (n−1)(n−2)

2  . The concept 
of betweenness centrality was first proposed by Anthonisse [13] and Freeman [14] 
independently. Betweenness centrality of a node in a network represents the node’s 
brokerage power, i.e., control over the flow passing through the network with the 
assumption that information is flowing through shortest paths. A higher between-
ness central node controls a major fraction of flow passing through the network 
while a low betweenness central node has nearly no such control.

• Eigenvector: Bonacich’s [15] eigenvector centrality considers that a node’s impor-
tance in a network is proportional to the sum of the importance of neighboring 
nodes in that network. Mathematically, eigenvector centrality of a node u can be 
written as, 

HC(u) =
∑

v∈V \{u}

1

duv
.

DKC(u) =
∑

v∈V \{u}

δduv ,

BC(u) =
∑

s,t,u∈V :|{s,t,v}|=3

σst(u)

σst
,

EC(u) =
∑

v∈V \{u}

(auv · EC(v)).
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 Eigenvector centrality of a node in a network represents the power of a node’s neigh-
bors in the network. A node with high eigenvector centrality indicates the direct 
connection of this node to important nodes in the network and vice-versa.

Toy examples
Consider the example networks given in Fig. 1. Let us assume that the first network in 
Fig. 1 is a road network connecting the cities of a state where the size of nodes repre-
sent the weights (in this case population) on the nodes. City F is highly populated while 
Population in other cities is significantly low and several times lesser than city F. Aver-
age-sum facility location problem questions for a node in a given network that is at the 
minimum average distance to all other nodes in the network. Now, if we are attempt-
ing to solve the average-sum facility location problem to install a facility for the whole 
population of the state, the solution is the most closeness central node assuming equal 
population in each city. By the definition of closeness centrality, the answer is city C, 
but this city is not really suitable in the reality for the whole population. The answer is 
city F where most of the population of the state already resides. Now, suppose if we are 
tackling a problem where the goal is to find a city from which maximum population is 
exactly at one hop distance, degree centrality seems to solve this problem in unweighted 
networks but here it fails. Degree centrality ranks city C as the most central but because 
of nonuniform distribution of population, city E is the correct answer.

Next, let us assume that the second example network given in Fig. 1 is a communi-
cation network where the size of nodes denotes weights (in this case we can assume 
importance/vitality) of the nodes. We assume that communication happens through 
shortest paths and the importance of a communication is a function of the importance 
of nodes, between which communication is happening. Here, we assume that the func-
tion computes the multiplication between the importance of the communicating nodes. 
Now, the goal is to compute the node which controls the most important communica-
tions in the network. Applying betweenness centrality, which is a tool directly used for 
this type of problems, answers node C neglecting the importance attribute. In the reality, 
node J is the answer because it controls the communication between the most impor-
tant nodes in the given network. We note above that the existing centrality measures 

Fig. 1 Two counterexample networks, with size of nodes representing weights on the nodes
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neglect node weights and due to this, are prone to analyze incorrectly the fully weighted 
networks. Therefore, there is a need to upgrade the current definitions of unweighted or 
edge-weighted centrality measure.

Node‑weighted centrality
This section summarizes centrality measures that take into consideration the weights on 
the nodes while giving equal priority to the edges in a given network. These fall in the 
category of node-weighted centrality measures. We only mention these here to avoid 
the complexity of including weights on both edges and nodes. Once, these measures 
are understood, we recommend the readers to combine these measures with the edge-
weighted centrality measures given in [5] to derive the definition for fully weighted cen-
trality measures. Recall G = {V ,E} as the undirected unweighted graphs. We add an 
extra element, weights on the nodes defined as a function W : V → R , where R is set 
of real numbers. Let Wx be the weight given at node x. We do not directly use Wx in 
the definitions, but at place of it, we use a function f of Wx (or a function of Wx and 
Wy depending on the number of parameters) without losing the generality. This gives 
us the flexibility to tune the function of weights on the nodes according to our need. 
Here, in this paper we take f (Wx) = Wx for the simplicity. To normalize the new cen-
trality measures, we divide by the maximum possible value that any node can score in 
the numerator of below-given formulas. We start with degree centrality.

• Node-weighted degree centrality: in [6], weights on nodes are considered and the 
definition of degree centrality is modified to accommodate the node weights. Abbasi 
and Hossain [6] considered centrality scores as weights on the nodes. Following it, 
node-weighted centrality of a node u is calculated as: 

 This measure assigns higher importance to those nodes which are in the immediate 
neighborhood of highly weighted nodes. Next two measures extend the considera-
tion to all the nodes to compute the eminence of a node.

• Node-weighted closeness/harmonic centrality: to target the wider applicability, we 
define node-weighted harmonic centrality (which also can be used in the case of 
closeness centrality computation as both are highly correlated). Node-weighted har-
monic centrality of a node u in a network is defined as: 

 This measure depends on two factors: weight of the node u under consideration and 
the effective weights of other nodes corresponding to their distances from node u. It 
assigns a higher value to the nodes that are of high weights and closer to the nodes 
with high weights. We refer this measure as harmonically attenuated node-weighted 
centrality measure.

• Node weighed decay: weighted decay of a node u in a network as defined as 

∑
v∈V \{u}(f (Wv) · au,v)∑

x∈V

f (Wx)
.

f (Wu)+
∑

v∈V \{u}
f (Wv)

du,v+1∑
x∈V f (Wx)

.
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where δ lies between 0 and 1. Here also the computation of importance depends on 
the same two factors as in NWCC. But, the contribution of weights of other nodes 
decays exponentially with distance. Weighted decay assigns a higher value to the 
nodes that are of high weights and very close to the nodes with high weights. We 
refer this measure as exponentially attenuated node weighted centrality measure.

• Node-weighted betweenness centrality: in [16], a factor denoting the importance of 
communication between two pairs is multiplied in the core formula while computing 
the betweenness centrality. The node-weighted betweenness centrality of a node u 
was defined as 

where f (Wx,Wy) can be assumed to map the weights given on node x and y to a real 
value denoting the importance of flow happening between x and y.
Eigenvector centrality is a measure where it is still open how to include the effect of node 
weights. Even if we start the eigenvector centrality computation with a vector compris-
ing the weights on the nodes, at the time when the convergence occurs, we arrive at the 
same eigenvector as the solution every time. It is because the computation of this par-
ticular centrality is dependent only on the adjacency matrix and eigenvector is the prop-
erty of this matrix only. One way around here is to follow the idea given in [9], where 
they multiply the βth power of the weight of each node to its unweighted centrality to 
compute node-weighted centrality. Here, β takes a value from the interval [−1, 1].

In this paper, we do not explore about these measure in the experimental section. We 
plan to do a thorough application oriented study of the above measures in near future. 
We present the definition for the sake of completeness of major traditional centrality 
measures.

Related work
Centrality measures are the tools to find application specific importance of a node. 
Unweighted Centrality measures mentioned earlier, are the most widely used measures 
but for complex problems and applications, these measures are inefficient. In that case, 
a combination of these centrality measures produces better analysis than using them 
individually. In a recent study [6], authors have proposed a new set of hybrid centrali-
ties; degree-degree, degree closeness, and degree betweenness. They noticed that the 
newly defined centrality measures are different than the traditional centrality measures. 
On real-world co-authorship network, they found that all the newly defined hybrid cen-
trality measures are significantly correlated to authors’ performance (sum of citations 
of authors’ h-index). A similar study [7] on weighted collaboration networks was done 
and three new sets of collaborative centrality measures were proposed. The traditional 
collaborative centrality measures for an author node (h-index, a-index, g-index) are 
used to propose new centrality measures. Newly defined set of measures were highly 

f (Wu)+
∑

v∈V \{u}(δ
du,v · f (Wv))∑

x∈V f (Wx)
,

∑
s,t,u∈V :|{s,t,v}|=3 f (Ws,Wt) ·

σst(u)
σst∑

x,y,u∈V :|{x,y,v}|=3 f (Wx,Wy)
,



Page 9 of 33Singh et al. Comput Soc Netw             (2020) 7:6  

correlated with the traditional performance measures of scholars (publication count, 
citation count, h-index, a-index, g-index). Zhang et al. [17] proposed a new hybrid cen-
trality measure to measure a node’s importance in satellite communication network. 
This measure is also based on the combination of closeness and betweenness centrality 
but the considered measure in their paper punishes the betweenness importance with 
a different factor. Qiao et  al. [18] proposed a hybrid page scoring algorithm based on 
degree centrality, betweenness centrality, closeness centrality and the PageRank algo-
rithm. Lee and Djauhari [19] proposed a hybrid centrality measure which was a linear 
combination of the degree, closeness, betweenness, and eigenvector centrality measures. 
The proposed measures were used to find the most significant or influential stocks. A 
hybrid centrality based on the linear combination of degree centrality and cohesion cen-
trality was proposed was Qiu et al. [20] and further used for community detection by 
Li-Qing et al. [21]. Wang et al. [22] proposed a hybrid centrality measure based on the 
combination of degree, the degree of neighbors and betweenness. In another study by 
Buechel and Buskens [23], authors analyze a hybrid centrality model as a combination 
of extended closeness (a variation of closeness for disconnected networks), betweenness 
and degree measures. None of the above studies attempt to solve the service coverage 
problem.

The service coverage problem
This section covers the first of two applications covered in this paper, the service cover-
age problem (SCP). We present two new hybrid measures to solve SCP a type of com-
plex facility location problem. We define these measures for networks without weights 
on edges. These can be easily further extended to edge-weighted version of hybrid cen-
trality measures following the ideas for edge-weighted centrality measures given in [5].

Flow networks are those networks where information, people, commodities, etc., move 
from one node to other while traversing on the links. Each node starts with a limited 
bandwidth of resources for convening the flow and these resources prone to collapse/
degrade/reduce over time due to the continuous participation of the node in fostering 
the flow. Due to this, such networks require uninterrupted maintenance/replenishment 
service on a regular basis for the proper functioning of the network. Keeping this in 
mind, service facilities are installed at nodes that meet the service demand of other node 
from time to time.

After a service request is made by some node for more resources or reviving the 
node after a failure occurs, the service team is sent from the service center to meet the 
demand. The response-time to meet the service demand is defined as the time taken 
between the request for service and start of the service work on the demanding node. 
The response-time depends on the distance between the node requesting for a service 
and the node with the service stations. It is under the assumption that the service cent-
ers have sufficient resources to meet the demand of other nodes. The response-efficiency 
of a node is inversely correlated to the response-time, i.e., when the response-time is 
least, the node is said to be maximum response-efficient and most suitable for install-
ing service stations. A node with a higher response-time possesses a smaller response-
efficiency and is not appropriate choice for installing service stations.
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Given an unweighted network, the objective of service coverage problem (SCP) is to 
find a best suited node to install service station facility such that the expected response-
time is reduced. In another word, the goal is to find a node with highest expected 
response-efficiency, i.e., the service should reach faster at the nodes that request for ser-
vice more often than the nodes with moderate or seldom demands. Therefore, service 
centers should be installed closer to the nodes with frequent demands.

Randomly choosing a node to install service facility is certainly not the best solution. 
It is because the randomly picked node may be very far from the nodes with higher 
demand. In such a case where a node with higher load fails, severe damage would have 
already been caused before the maintenance service reaches it. Thus, we require a meas-
ure to evaluate the importance of nodes for the candidacy to install stations covering 
service requests.

Betweenness centrality is used to predict the importance of nodes in a number of flow 
based networks, e.g., power grid networks, public-transit networks, gas line networks, 
and communication networks. The betweenness scores of the nodes in such networks 
have been considered as the load on the nodes in many literature. Several models for 
understanding and replicating the cascading phenomena have been proposed [24–26]. 
Few of these models observe that failure of a node with a high load may cause a severe 
cascading failure and hence result in the breakdown of the whole network system. After 
a node fails, the best way to reduce the damage is to recover the failed node as soon as 
possible. We cannot prevent a node from failure but we can definitely put a maintenance 
mechanism on some of the nodes in the network.

Formulation

In the service coverage problem in flow networks, the load of the nodes (when no other 
information is provided) can be assumed to be proportional to the betweenness central-
ity of the nodes. This is because a node with large flow through it, is expected to degrade 
faster than other nodes and if such a node shuts down, a large amount of flow will be 
affected. Thus we take the probability of node j requesting for a maintenance service 
over a fixed time-interval as

where BC(j) is the betweenness centrality of node j. Let Xij , be the response-efficiency of a 
node i to meet service demand from node j if the service station is going to be installed on 
node i. Certainly, Xij depends on the distance between the node requesting for a service 
(node j) and the node with the service stations (node i). Harmonic decay can be considered 
in applications where the nodes are more robust and the service requirement is not urgent 
while exponential decay might be a more appropriate simplified model in applications like 
real-time systems where service requests need to be met on an urgent basis.

If the response-efficiency decays harmonically in a given application, i.e., the node is 
maximum efficient (efficiency value = 1 ) for itself while it is half efficient (efficiency 
value = 0.5 ) for each of its neighbors and so on, then we can formulate for the value 
of response-efficiency Xij =

1
di,j+1 . Recall, du,v denotes the distance, i.e., length of the 

Pr[Node j request for service] =
BC(j)∑

k∈V BC(k)
,
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shortest path from node u to node v in the given network. Let χi be the total response-
efficiency of a node i if the service station is going to be installed on node i. Then,

The expected response-efficiency of node i ( E[χi] ) is computed by taking expectation 
over that node’s response-efficiency to service all the nodes in network:

We define the following hybrid centrality measures based on the above formulation:

• Harmonically attenuated-betweenness centrality (HABC): this measure is based 
on the harmonic attenuation of importance with respect to the distance. The har-
monically attenuated-betweenness centrality of a node u is defined as, 

 where BC(u) is the unweighted betweenness centrality of node u. This hybrid measure 
assigns a value that is calculated based on an averaging function of distances and between-
ness centrality. This measure assigns a higher value to the nodes that are of high between-
ness and closer to other high betweenness central nodes. This measure solves the SCP 
problem in flow networks where the response-efficiency decays harmonically.
In few complex systems, response-time plays very crucial roles in the functionality of 
networks and the response-efficiency decays exponentially. In such networks, the 
response-efficiency decays faster, i.e., the node is maximum efficient (efficiency 
value=1) for itself while it decays by a multiplicative factor α (efficiency value = α ) for 
each of it’s neighbors and so on. Here, α is a severity factor that lies in interval[0,1]. 
Then we can formulate for the value of response-efficiency Xij = αdi,j . Similar to the 
previous analysis, the expected efficiency of a node i to be a service station, when effi-
ciency decays exponentially by a factor α is E[χi] =

∑
j∈V αdi,j ·

BC(j)∑
k∈V BC(k)

 . We define 

the following hybrid centrality measures based on the above formulation:

• Exponentially attenuated-betweenness centrality (EABC): this measure is based 
on an exponential attenuation in the power of distance. The exponentially attenu-
ated-betweenness centrality of a node u is defined as, 

 where BC(u) is the betweenness centrality of node i. α is the attenuation factor that 
is used in the exponential function to the power of distance. It is used to sharply 
punish the service time. This hybrid measure assigns a value that is calculated based 
on betweenness centrality of nodes and an exponential function in the power of dis-
tances. This measure assigns a higher value to the nodes that are of high betweenness 

χi =
∑

j∈V

Xij · Pr[Node j request for service].

E[χi] =
∑

j∈V

1

di,j + 1
·

BC(j)∑
k∈V BC(k)

.

HABC(u) =
BC(u)+

∑
v∈V \{u}

BC(v)
du,v+1∑

w∈V BC(w)
,

EABC(u) =
BC(u)+

∑
v∈V \{u} α

du,v · BC(v)
∑

w∈V BC(w)
,
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and very close to other high betweenness central nodes. This centrality measure is a 
sharp attenuation variant of harmonically attenuated-degree centrality. This measure 
solves the service coverage problem when the service is required on a very urgent 
basis.

Let m be the number of links and n be the number of nodes in a given network. The 
over all time to compute proposed hybrid centrality measure is O(mn) in unweighted 
and O(mn+ n2 log n) in weighted graphs. It is due to the time complexity for computing 
betweenness centrality [27]. Efficient algorithms for updating and estimating between-
ness centrality measures in dynamic and large-size networks are discussed in [28–30].

Experimental results for service coverage problem

In this section, we discuss the simulation results on various real-world networks. First, we 
discuss the experimental setup. Then, we mention all the data set used for experimentation. 
Next, we provide a comparison of traditional centrality measures: degree (DC), closeness 
(CC), betweenness (BC) and, eigenvector (EC) and the proposed hybrid centrality measure 
[HABC, EABC ( α = 0.5 ), EABC ( α = 0.75 )] in the considered networks. The experiments 
are performed on a Linux system with 8 GB RAM and Intel Core i5-8250U CPU at 1.6 GHz. 
Implementation is done in Python 3.6.7 with the help of Networkx library.

Considered real-world data sets the proposed solution to solve service coverage prob-
lem discussed in this paper hybridizes betweenness centrality within closeness/harmonic 
and decay centrality. Betweenness centrality is first used to compute the load on each 
node, therefore, we have selected 21 real-world flow networks. We provide a brief sum-
mary of these networks in Table 1 and [31–39] can be referred for a detailed descrip-
tion of the networks. We have considered various types of transport networks, energy 
networks, internet peer-to-peer network, etc. The columns of Table 1 consist of names 
of the network instances, the number of nodes (n), the number of edges (m), the aver-
age degree of the networks (Avg. deg.), density of the network, average clustering coef-
ficient ( ̂C ), degree assortativity, the size of the maximum clique and the network type, 
respectively.

Simulation we have conducted simulations for evaluating the performance of vari-
ous traditional centrality measures and the hybrid measures proposed in this paper 
which are summarized in Table  2. The performance of a centrality measure is evalu-
ated by computing the expected response-time in terms of the average distance of the 
service requesting nodes from the top central node as per this centrality measure. We 
have emphasized in bold, the best expected response time in Table 2 for each network 
instances given in Table  1, when a service maintenence center has been installed in a 
node picked according to the considered centrality measures.

Betweenness centrality has been used as one of the best measure to map loads on 
nodes in flow networks  [24]. A node having higher load will be more frequent in 
requesting for services. Therefore, we consider the probability of a node requesting for 
services proportional to the betweenness centrality of that node. The expected response-
time is computed over ⌈n/10⌉ service requests where n is the number of nodes in respec-
tive real-world networks. The first column in the table contains label of the considered 
real-world network instances. The next columns lists the expected response-time of the 
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traditional centrality measures (BC,CC, DC, EC) and the proposed hybrid measures 
(HABC, EABC(α = 0.5) , and EABC(α = 0.75)).

It is evident from Table  2 that no traditional measure can consistently find an ideal 
service center. While at least one of the proposed hybrid centrality measures are always 
able to minimize the average response-time for all considered networks. In some cases 
such as Madrid Metro, Paris Metro, Osaka Metro, Seoul Metro, and Tokyo Metro, the 
proposed measures even outperform all the traditional measures.

Node ranks here, we discuss the ranking result of nodes by various centrality meas-
ures. Table 3 contains the ranking list of the top three central nodes using the proposed 
hybrid measures and the traditional centrality measures on the considered real-world 
networks given in Table 1. Due to space constraints, only the data of top three central 
nodes have been presented in the paper. The first column in the table contains the label 
of the considered real-world network instances. The next columns in a group of three 
lists top 3 central nodes using the proposed hybrid measures (HABC, EABC(α = 0.5) , 
and EABC(α = 0.75)) and the traditional centrality measures (BC,CC, DC, EC).

Finding only the most central node might not be useful in the cases when the top cen-
tral node does not allow it to be made as a service facility due to some constraints. In 
that case, finding the first top-k potential centers are important. It is evident from the 
experimental results that the proposed measures are results of hybridizations between 
closeness centrality and betweenness centrality.

We have emphasized the top-ranking node for a few entries in the table and have writ-
ten them in bold to exhibit the above phenomenon. For some networks, the top-rank-
ing node as per HABC is the same as BC but not as CC and vice-versa. The ranking 
on two networks (Minnesota Road and Moscow Metro) also provide evidence that top-
ranking nodes due to the proposed centrality measures are different from closeness and 
betweenness centrality. In addition to these two, another network (Openflights) shows 
that these proposed measures also rank nodes differently than each other.

It is evident that no single standard centrality measure is a perfect substitute for our 
proposed centrality measures. As our measures follow directly from the requirements of 
the Service Coverage Problem, it is evident that current centrality measures are not suf-
ficient to solve the problem adequately.

We present the Spearman’s rank correlation coefficient, Kendall’s rank correlation 
coefficient and Fagin’s intersection metric [40] to evaluate the correlation between tradi-
tional centrality measures and the proposed hybrid centrality measures in Tables 4, 5 and 
6, respectively. For our purposes we compute the Fagin’s rank intersection for top-1000 
ranks in the network. In case the number of nodes is less than or equal to 1000, the rank 
intersection is computed for all nodes in the network. The first column in the tables con-
tain the label of the considered real-world network instances. The next four columns com-
prise the rank correlation between HABC and the traditional centrality measures (BC, CC, 
DC, EC). Similarly the next four columns contain the rank correlation values between and 
EABC(α = 0.5) and BC, CC, DC, EC, respectively. The last four columns are the rank cor-
relation between EABC(α = 0.75) and the traditional centrality measures.

The experimental results in Tables 4 and 5 for the Spearman’s and Kendall’s rank cor-
relation coefficients make it evident that ranking by the proposed hybrid measures is dif-
ferent than traditional centrality measures. The average correlation coefficient between 
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the proposed measures and traditional measures, although is positive but very small. The 
standard deviation is larger than the average coefficient values for most of the computa-
tion of rank correlation. It is due to several negative correlation coefficient values. Based 
on the average rank correlation coefficient values, HABC is best correlated with CC and 
then BC among the traditional measures. EABC(α = 0.75) also exhibits similar pattern 
as the decay rate is slower than EABC(α = 0.5) . EABC(α = 0.5) is best correlated with 
the CC and then EC among the traditional measures. The proposed measures are least 
correlated with DC. The high Fagin’s intersection is due to the ranks being restricted to 
the top-1000. Therefore, the existing traditional measures do not provide the solution to 
the service coverage problem. The top-ranked nodes by the proposed hybrid centrality 
measures are more appropriate in this application.

Spread maximization in complex contagion
In this section, we present the second application. Contagions are the phenomena of 
disease/behavior/trends/information/idea spreading across networks. Contagions can 
be classified as simple or complex. Simple contagions can be transmitted by a single 
infected individual to other. Complex contagions, however, require multiple exposures 
to infect an individual. Instead of simple contagions like diseases, there have been stud-
ies such as [41] and [42] which indicate that the spread of ideas, trends, behavior, influ-
ence and information in a social network can be more accurately modeled as complex 
contagions. In a recent study by [43] on real-world networks, it has been noted that 
influence maximization is not due to the nodes in higher cores. We consider complex 
contagions first in a linear threshold diffusion model setting [44, 45]. Linear threshold 
models are one of the classical diffusion models. The considered linear threshold model 
in this paper assumes that a fixed proportion of neighbors of an individual need to be 
infected in order to transmit infection to that individual. It is also referred as relative 
threshold model. There are other models that considered deterministic thresholds yet 
distinct for each individual. Another deterministic threshold model fixes the threshold 
to be a constant number and does not depend on the neighborhood size. In stochastic 
setting, uniformly random thresholds from an interval are considered for individuals.

We also consider two stochastic models of diffusion, independent cascade and sto-
chastic linear threshold. In the independent cascade model every edge in the network is 
associated with a random value which represents the probability of diffusion across the 
edge. The stochastic linear threshold model is a linear threshold model in a stochastic 
setting as explained earlier.

The total number of people infected can depend upon where the contagion starts, 
threshold on individual node, etc. There can be multiple sources in a network which can 
start a complex contagion. This is especially true in the case for complex contagions, 
which have a hard time jumping across communities [46]. Hence identification of an 
ideal origin of trend/behavior/idea, etc., for a contagion can be helpful if we want the 
contagion to spread to maximum number of people. This has real-world benefits, such 
as in social marketing campaigns.

In this section, we consider the problem of finding a seed node that could spread 
a behavior/advertisement/idea/trend or influence to maximum number of nodes. It 
is referred as spread maximization problem. In complex contagion, a single node 
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might not have the strength to even start the propagation of infection, therefore, it is 
assumed that the neighborhood of the seed node is also infected with the seed node 
at time step zero.

Formulation

In this section, we formulate hybrid centrality measures for the above stated prob-
lem of spread maximization in complex contagions. When choosing a source for 
infection, several factors come to mind. Out of which, the most important is that the 
node must have high enough degree to expose multiple individuals with the infec-
tion. It also helps if the node is closer to other nodes with high degree to spread it 
further. Hence to measure the potential of a node in acting as a top spreader, we 
use its degree as its node weight. We present the following two hybrid measures to 
identify ideal sources for the spread of complex contagions in the relative threshold 
model, leveraging the hybridization similar to the one used in previous section.

• Harmonically attenuated degree centrality (HADC): in this measure, we attenu-
ate the node weights harmonically with respect to distance. Formally, for a node 
u, the HADC(u) can be expressed as 

 where DC(v) is the degree centrality of node v, m is the number of links in the graph.
• Exponentially attenuated degree centrality (EADC): in this measure, we attenuate 

the node weights exponentially with respect to distance. Formally, for a node u, 
the EADC(u) can be expressed as, 

 where α is a parameter that lies between 0 and 1, m is the number of links in the graph, 
DC(v) is the degree centrality of node v.
Let m be the number of links and n be the number of nodes in a given network. The 
over all time to compute proposed hybrid centrality measure is O(mn) in unweighted 
and O(nm+ n2 log n) in weighted graphs. It is due to the time complexity for all pair 
shortest paths. In real-world, each node has its own threshold which may be deter-
ministic or stochastic in nature and varies from individual to individual. Finding best 
spreader node is possible in O(mn) time if the threshold values at all nodes are fixed 
to some constant value or proportion. Yet, for a different value of threshold, the best 
spreader may change and requires re-computation. The proposed measures do not 
require the knowledge of threshold value to be known beforehand. From the simula-
tion results in the next section, it is evident that these measures have consistently 
performed the best in most cases for different values of threshold.

HADC(u) =
DC(u)+

∑
v∈V \{u}

DC(v)
du,v+1

2m
,

EADC(u) =
DC(u)+

∑
v∈V \{u} α

du,v · DC(v)

2m
,
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Experimental results for spread maximization problem

In this section, we discuss the simulation results for for spread maximization problem 
on various real-world networks. First, we discuss the experimental setup. Then, we 
mention all the data set used for experimentation. Next, we provide a comparison of 
traditional centrality measures: degree (DC), closeness (CC), betweenness (BC) and, 
eigenvector (EC) and the proposed hybrid centrality measure (HADC, EADC(α = 0.25) , 
EADC(α = 0.5) , EADC(α = 0.75)) in the considered networks.

Considered real-world data sets the proposed solution to solve spread maximization 
problem discussed in this paper hybridizes degree centrality within closeness/harmonic 
and decay centrality. The considered problem is related to spread of trends, behaviors, 
influences, etc., therefore, we have picked 15 moderate size real-world social networks 
for simulations. We provide a brief summary of these networks in Table 7 and [31, 36] 
can be referred for a detailed description of the networks. The columns of Table 7 consist 
of names of the network instances, the number of nodes (n), the number of edges (m), 
the average degree of the networks (Avg. deg.), density of the network, average cluster-
ing coefficient ( ̂C ), degree assortativity and the size of the maximum clique, respectively.

Simulation we have conducted simulations for evaluating the performance of vari-
ous traditional centrality measures and the hybrid measures proposed in this paper for 
spread maximization problem which are summarized in Tables 8, 9, 10 and 11. The sim-
ulation is carried out as follows. The top-ranked node for every measure is taken as the 
source of the infection. The source and its neighborhood are infected at time t = 0 . At 
each time step the infection is propagated as per the diffusion model being used. The 
contagion ends if it is unable to infect any susceptible nodes in a time-step. The total 
number of infected nodes by the end of the contagion is the spread-score for the source 
node in the simulation. The performance of a centrality measure is evaluated by comput-
ing the spread-score of the top most central node as per the centrality measure.

For the deterministic threshold model, the spread-scores of top most central nodes 
according to the traditional and proposed hybrid centrality measures in all considered 
real-world networks for different possible threshold value in the interval (0,1) with a step 
increase of 0.1 are plotted in Fig. 2. The figure shows the number of infections on the 
y-axis and the threshold values on the x-axis. As a specific example consider the plot for 
Twitter Lists. The number of infections have a large dip when the threshold increases 
from 0.1 to 0.2. The worst performing metric at the threshold of 0.2 is EC. When 
increasing the threshold from 0.2 to 0.3, we see another dip in number of infections, 
with DC and BC performing almost equally while BC was superior at the 0.2 threshold. 
CC and proposed centrality measures outperform the other measures across the rest of 
the thresholds. The main aim to plot these is to understand, for which interval of thresh-
old values, the spread-scores for various centrality measures vary majorly. It is clear 
from the plots that for most of the considered real-world networks, the spread scores 
vary mostly in the sub-interval [0.3, 0.6]. Yet, the spread-scores for different measures 
are not clear and comparable from these plots. Therefore, the results of the simulation 
for threshold value 0.3, 0.4, 0.5, and 0.6, i.e., for threshold in terms of percentage set at 
30%, 40%, 50% and 60% are presented in Tables 8, 9, 10, and 11, respectively. For each 
of the tables, the first column shows the network name, the second column shows the 
spread-scores of Betweenness Centrality, the third column shows the spread-scores of 
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Closeness Centrality, the fourth column shows the spread-scores for the Degree Central-
ity and the fifth column shows the spread-scores for Eigenvector Centrality. The other 
half of the table, from the sixth column onward shows the scores of the proposed hybrid 
measures. Namely, the sixth column shows the spread-score for HADC, the seventh 

Fig. 2 Spread-scores of top-most central nodes according to the traditional and proposed hybrid centrality 
measures in considered real-world networks for different threshold values as per the deterministic threshold 
model
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column for EADC with α = 0.25 , the eight column for EADC with α = 0.5 and the ninth 
column for EADC with α = 0.75.

We have emphasized in bold, the best spread-score in Table  8, 9, 10, 11, 12 and 13 
for each network instances given in Table 7 overvarious models, when the seed node is 
picked according to the considered centrality measures. As seen in Table 8, at a lower 
threshold, CC performs better than other traditional measures for most networks. How-
ever, as we increase the threshold, we observe that DC starts performing better than 
other traditional measures, as shown in Table 9. Since our measures are a hybrid of both 
the measures, they are able to maintain high scores across the thresholds. As an example 
if we look at Table 9 for Twitter Lists, the measures have similar results as CC, on the 

Table 1 Considered real‑world networks

Instance name n m Avg. deg. Density Ĉ Assortativity 
(D)

Max clique Network type

Chicago 
Road [36]

1467 1298 1.7696 0.0012 0.0001 − 0.5049 2 Transport net-
work

Chilean Power 
Grid [38]

347 444 2.5591 0.0074 0.0865 − 0.0773 4 Energy network

Euroroad [36] 1174 1417 2.414 0.0021 0.0167 0.1267 3 Transport net-
work

London 
Metro [34]

266 308 2.3158 0.0087 0.0363 0.1531 3 Transport net-
work

Madrid 
Metro [34]

209 240 2.2967 0.011 0.0056 0.1776 3 Transport net-
work

Mexico 
Metro [34]

147 164 2.2313 0.0153 0.0034 − 0.1105 3 Transport net-
work

Minnesota 
Road [31]

2642 3303 2.5004 0.0009 0.016 − 0.1848 3 Transport net-
work

Moscow 
Metro [34]

134 156 2.3284 0.0175 0.0174 0.4492 3 Transport net-
work

New York 
Metro [34]

433 475 2.194 0.0051 0.0173 − 0.0297 3 Transport net-
work

Oldenburg 
Road [32]

6105 7029 2.3027 0.0004 0.0108 0.0554 3 Transport net-
work

Openflights [34] 2939 15677 10.6683 0.0036 0.4526 0.0509 22 Transport net-
work

Osaka Metro [34] 108 123 2.2778 0.0213 0.0001 0.1965 2 Transport net-
work

p2p-Gnu-
tella08 [37]

6301 20777 6.5948 0.001 0.0109 0.0356 5 Internet peer-to-
peer network

Paris Metro [34] 299 356 2.3813 0.008 0.0204 − 0.0297 3 Transport net-
work

as20000102 [37] 6474 13895 4.2926 0.0007 0.2522 − 0.1704 10 Autonomous 
systems graph

Seoul Metro [34] 392 437 2.2296 0.0057 0.006 0.0313 3 Transport net-
work

Shanghai 
Metro [34]

148 158 2.1351 0.0145 0.0029 − 0.0318 3 Transport net-
work

Tokyo Metro [34] 217 262 2.4147 0.0112 0.0237 0.1983 3 Transport net-
work

US Air [35] 332 2126 12.8072 0.0387 0.6252 − 0.2079 22 Transport net-
work

US Power 
Grid [39]

4941 6594 2.6691 0.0005 0.0801 0.0035 6 Energy network

NRPG data [33] 246 373 3.0325 0.0124 0.1071 − 0.0932 3 Energy network
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other hand, in the same table for soc-pages-media and soc-gamesec-RO the results are 
similar to DC. It is evident from the tables that the proposed measures are a hybridiza-
tion of DC and CC, and therefore, they perform at par with the better performing tradi-
tional measures across various thresholds. In some cases, the proposed measures even 
outperform all the traditional measures.

Apart from the deterministic linear threshold model, we have also evaluated the perfor-
mance of the proposed measures as well as traditional measure using stochastic diffusion 
models, namely independent cascade (IC) and stochastic linear threshold (LT). The results 
of these experiments are shown in Tables  13 and 12, respectively. The results shown in 
the tables are the averages taken over 100 independent iterations of the diffusion models. 
From Table 12, we see that HADC and EADC with α = 0.75 have the highest number of 
expected infections across most networks. For some networks such as soc-pages-public-
figure, they outperform all of the traditional measures. In the network Twitter lists, CC 
is the top performing traditional measure while in the network soc-pages-media, DC and 
EC are the top performing traditional measures. In both cases HADC and EADC with 
α = 0.75 perform optimally as they are a type of hybridization between CC and DC. In 
case of the IC model as shown in Table 13, we see that no measure performs consistently 
across the networks. As none of the traditional measures are able to perform consistently 
across the networks, a hybridization between them may lead to sub-optimal results.

We present the Spearman’s rank correlation coefficient, Kendall’s rank correlation 
coefficient and Fagin’s intersection metric [40] to evaluate the correlation between 
traditional centrality measures and proposed hybrid centrality measures in Tables 14, 

Table 2 Expected response‑time of  the  proposed hybrid measures and  the  traditional 
centrality measures when the most central node is made the service center

Instance name BC DC CC EC HABC EABC ( α = 0.5) EABC ( α = 0.75)

Chicago Road 0.49 0.49 0.49 0.49 0.49 0.49 0.49
Chilean Power Grid 0.29 0.33 0.29 0.33 0.29 0.29 0.29
Euroroad 0.88 0.88 0.89 1.05 0.88 0.88 0.88
London Metro 0.83 0.83 0.80 0.83 0.80 0.80 0.80
Madrid Metro 0.46 0.46 0.44 0.66 0.46 0.46 0.42
Mexico Metro 0.50 0.50 0.54 0.50 0.50 0.50 0.54

Minnesota Road 2.29 3.21 2.15 3.11 3.29 2.29 3.45

Moscow Metro 0.40 0.40 0.37 0.39 0.39 0.39 0.37
New York Metro 1.11 1.3 1.12 1.3 1.11 1.11 1.11
Oldenburg Road 1.66 1.66 1.68 2.64 1.66 1.66 1.66
Openflights 0.16 0.16 0.16 0.16 0.16  0.16 0.16
Osaka Metro 0.48 0.48 0.44 0.48 0.48 0.48 0.42
p2p-Gnutella08 0.29 0.27 0.27 0.27  0.27 0.27 0.27
Paris Metro 0.55 0.55 0.55 0.56 0.51 0.51 0.51
as20000102 0.12 0.12 0.12 0.12 0.12 0.12 0.12
Seoul Metro 1.06 1.25 1.06 1.23 1.02 1.02 1.02
Shanghai Metro 0.53 0.53 0.64 0.53 0.64 0.53 0.64

Tokyo Metro 0.57 0.57 0.57 0.57 0.57 0.57 0.49
US Air 0.10 0.10 0.10 0.10 0.10 0.10 0.10
US Power Grid 0.92 1.34 0.83 2.12 0.83 0.83 0.83
NRPG 0.30 0.45  0.30 0.37 0.30 0.30 0.30
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15 and 16, respectively. For our purposes we compute the Fagin’s rank intersection 
for top-1000 ranks in the network. In case the number of nodes is less than or equal 
to 1000, the rank intersection is computed for all nodes in the network. For each of 
tables, the first column shows the Network Name. The next four columns show the 

Table 7 Considered real‑world social networks

Instance name n m Avg. deg. Density Ĉ Assortativity (D) Max clique

soc-gplus [31] 23,628 39,242 3.3217 0.0001 0.0037 − 0.387 7

Twitter Lists [36] 23,370 33,101 2.8328 0.0001 0.0215 − 0.4741 7

soc-hamsterer [31] 2426 16,630 13.7098 0.0057 0.2314 0.0474 25

soc-pages-government [31] 7057 89,455 25.3521 0.0036 0.2238 0.0294 28

soc-pages-politician [31] 5908 41,729 14.1263 0.0024 0.3011 0.0184 21

soc-pages-shows [31] 3892 17,262 8.8705 0.0023 0.5906 0.5605 57

soc-wiki-elec [31] 7118 107,071 30.0846 0.0042 0.1255 − 0.0514 17

soc-advogato [31] 6551 51,332 15.6715 0.0024 0.0925 − 0.0526 19

soc-pages-public-figure [31] 11,565 67,114 11.6064 0.001 0.1666 0.2024 21

soc-anybeat [31] 12,645 67,053 10.6055 0.0008 0.0217 − 0.1219 25

soc-pages-sport [31] 13,866 86,858 12.5282 0.0009 0.1292 − 0.0268 29

soc-epinions [31] 26,588 100,120 7.5312 0.0003 0.0892 0.0572 16

soc-pages-media [31] 27,917 206,259 14.7766 0.0005 0.114 0.0221 31

soc-pages-company [31] 14,113 52,310 7.413 0.0005 0.1532 0.0135 21

soc-gamesec-RO [31] 41,773 125,826 6.0243 0.0001 0.0753 0.114 7

Table 8 Number of  infected nodes when  the  top‑ranked node is  chosen as  the  source 
of the infection for threshold = 30%

Instance 
name

BC CC DC EC HADC EADC 
( α = 0.25)

EADC 
( α = 0.5)

EADC 
( α = 0.75)

soc-gplus 1,4951 14,951 14,951 14,951 14,951 14,951 14,951 14,951
Twitter Lists 484 1180 553 539 1180 1180 1180 1180
soc-hamsterer 1879 1879 1879 1879 1879 1879 1879 1879
soc-pages-

government
4316 4316 4316 3695 4316 4316 4316 4316

soc-pages-
politician

2185 2185 946 674 2185 2185 2185 2185

soc-pages-
shows

1283 1283 1242 210 1283 279 1283 1283

soc-wiki-elec 7061 7061 7061 7061 7061 7061 7061 7061
soc-advogato 5014 5014 5014 5014 5014 5014 5014 5014
soc-pages 10,095 10,095 10,029 1485 10,184 1485 10,184 10,184
soc-anybeat 12,538 12,538 12,538 12,538 12,538 12,538 12538 12,538
soc-pages-

sport
13,739 13,739 13,739 13,739 13,739 13,739 13,739 13739

soc-epinions 2094 3106 25,283 25,283 25,283 25,283 25,283 3106

soc-pages-
media

26,982 26,981 26,981 26,981 26,981 26,981 26,981 26,981

soc-pages-
company

1065 12,432 12,432 163 12,432 12,432 12,432 12,432

soc-gamesec-
RO

219 219 554 555 219 554 219 219
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Table 9 Number of  infected nodes when  the  top‑ranked node is  chosen as  the  source 
of the infection for threshold = 40%

Instance 
name

BC CC DC EC HADC EADC 
( α = 0.25)

EADC 
( α = 0.5)

EADC 
( α = 0.75)

soc-gplus 14,556 14,556 14,556 14,556 14,556 14,556 14,556 14,556
Twitter Lists 473 912 452 522 912 912 912 912
soc-hamsterer 1666 1666 1666 1666 1666 1666 1666 1666
soc-pages-

government
3372 3372 3372 1446 3372 3372 3372 3372

soc-pages-
politician

552 552 652 387 552 552 552 552

soc-pages-
shows

297 297 299 141 297 196 297 297

soc-wiki-elec 7061 7061 7061 7061 7061 7061 7061 7061
soc-advogato 4667 4667 4667 4667 4667 4667 4667 4667
soc-pages 1143 1143 7825 1328 1223 1328 1223 1223

soc-anybeat 12,287 12,,287 12,287 12,287 12,287 12,287 12287 12287
soc-pages-

sport
1082 1082 1082 1082 1082 1082 1082 1082

soc-epinions 1383 1824 22,581 22,581 22,581 22,581 22,581 1824

soc-pages-
media

1101 1189 1694 1694 1694 1694 1694 1694

soc-pages-
company

467 561 561 121 561 561 561 561

soc-gamesec-
RO

129 129 180 175 129 180 129 129

Table 10 Number of  infected nodes when  the  top‑ranked node is  chosen as  the  source 
of the infection for threshold = 50%

Instance 
name

BC CC DC EC HADC EADC 
( α = 0.25)

EADC 
( α = 0.5)

EADC 
( α = 0.75)

soc-gplus 11,482 11,482 11,,482 11,482 11,482 11,482 11,482 11,482
Twitter Lists 473 850 452 522 850 850 850 850
soc-hamsterer 1091 1091 1091 1091 1091 1091 1091 1091
soc-pages-

government
2631 2631 2631 1094 2631 2631 2631 2631

soc-pages-
politician

483 483 640 380 483 483 483 483

soc-pages-
shows

218 218 216 137 218 172 218 218

soc-wiki-elec 7061 7061 7061 7061 7061 7061 7061 7061
soc-advogato 4584 4584 4584 4584 4584 4584 4584 4584
soc-pages-

public-figure
905 905 958 1242 831 1242 831 831

soc-anybeat 12,221 12,221 12,221 12,221 12,221 12,221 12,221 12,221
soc-pages-

sport
837 837 837 837 837 837 837 837

soc-epinions 1310 1715 1709 1709 1709 1709 1709 1715
soc-pages-

media
911 984 1159 1159 1159 1159 1159 1159

soc-pages-
company

417 492 492 101 492 492 492 492

soc-gamesec-
RO

124 124 158 159 124 158 124 124
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respective correlation between HADC and the traditional measures, namely BC, CC, 
DC and EC. The next four columns, from columns 6 to 9 show the respective correla-
tion between EADC with α = 0.25 and the traditional measures, BC, CC, DC and EC. 
Finally the columns from 10 to 13 show the the respective correlation between EADC 
with α = 0.75 and BC, CC, DC and EC.

From the Spearman’s and Kendall’s rank correlation coefficients, we observe that our 
measures have a small positive correlation with traditional measures. The correlation 
is small enough to conclude that the proposed measures rank nodes differently from 
traditional measures. The correlations are positive and almost same for all traditional 
measures. This indicates that our measures share some characteristics with them and 
are able to switch between traditional measures to perform optimally across networks 
and thresholds. Fagin’s intersection metric has a higher value due to only considering 
top-1000 ranked nodes to compute the metric.

Table 11 Number of  infected nodes when  the  top‑ranked node is  chosen as  the  source 
of the infection for threshold = 60%

Instance name BC CC DC EC HADC EADC 
( α = 0.25)

EADC 
( α = 0.5)

EADC ( α = 0.75)

soc-gplus 8741 8741 8741 8741 8741 8741 8741 8741
Twitter Lists 402 633 417 500 633 633 633 633
soc-hamsterer 567 567 567 567 567 567 567 567
soc-pages-

government
1712 1712 1712 944 1712 1712 1712 1712

soc-pages-
politician

334 334 558 340 334 334 334 334

soc-pages-
shows

161 161 161 124 161 150 161 161

soc-wiki-elec 5241 5241 5241 5241 5241 5241 5241 5241
soc-advogato 1795 1795 1795 1795 1795 1795 1795 1795
soc-pages-

public-figure
498 498 570 1062 508 1062 508 508

soc-anybeat 10130 10130 10130 10130 10130 10130 10130 10130
soc-pages-

sport
633 633 633 633 633 633 633 633

soc-epinions 897 1107 981 981 981 981 981 1107
soc-pages-

media
640 724 863 863 863 863 863 863

soc-pages-
company

275 326 326 95 326 326 326 326

soc-gamesec-
RO

101 101 119 121 101 119 101 101
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Table 12 Expected number of  infected nodes when  the  top‑ranked node is  chosen 
as the source of the infection for stochastic linear threshold model

Instance 
name

BC CC DC EC HADC EADC 
( α = 0.25)

EADC 
( α = 0.5)

EADC 
( α = 0.75)

soc-gplus 11,990.96 11,990.96 11,990.96 11,990.96 11,990.96 11,990.96 11,990.96 11,990.96

Twitter Lists 671.22 1298.42 697.3 592.26 1298.42 1298.42 1298.42 1298.42

soc-hamsterer 1242.72 1242.72 1242.72 1242.72 1242.72 1242.72 1242.72 1242.72

soc-pages-
government

4027.29 4027.29 4027.29 2916.12 4027.29 4027.29 4027.29 4027.29

soc-pages-
politician

1907.98 1907.98 1123.45 724.17 1907.98 1907.98 1907.98 1907.98

soc-pages-
shows

748.47 748.47 743.79 253.3 748.47 347.11 748.47 748.47

soc-wiki-elec 6623.02 6623.02 6623.02 6623.02 6623.02 6623.02 6623.02 6623.02

soc-advogato 3741.1 3741.1 3741.1 3741.1 3741.1 3741.1 3741.1 3741.1

soc-pages-
public-
figure

4415.09 4415.09 3928.15 2025.33 4535.9 2025.33 4535.9 4535.9

soc-anybeat 11,394.31 11,394.31 11,394.31 11,394.31 11,394.31 11,394.31 11,394.31 11,394.31

soc-pages-
sport

4064.69 4064.69 4064.69 4064.69 4064.69 4064.69 4064.69 4064.69

soc-epinions 6660.87 8353.97 7469.31 7469.31 7469.31 7469.31 7469.31 8353.97

soc-pages-
media

7927.39 10,118.52 10,916.34 10,916.34 10,916.34 10,916.34 10,916.34 10,916.34

soc-pages-
company

1644.77 2429.62 2429.62 161.55 2429.62 2429.62 2429.62 2429.62

soc-gamesec-
RO

1101.8 1101.8 1293.95 1235.01 1101.8 1293.95 1101.8 1101.8

Table 13 Expected number of  infected nodes when  the  top ranked node is  chosen 
as the source of the infection for independent cascade model

Instance name BC CC DC EC HADC EADC 
( α = 0.25

)

EADC 
( α = 0.5)

EADC 
( α = 0.75)

soc-gplus 14,487.1 14,472.36 14,481.01 14,480.63 14,472.88 14,480.8 14,487.43 14,477.27

Twitter Lists 11,989.12 11,955.72 11,992.85 11,964.66 11,906.41 11,917.2 11,916.64 11,908.19

soc-hamsterer 937.39 937.74 938.05 936.18 937.11 937.69 936.21 937.34

soc-pages-
government

3148.14 3149.21 3148.54 3077.98 3150.89 3152.66 3140.53 3144.39

soc-pages-
politician

2771.62 2769.67 2640.67 2586.06 2770.33 2771.98 2769.76 2774.51

soc-pages-
shows

1437.09 1442.95 1431.11 1308.85 1444.45 1330.98 1445.35 1446.3

soc-wiki-elec 2060.71 2062.82 2061.5 2061.38 2061.32 2061.22 2061.67 2061.75

soc-advogato 2508.59 2504.19 2505.09 2503.53 2504.48 2506.25 2505.2 2503.19

soc-pages-pub-
lic-figure

4951.71 4949.31 4955.46 4792.01 4938.83 4792.36 4946.97 4940.21

soc-anybeat 5989.9 5992.17 5990.56 5989.8 5989.71 5991.55 5994.93 5991.79

soc-pages-sport 7147.25 7147.66 7142.17 7149.91 7146.72 7150 7149.07 7143.33

soc-epinions 8131.74 8083.85 7971.35 7966.32 7972.66 7963.08 7967.07 8074.81

soc-pages-
media

13272.46 13217.94 13071.14 13069.32 13068.38 13071.39 13067.68 13075.13

soc-pages-
company

7085.8 7027.44 7036.72 6951.13 7038.37 7033.11 7033.63 7030.34

soc-gamesec-
RO

23,789.15 23,782.03 23,757.48 23,762.35 23,795.5 23,748.52 23,793.17 23,783.46
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Conclusion
In this paper, we have proposed new hybrid centrality measures based on closeness 
(harmonic) and decay measures. The first hybridization is used to solve service cover-
age problem in flow networks where the demand for services is assumed to be pro-
portional to the betweenness centrality. The proposed measures can also be used in 
another application that requires installing a facility farthest from the failure prone 
nodes. The solution in this case will be the node with minimum expected response-
efficiency. The second hybridization attempts to find most ideal node for spreading 
information to the maximum fraction of population while considering a complex con-
tagion. The proposed hybridization of centrality measures for both applications are 
based on the formulation for node-weighted centrality measures. The experimental 
results on several real-world networks show that the proposed measures perform rel-
atively better than the individual traditional measures and also rank nodes differently.

Although, the reference centrality measures considered in this paper are due to the 
nature of considered applications, the framework allows using other measures based 
on the requirement. Analyzing the proposed measures on various other real-world 
networks and at the place of betweenness and degree centrality, hybridizing other 
measures specific to some particular applications are the possible future directions. 
The analysis of real-world networks where nonuniform weights are given at nodes 
using node-weighted centrality measures is another open direction. Another inter-
esting direction is using hybrid centrality measures in multi-layer networks [47]. In 
multi-layer networks, we may use one layer of the network to compute node weights 
to be used for hybridization in other layers.
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