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Abstract

Centrality measures have been proved to be a salient computational science tool

for analyzing networks in the last two to three decades aiding many problems in the
domain of computer science, economics, physics, and sociology. With increasing com-
plexity and vividness in the network analysis problems, there is a need to modify the
existing traditional centrality measures. Weighted centrality measures usually consider
weights on the edges and assume the weights on the nodes to be uniform. One of the
main reasons for this assumption is the hardness and challenges in mapping the nodes
to their corresponding weights. In this paper, we propose a way to overcome this kind
of limitation by hybridization of the traditional centrality measures. The hybridization

is done by taking one of the centrality measures as a mapping function to generate
weights on the nodes and then using the node weights in other centrality measures
for better complex ranking.

Keywords: Complex network analysis, Centrality measures, Weighted networks,
Hybrid centrality

Introduction

Centrality measures are an important tool in social and complex network analysis to
quantify the eminence of nodes. These measures remain invariant under isomorphic
transformation of a network [2]. By definition, a centrality measure is a quantification
of the structural importance of a node based on its location, connectivity, or any other
structural property. These have been used not only by the network scientists, but also
by biologists, sociologists, physicists, psychologists, and economists over time. Several
measures are coined in literature. The most popular centrality measures for network
analysis (traditional measures) are degree, closeness, betweenness and eigenvector cen-
trality. Readers are referred to the books by Jackson [3] and Brandes and Erlebach [2]
for a detailed survey on the centrality indices and their applications. There exist several
other measures which either extend or generalize these traditional measures or limit
them to a restricted application. Moreover, various variants of these centrality measures
have been proposed which consider a set of nodes and compute its collective centrality,
called group-centrality [4]. Yet another direction is to combine various centrality meas-
ures to achieve better results for answering more complex problems. Such measures
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are termed as hybrid-centralities and few of them are summarized in section on related
works.

In the last two decades, a major portion of the interdisciplinary work evolved just
applying these measures to extract information from underlying network data. Each of
the proposed centrality measures ranks nodes in a network based on a specific structural
attribute, making them application specific. Due to this reason, choosing an appropriate
centrality for a given application has been a key issue in network analysis. A major por-
tion of the research work done in this direction is concerned with selecting the best of
the available measures for a particular application or defining a new measure that out-
performs the existing ones.

Most of the centrality measures proposed in literature were first defined for
unweighted graphs, i.e., all of the nodes and all the edges were assumed homogeneous in
the beginning of centrality computation. We refer these measures as unweighted central-
ity measures. After realizing the existence and understanding the necessity and impor-
tance of weights on the edges, centrality measures for unweighted graphs were extended
to edge-weighted centrality measures. These measures take weights on the edges into
consideration for ranking the nodes while analyzing the networks, but still assuming
equal weights on the nodes. A substantial part of the present-day research in the analysis
of weighted networks considers only edge weights to determine the topological signifi-
cance of nodes [5].

We call a network with nonuniform weights on both: edges and nodes, as a fully
weighted networks. Several such networks surround us. The weights on the nodes in
fully weighted networks can be understood as some sort of mapping of the character-
istics or attributes of the nodes to some real value. At times, these weights can also be
dependent on the structure around the nodes. Let us understand the possibility of exist-
ence of weights on the nodes with the help of some popular networks around us. In
these networks weights on the edges have already been discussed above. Therefore, here,
we only discuss regarding the existence of nonuniform weights on the nodes.

1. Friendship/social networks: in this type of networks, nodes represent persons and
edges represent the friendship relationship between the considered set of persons.
Here, weights on the nodes can be understood as a mapping of wealth, power, educa-
tion level, or some other attribute of persons. It is notable that existence of two per-
sons with identical attributes is highly unlikely and therefore all person’s attributes
can be mapped to different real values based on the application specific mapping.

2. Public transit networks: road networks, train networks, metro rail networks, airline
networks are some of the major public transit networks. In these types of networks,
nodes represent locations (place) and edges represent direct connected traveling
medium between the locations. In such a network, weights on the nodes can be
understood as a mapping of the population, frequency of commuters, development
status, popularity for tourism, etc., of the location represented by that node.

3. Communication networks: in communication networks, nodes are represented by
the communicating devices and links represent the direct (wired or wireless) connec-
tion between these devices. Weights on the nodes in such networks can be under-
stood as the role, cost, location of these devices.
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4. Co-authorship network: in such type of networks, nodes represent authors and
edges represent the co-authorship relation, i.e., at least one article was written by
the authors across each edge as co-authors. In such a network, weights on nodes can
represent the popularity, h-index, citations, awards, designation of the authors, etc.

Similar to the networks stated above, several other kinds of networks also fall into
the category of fully weighted networks. It should be noted that in any network, all
nodes (actor/devices/places/person) with same characteristics is highly unlikely. One
basic reason to ignore the weights on nodes is the hardness and complexity in figur-
ing out the non-trivial mapping from attributes of nodes to real values. Another rea-
son is to avoid the complexity of the analysis process, but sometimes the ignorance of
node weights might lead to a wrong analysis of the given network. We show through
toy examples that the unweighted and edge-weighted centrality measures may exhibit
limitation in correctly analyzing the fully weighted networks. Therefore, it becomes
essential to also consider weights on nodes in the process for a better analysis of fully
weighted networks. Due to this reason, there was a need to upgrade the previously
defined unweighted and edge-weighted centrality measures so that weights at the
nodes can also be taken into account for the analysis.

Therefore, while considering the weights on the nodes, there can be two possible
extensions of the unweighted and edge-weighted centrality measures:

+ Node-weighted centrality measures: consider only the node weights for the analy-
sis while taking all edge weights as one.

+ Fully weighted centrality measures: consider both types of weights, edge weights
and node weights for the analysis.

In most of the studies done so far on fully weighted networks, while considering
weighted edges, weights on the nodes were completely ignored. Meanwhile, only a
little work has been accomplished while considering the weights on nodes in the real-
world networks [6—9]. The main contribution of this paper is to motivate the analysis
of networks while considering the weights on the nodes. In order to overcome the
challenges in figuring out the weights on the nodes, we propose to use appropriate
centrality measures to generate the weights and then further use these weights in the
node-weighted centrality measures to analyze a given network. We give two applica-
tions based on this principle of hybridization.

In the next section, we provide the basic notations and provide definitions of tradi-
tional unweighted centrality measures. Two toy examples pointing out and motivat-
ing the necessity of considering weights on the nodes is discussed after that. Next,
node-weighted centrality measures and related works are summarized. Afterwards,
new hybridization of centrality measures are introduced for solving two complex
computational problems in networks based on the definitions of node-weighted cen-
trality measures. The experimental comparison between the newly proposed hybrid
centrality measures and traditional centrality measures on real-world networks is
comprised in the respective sections on problems. Finally, we conclude and discuss
the prospective future directions.
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It is an expanded and extended version of the results that appeared in CSoNet 2019 [1].
The conference version titled “Hybrid Centrality Measures for Service Coverage Prob-
lem” discussed a hybridization of centrality measures to solve Service Coverage prob-
lem based on the formulation for node-weighted centrality measures. In this version, we
have extended the concept of this type of hybridization to solve another problem called
spread maximization problem. Due to this, the structure of the paper has been revised
and this version is focused on motivating hybridization of centrality measures based
on the formulation of node-weighted centrality measures. Application of the proposed
measures to more than one problem in this version exhibits the potential for this kind of
hybridization and motivates for several open directions in this area.

Unweighted centrality measures

This section first defines the basic notations used through out the paper. Then, we briefly
summarize traditional centrality measures; degree, closeness, betweenness, and eigen-
vector. We also describe in brief harmonic centrality that is highly correlated to close-
ness centrality.

Let G = (V, E) be an undirected unweighted network, where V is the set of nodes and
E is the set of links. Let the number of nodes in the network, i.e., the cardinality of set V'
be |V| = n and the number of links, i.e., the cardinality of set E be |[E| = m. Let A be the
adjacency matrix of size n x n in network G, where entry a;; denotes whether there is a
link between node i and node ;. a;; = 1if there exists a link between node i and node j,
otherwise a;; = 0. Let dj; be the geodesic distance, length of the shortest path, between
node i and node j. Next, we discuss in brief some of the widely used centrality measures.

+ Degree: Freeman’s [10] degree centrality considers that a node’s importance is pro-
portional to its degree, number of links connected (starting/ending) to that node.
Mathematically, degree centrality of a node #,

DC(u) = Z Ay

veV\{u}

Degree centrality can be normalized by dividing the above expression with n — 1.
In a social network, degree centrality of a node represents that node’s popularity.
A higher degree node has many followers/friends which shows the strength of the
node. Lower degree nodes are the actors who are nearly isolated from the population
of the network and are least popular.

+ Closeness: Freeman’s [10] closeness centrality considers a node’s importance to be
inversely proportional to the sum of its distance to other nodes. Mathematically,
closeness centrality of a node u can be represented as

1

CCy) = =——.
Zve V\{u} dMV

Closeness centrality can be normalized by multiplying the above expression with
n — 1. The concept of closeness centrality was first given by Freeman [10] for social
networks, but the concept has existed for a long time as status of a node [11]. Close-
ness centrality of a node in a network represents the node’s average distance, i.e., the
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expectation of how much time, a piece of information that started flowing from any
node in the network, will take to reach that node or vice-versa. A higher closeness
central node gets updated very early when some information is spreading and nodes
with low closeness centrality have to wait longer for getting updated with the flowing
information.

« Harmonic: harmonic centrality [5, 12] considers that a node’s importance in a net-
work is proportional to the sum of inverse of its distances from other nodes. Math-

ematically, harmonic centrality of a node u is

HC(u) = Z €

veV\{u} ¥

Freeman’s [10] closeness centrality was not applicable on disconnected networks.
Harmonic centrality is highly correlated to closeness centrality [12] and works well
on disconnected and directed networks.

+ Decay: this centrality works on same principle as harmonic centrality but at place of
penalizing the contribution of nodes linearly, it does exponentially [3]. Mathemati-

cally, decay centrality of a node u is,

DKC(u) = » 8%,
veV\{u}

where § lies between 0 and 1. § is called decay parameter.

+ Betweenness: Freeman’s [10] betweenness centrality considers that a node’s impor-
tance is proportional to the number of times that node occurs in the shortest paths
between all possible pairs of nodes in a network. Mathematically, betweenness cen-
trality of a node u,

BC(u) = Z ost(u) ,

(of
s,t,ucV:|{s,t,v}|=3 st

where oy is the total number of shortest paths from node s to node ¢ and oy (u) is
the total number of shortest paths from node s to node ¢ passing through node u.
Betweenness centrality can be normalized by dividing with %2(”_2) The concept
of betweenness centrality was first proposed by Anthonisse [13] and Freeman [14]
independently. Betweenness centrality of a node in a network represents the node’s
brokerage power, i.e., control over the flow passing through the network with the
assumption that information is flowing through shortest paths. A higher between-
ness central node controls a major fraction of flow passing through the network
while a low betweenness central node has nearly no such control.

+ Eigenvector: Bonacich’s [15] eigenvector centrality considers that a node’s impor-
tance in a network is proportional to the sum of the importance of neighboring
nodes in that network. Mathematically, eigenvector centrality of a node # can be
written as,

EC(x) = Z (aus - EC(V)).

veV\{u}
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Eigenvector centrality of a node in a network represents the power of a node’s neigh-
bors in the network. A node with high eigenvector centrality indicates the direct
connection of this node to important nodes in the network and vice-versa.

Toy examples

Consider the example networks given in Fig. 1. Let us assume that the first network in
Fig. 1 is a road network connecting the cities of a state where the size of nodes repre-
sent the weights (in this case population) on the nodes. City F is highly populated while
Population in other cities is significantly low and several times lesser than city F. Aver-
age-sum facility location problem questions for a node in a given network that is at the
minimum average distance to all other nodes in the network. Now, if we are attempt-
ing to solve the average-sum facility location problem to install a facility for the whole
population of the state, the solution is the most closeness central node assuming equal
population in each city. By the definition of closeness centrality, the answer is city C,
but this city is not really suitable in the reality for the whole population. The answer is
city F where most of the population of the state already resides. Now, suppose if we are
tackling a problem where the goal is to find a city from which maximum population is
exactly at one hop distance, degree centrality seems to solve this problem in unweighted
networks but here it fails. Degree centrality ranks city C as the most central but because
of nonuniform distribution of population, city E is the correct answer.

Next, let us assume that the second example network given in Fig. 1 is a communi-
cation network where the size of nodes denotes weights (in this case we can assume
importance/vitality) of the nodes. We assume that communication happens through
shortest paths and the importance of a communication is a function of the importance
of nodes, between which communication is happening. Here, we assume that the func-
tion computes the multiplication between the importance of the communicating nodes.
Now, the goal is to compute the node which controls the most important communica-
tions in the network. Applying betweenness centrality, which is a tool directly used for
this type of problems, answers node C neglecting the importance attribute. In the reality,
node ] is the answer because it controls the communication between the most impor-
tant nodes in the given network. We note above that the existing centrality measures

@

0606

a Counter example for Degree and Close- b Counter example for Betweenness Cen-
ness Centrality trality

Fig. 1 Two counterexample networks, with size of nodes representing weights on the nodes
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neglect node weights and due to this, are prone to analyze incorrectly the fully weighted
networks. Therefore, there is a need to upgrade the current definitions of unweighted or

edge-weighted centrality measure.

Node-weighted centrality

This section summarizes centrality measures that take into consideration the weights on
the nodes while giving equal priority to the edges in a given network. These fall in the
category of node-weighted centrality measures. We only mention these here to avoid
the complexity of including weights on both edges and nodes. Once, these measures
are understood, we recommend the readers to combine these measures with the edge-
weighted centrality measures given in [5] to derive the definition for fully weighted cen-
trality measures. Recall G = {V, E} as the undirected unweighted graphs. We add an
extra element, weights on the nodes defined as a function W : V' — R, where R is set
of real numbers. Let W, be the weight given at node x. We do not directly use Wy in
the definitions, but at place of it, we use a function f of W, (or a function of W, and
W, depending on the number of parameters) without losing the generality. This gives
us the flexibility to tune the function of weights on the nodes according to our need.
Here, in this paper we take f(W,) = Wj for the simplicity. To normalize the new cen-
trality measures, we divide by the maximum possible value that any node can score in
the numerator of below-given formulas. We start with degree centrality.

+ Node-weighted degree centrality: in [6], weights on nodes are considered and the
definition of degree centrality is modified to accommodate the node weights. Abbasi
and Hossain [6] considered centrality scores as weights on the nodes. Following it,

node-weighted centrality of a node u is calculated as:

ZveV\{u} (f (W) - auy)
> f (W) '

xeV

This measure assigns higher importance to those nodes which are in the immediate
neighborhood of highly weighted nodes. Next two measures extend the considera-
tion to all the nodes to compute the eminence of a node.

+ Node-weighted closeness/harmonic centrality: to target the wider applicability, we
define node-weighted harmonic centrality (which also can be used in the case of
closeness centrality computation as both are highly correlated). Node-weighted har-

monic centrality of a node « in a network is defined as:

W)
SW,) + ZveV\{u} élﬁ
ervf(Wx)

This measure depends on two factors: weight of the node # under consideration and
the effective weights of other nodes corresponding to their distances from node u. It
assigns a higher value to the nodes that are of high weights and closer to the nodes
with high weights. We refer this measure as harmonically attenuated node-weighted
centrality measure.

+ Node weighed decay: weighted decay of a node u in a network as defined as
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SV + Eevyu @™ -f (W)
er Vf(Wx)

’

where § lies between 0 and 1. Here also the computation of importance depends on
the same two factors as in NWCC. But, the contribution of weights of other nodes
decays exponentially with distance. Weighted decay assigns a higher value to the
nodes that are of high weights and very close to the nodes with high weights. We
refer this measure as exponentially attenuated node weighted centrality measure.

+ Node-weighted betweenness centrality: in [16], a factor denoting the importance of
communication between two pairs is multiplied in the core formula while computing
the betweenness centrality. The node-weighted betweenness centrality of a node u
was defined as

Zs,t,ueV:\{s,t,v}|=3f(Ws’ W) - (Ts;iitu)
Zx,y,ueV:|{x,y,v}|:3f(Wx: Wy)

’

where f(Wy, W,) can be assumed to map the weights given on node x and y to a real
value denoting the importance of flow happening between x and y.
Eigenvector centrality is a measure where it is still open how to include the effect of node
weights. Even if we start the eigenvector centrality computation with a vector compris-
ing the weights on the nodes, at the time when the convergence occurs, we arrive at the
same eigenvector as the solution every time. It is because the computation of this par-
ticular centrality is dependent only on the adjacency matrix and eigenvector is the prop-
erty of this matrix only. One way around here is to follow the idea given in [9], where
they multiply the Sth power of the weight of each node to its unweighted centrality to
compute node-weighted centrality. Here, 8 takes a value from the interval [—1, 1].

In this paper, we do not explore about these measure in the experimental section. We
plan to do a thorough application oriented study of the above measures in near future.
We present the definition for the sake of completeness of major traditional centrality

measures.

Related work

Centrality measures are the tools to find application specific importance of a node.
Unweighted Centrality measures mentioned earlier, are the most widely used measures
but for complex problems and applications, these measures are inefficient. In that case,
a combination of these centrality measures produces better analysis than using them
individually. In a recent study [6], authors have proposed a new set of hybrid centrali-
ties; degree-degree, degree closeness, and degree betweenness. They noticed that the
newly defined centrality measures are different than the traditional centrality measures.
On real-world co-authorship network, they found that all the newly defined hybrid cen-
trality measures are significantly correlated to authors’ performance (sum of citations
of authors’ h-index). A similar study [7] on weighted collaboration networks was done
and three new sets of collaborative centrality measures were proposed. The traditional
collaborative centrality measures for an author node (h-index, a-index, g-index) are

used to propose new centrality measures. Newly defined set of measures were highly
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correlated with the traditional performance measures of scholars (publication count,
citation count, h-index, a-index, g-index). Zhang et al. [17] proposed a new hybrid cen-
trality measure to measure a node’s importance in satellite communication network.
This measure is also based on the combination of closeness and betweenness centrality
but the considered measure in their paper punishes the betweenness importance with
a different factor. Qiao et al. [18] proposed a hybrid page scoring algorithm based on
degree centrality, betweenness centrality, closeness centrality and the PageRank algo-
rithm. Lee and Djauhari [19] proposed a hybrid centrality measure which was a linear
combination of the degree, closeness, betweenness, and eigenvector centrality measures.
The proposed measures were used to find the most significant or influential stocks. A
hybrid centrality based on the linear combination of degree centrality and cohesion cen-
trality was proposed was Qiu et al. [20] and further used for community detection by
Li-Qing et al. [21]. Wang et al. [22] proposed a hybrid centrality measure based on the
combination of degree, the degree of neighbors and betweenness. In another study by
Buechel and Buskens [23], authors analyze a hybrid centrality model as a combination
of extended closeness (a variation of closeness for disconnected networks), betweenness
and degree measures. None of the above studies attempt to solve the service coverage

problem.

The service coverage problem

This section covers the first of two applications covered in this paper, the service cover-
age problem (SCP). We present two new hybrid measures to solve SCP a type of com-
plex facility location problem. We define these measures for networks without weights
on edges. These can be easily further extended to edge-weighted version of hybrid cen-
trality measures following the ideas for edge-weighted centrality measures given in [5].

Flow networks are those networks where information, people, commodities, etc., move
from one node to other while traversing on the links. Each node starts with a limited
bandwidth of resources for convening the flow and these resources prone to collapse/
degrade/reduce over time due to the continuous participation of the node in fostering
the flow. Due to this, such networks require uninterrupted maintenance/replenishment
service on a regular basis for the proper functioning of the network. Keeping this in
mind, service facilities are installed at nodes that meet the service demand of other node
from time to time.

After a service request is made by some node for more resources or reviving the
node after a failure occurs, the service team is sent from the service center to meet the
demand. The response-time to meet the service demand is defined as the time taken
between the request for service and start of the service work on the demanding node.
The response-time depends on the distance between the node requesting for a service
and the node with the service stations. It is under the assumption that the service cent-
ers have sufficient resources to meet the demand of other nodes. The response-efficiency
of a node is inversely correlated to the response-time, i.e., when the response-time is
least, the node is said to be maximum response-efficient and most suitable for install-
ing service stations. A node with a higher response-time possesses a smaller response-
efficiency and is not appropriate choice for installing service stations.
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Given an unweighted network, the objective of service coverage problem (SCP) is to
find a best suited node to install service station facility such that the expected response-
time is reduced. In another word, the goal is to find a node with highest expected
response-efficiency, i.e., the service should reach faster at the nodes that request for ser-
vice more often than the nodes with moderate or seldom demands. Therefore, service
centers should be installed closer to the nodes with frequent demands.

Randomly choosing a node to install service facility is certainly not the best solution.
It is because the randomly picked node may be very far from the nodes with higher
demand. In such a case where a node with higher load fails, severe damage would have
already been caused before the maintenance service reaches it. Thus, we require a meas-
ure to evaluate the importance of nodes for the candidacy to install stations covering
service requests.

Betweenness centrality is used to predict the importance of nodes in a number of flow
based networks, e.g., power grid networks, public-transit networks, gas line networks,
and communication networks. The betweenness scores of the nodes in such networks
have been considered as the load on the nodes in many literature. Several models for
understanding and replicating the cascading phenomena have been proposed [24-26].
Few of these models observe that failure of a node with a high load may cause a severe
cascading failure and hence result in the breakdown of the whole network system. After
a node fails, the best way to reduce the damage is to recover the failed node as soon as
possible. We cannot prevent a node from failure but we can definitely put a maintenance
mechanism on some of the nodes in the network.

Formulation

In the service coverage problem in flow networks, the load of the nodes (when no other
information is provided) can be assumed to be proportional to the betweenness central-
ity of the nodes. This is because a node with large flow through it, is expected to degrade
faster than other nodes and if such a node shuts down, a large amount of flow will be
affected. Thus we take the probability of node j requesting for a maintenance service
over a fixed time-interval as

BC(j
Pr[Node j request for service] = Z](;zj(k)’
keV

where BC(j) is the betweenness centrality of node j. Let Xj;, be the response-efficiency of a
node i to meet service demand from node j if the service station is going to be installed on
node i. Certainly, X;; depends on the distance between the node requesting for a service
(node j) and the node with the service stations (node ). Harmonic decay can be considered
in applications where the nodes are more robust and the service requirement is not urgent
while exponential decay might be a more appropriate simplified model in applications like
real-time systems where service requests need to be met on an urgent basis.

If the response-efficiency decays harmonically in a given application, i.e., the node is
maximum efficient (efficiency value = 1) for itself while it is half efficient (efficiency
value = 0.5) for each of its neighbors and so on, then we can formulate for the value
of response-efficiency X;; = ﬁ Recall, d,,, denotes the distance, i.e., length of the
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shortest path from node « to node v in the given network. Let x; be the total response-
efficiency of a node i if the service station is going to be installed on node i. Then,

Xi = Y _X;j - Pr[Node j request for service].
jev

The expected response-efficiency of node i (E[x;]) is computed by taking expectation
over that node’s response-efficiency to service all the nodes in network:

1 BC()
Elxil = : .
I,EZ; dij+1 Yoy BCk)

We define the following hybrid centrality measures based on the above formulation:

+ Harmonically attenuated-betweenness centrality (HABC): this measure is based
on the harmonic attenuation of importance with respect to the distance. The har-
monically attenuated-betweenness centrality of a node u is defined as,

BC
BC) + Yeviu g

HABC(u) = S BCw)
weV

’

where BC(x) is the unweighted betweenness centrality of node u. This hybrid measure
assigns a value that is calculated based on an averaging function of distances and between-
ness centrality. This measure assigns a higher value to the nodes that are of high between-
ness and closer to other high betweenness central nodes. This measure solves the SCP
problem in flow networks where the response-efficiency decays harmonically.

In few complex systems, response-time plays very crucial roles in the functionality of
networks and the response-efficiency decays exponentially. In such networks, the
response-efficiency decays faster, i.e., the node is maximum efficient (efficiency
value=1) for itself while it decays by a multiplicative factor « (efficiency value = «) for
each of it’s neighbors and so on. Here, « is a severity factor that lies in interval[0,1].
Then we can formulate for the value of response-efficiency X;; = s, Similar to the
previous analysis, the expected efficiency of a node i to be a service station, when effi-

ciency decays exponentially by a factor « is E[x;] = Zjev i - %. We define

the following hybrid centrality measures based on the above formulation:
+ Exponentially attenuated-betweenness centrality (EABC): this measure is based

on an exponential attenuation in the power of distance. The exponentially attenu-
ated-betweenness centrality of a node u is defined as,

BC() + 3 ey @™ - BC(v)
ZWEV BC(W)

EABC(n) = ,
where BC(u) is the betweenness centrality of node i. « is the attenuation factor that
is used in the exponential function to the power of distance. It is used to sharply
punish the service time. This hybrid measure assigns a value that is calculated based
on betweenness centrality of nodes and an exponential function in the power of dis-
tances. This measure assigns a higher value to the nodes that are of high betweenness
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and very close to other high betweenness central nodes. This centrality measure is a
sharp attenuation variant of harmonically attenuated-degree centrality. This measure
solves the service coverage problem when the service is required on a very urgent
basis.
Let m be the number of links and # be the number of nodes in a given network. The
over all time to compute proposed hybrid centrality measure is O(mn) in unweighted
and O(mn + n? log n) in weighted graphs. It is due to the time complexity for computing
betweenness centrality [27]. Efficient algorithms for updating and estimating between-
ness centrality measures in dynamic and large-size networks are discussed in [28-30].

Experimental results for service coverage problem

In this section, we discuss the simulation results on various real-world networks. First, we
discuss the experimental setup. Then, we mention all the data set used for experimentation.
Next, we provide a comparison of traditional centrality measures: degree (DC), closeness
(CC), betweenness (BC) and, eigenvector (EC) and the proposed hybrid centrality measure
[HABC, EABC (¢ = 0.5), EABC (¢ = 0.75)] in the considered networks. The experiments
are performed on a Linux system with 8 GB RAM and Intel Core i5-8250U CPU at 1.6 GHz.
Implementation is done in Python 3.6.7 with the help of Networkx library.

Counsidered real-world data sets the proposed solution to solve service coverage prob-
lem discussed in this paper hybridizes betweenness centrality within closeness/harmonic
and decay centrality. Betweenness centrality is first used to compute the load on each
node, therefore, we have selected 21 real-world flow networks. We provide a brief sum-
mary of these networks in Table 1 and [31-39] can be referred for a detailed descrip-
tion of the networks. We have considered various types of transport networks, energy
networks, internet peer-to-peer network, etc. The columns of Table 1 consist of names
of the network instances, the number of nodes (#), the number of edges (m), the aver-
age degree of the networks (Avg. deg.), density of the network, average clustering coef-
ficient (C), degree assortativity, the size of the maximum clique and the network type,
respectively.

Simulation we have conducted simulations for evaluating the performance of vari-
ous traditional centrality measures and the hybrid measures proposed in this paper
which are summarized in Table 2. The performance of a centrality measure is evalu-
ated by computing the expected response-time in terms of the average distance of the
service requesting nodes from the top central node as per this centrality measure. We
have emphasized in bold, the best expected response time in Table 2 for each network
instances given in Table 1, when a service maintenence center has been installed in a
node picked according to the considered centrality measures.

Betweenness centrality has been used as one of the best measure to map loads on
nodes in flow networks [24]. A node having higher load will be more frequent in
requesting for services. Therefore, we consider the probability of a node requesting for
services proportional to the betweenness centrality of that node. The expected response-
time is computed over [1/10] service requests where # is the number of nodes in respec-
tive real-world networks. The first column in the table contains label of the considered
real-world network instances. The next columns lists the expected response-time of the
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traditional centrality measures (BC,CC, DC, EC) and the proposed hybrid measures
(HABC, EABC(«¢ = 0.5), and EABC(« = 0.75)).

It is evident from Table 2 that no traditional measure can consistently find an ideal
service center. While at least one of the proposed hybrid centrality measures are always
able to minimize the average response-time for all considered networks. In some cases
such as Madrid Metro, Paris Metro, Osaka Metro, Seoul Metro, and Tokyo Metro, the
proposed measures even outperform all the traditional measures.

Node ranks here, we discuss the ranking result of nodes by various centrality meas-
ures. Table 3 contains the ranking list of the top three central nodes using the proposed
hybrid measures and the traditional centrality measures on the considered real-world
networks given in Table 1. Due to space constraints, only the data of top three central
nodes have been presented in the paper. The first column in the table contains the label
of the considered real-world network instances. The next columns in a group of three
lists top 3 central nodes using the proposed hybrid measures (HABC, EABC(« = 0.5),
and EABC(« = 0.75)) and the traditional centrality measures (BC,CC, DC, EC).

Finding only the most central node might not be useful in the cases when the top cen-
tral node does not allow it to be made as a service facility due to some constraints. In
that case, finding the first top-k potential centers are important. It is evident from the
experimental results that the proposed measures are results of hybridizations between
closeness centrality and betweenness centrality.

We have emphasized the top-ranking node for a few entries in the table and have writ-
ten them in bold to exhibit the above phenomenon. For some networks, the top-rank-
ing node as per HABC is the same as BC but not as CC and vice-versa. The ranking
on two networks (Minnesota Road and Moscow Metro) also provide evidence that top-
ranking nodes due to the proposed centrality measures are different from closeness and
betweenness centrality. In addition to these two, another network (Openflights) shows
that these proposed measures also rank nodes differently than each other.

It is evident that no single standard centrality measure is a perfect substitute for our
proposed centrality measures. As our measures follow directly from the requirements of
the Service Coverage Problem, it is evident that current centrality measures are not suf-
ficient to solve the problem adequately.

We present the Spearman’s rank correlation coefficient, Kendall's rank correlation
coefficient and Fagin’s intersection metric [40] to evaluate the correlation between tradi-
tional centrality measures and the proposed hybrid centrality measures in Tables 4, 5 and
6, respectively. For our purposes we compute the Fagin’s rank intersection for top-1000
ranks in the network. In case the number of nodes is less than or equal to 1000, the rank
intersection is computed for all nodes in the network. The first column in the tables con-
tain the label of the considered real-world network instances. The next four columns com-
prise the rank correlation between HABC and the traditional centrality measures (BC, CC,
DC, EC). Similarly the next four columns contain the rank correlation values between and
EABC(« = 0.5) and BC, CC, DC, EC, respectively. The last four columns are the rank cor-
relation between EABC(« = 0.75) and the traditional centrality measures.

The experimental results in Tables 4 and 5 for the Spearman’s and Kendall’s rank cor-
relation coefficients make it evident that ranking by the proposed hybrid measures is dif-
ferent than traditional centrality measures. The average correlation coefficient between
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the proposed measures and traditional measures, although is positive but very small. The
standard deviation is larger than the average coefficient values for most of the computa-
tion of rank correlation. It is due to several negative correlation coefficient values. Based
on the average rank correlation coefficient values, HABC is best correlated with CC and
then BC among the traditional measures. EABC(« = 0.75) also exhibits similar pattern
as the decay rate is slower than EABC(a = 0.5). EABC(«x = 0.5) is best correlated with
the CC and then EC among the traditional measures. The proposed measures are least
correlated with DC. The high Fagin’s intersection is due to the ranks being restricted to
the top-1000. Therefore, the existing traditional measures do not provide the solution to
the service coverage problem. The top-ranked nodes by the proposed hybrid centrality
measures are more appropriate in this application.

Spread maximization in complex contagion

In this section, we present the second application. Contagions are the phenomena of
disease/behavior/trends/information/idea spreading across networks. Contagions can
be classified as simple or complex. Simple contagions can be transmitted by a single
infected individual to other. Complex contagions, however, require multiple exposures
to infect an individual. Instead of simple contagions like diseases, there have been stud-
ies such as [41] and [42] which indicate that the spread of ideas, trends, behavior, influ-
ence and information in a social network can be more accurately modeled as complex
contagions. In a recent study by [43] on real-world networks, it has been noted that
influence maximization is not due to the nodes in higher cores. We consider complex
contagions first in a linear threshold diffusion model setting [44, 45]. Linear threshold
models are one of the classical diffusion models. The considered linear threshold model
in this paper assumes that a fixed proportion of neighbors of an individual need to be
infected in order to transmit infection to that individual. It is also referred as relative
threshold model. There are other models that considered deterministic thresholds yet
distinct for each individual. Another deterministic threshold model fixes the threshold
to be a constant number and does not depend on the neighborhood size. In stochastic
setting, uniformly random thresholds from an interval are considered for individuals.

We also consider two stochastic models of diffusion, independent cascade and sto-
chastic linear threshold. In the independent cascade model every edge in the network is
associated with a random value which represents the probability of diffusion across the
edge. The stochastic linear threshold model is a linear threshold model in a stochastic
setting as explained earlier.

The total number of people infected can depend upon where the contagion starts,
threshold on individual node, etc. There can be multiple sources in a network which can
start a complex contagion. This is especially true in the case for complex contagions,
which have a hard time jumping across communities [46]. Hence identification of an
ideal origin of trend/behavior/idea, etc., for a contagion can be helpful if we want the
contagion to spread to maximum number of people. This has real-world benefits, such
as in social marketing campaigns.

In this section, we consider the problem of finding a seed node that could spread
a behavior/advertisement/idea/trend or influence to maximum number of nodes. It
is referred as spread maximization problem. In complex contagion, a single node
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might not have the strength to even start the propagation of infection, therefore, it is
assumed that the neighborhood of the seed node is also infected with the seed node
at time step zero.

Formulation

In this section, we formulate hybrid centrality measures for the above stated prob-
lem of spread maximization in complex contagions. When choosing a source for
infection, several factors come to mind. Out of which, the most important is that the
node must have high enough degree to expose multiple individuals with the infec-
tion. It also helps if the node is closer to other nodes with high degree to spread it
further. Hence to measure the potential of a node in acting as a top spreader, we
use its degree as its node weight. We present the following two hybrid measures to
identify ideal sources for the spread of complex contagions in the relative threshold
model, leveraging the hybridization similar to the one used in previous section.

+ Harmonically attenuated degree centrality (HADC): in this measure, we attenu-
ate the node weights harmonically with respect to distance. Formally, for a node
u, the HADC(u) can be expressed as

DCu) + 3 DCw)
HADC() 2veV\{u} duy+1
m

where DC(v) is the degree centrality of node v, m is the number of links in the graph.

+ Exponentially attenuated degree centrality (EADC): in this measure, we attenuate
the node weights exponentially with respect to distance. Formally, for a node u,
the EADC(u) can be expressed as,

DC) + ey (g @™ - DC)

2m

EADC(u) = )
where « is a parameter that lies between 0 and 1, m is the number of links in the graph,
DC(v) is the degree centrality of node v.

Let m be the number of links and # be the number of nodes in a given network. The
over all time to compute proposed hybrid centrality measure is O(m#u) in unweighted
and O(nm + n? log n) in weighted graphs. It is due to the time complexity for all pair
shortest paths. In real-world, each node has its own threshold which may be deter-
ministic or stochastic in nature and varies from individual to individual. Finding best
spreader node is possible in O(mn) time if the threshold values at all nodes are fixed
to some constant value or proportion. Yet, for a different value of threshold, the best
spreader may change and requires re-computation. The proposed measures do not
require the knowledge of threshold value to be known beforehand. From the simula-
tion results in the next section, it is evident that these measures have consistently
performed the best in most cases for different values of threshold.
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Experimental results for spread maximization problem

In this section, we discuss the simulation results for for spread maximization problem
on various real-world networks. First, we discuss the experimental setup. Then, we
mention all the data set used for experimentation. Next, we provide a comparison of
traditional centrality measures: degree (DC), closeness (CC), betweenness (BC) and,
eigenvector (EC) and the proposed hybrid centrality measure (HADC, EADC(x = 0.25),
EADC(a = 0.5), EADC(«a = 0.75)) in the considered networks.

Considered real-world data sets the proposed solution to solve spread maximization
problem discussed in this paper hybridizes degree centrality within closeness/harmonic
and decay centrality. The considered problem is related to spread of trends, behaviors,
influences, etc., therefore, we have picked 15 moderate size real-world social networks
for simulations. We provide a brief summary of these networks in Table 7 and [31, 36]
can be referred for a detailed description of the networks. The columns of Table 7 consist
of names of the network instances, the number of nodes (1), the number of edges (m),
the average degree of the networks (Avg. deg.), density of the network, average cluster-
ing coefficient ©), degree assortativity and the size of the maximum clique, respectively.

Simulation we have conducted simulations for evaluating the performance of vari-
ous traditional centrality measures and the hybrid measures proposed in this paper for
spread maximization problem which are summarized in Tables 8, 9, 10 and 11. The sim-
ulation is carried out as follows. The top-ranked node for every measure is taken as the
source of the infection. The source and its neighborhood are infected at time ¢t = 0. At
each time step the infection is propagated as per the diffusion model being used. The
contagion ends if it is unable to infect any susceptible nodes in a time-step. The total
number of infected nodes by the end of the contagion is the spread-score for the source
node in the simulation. The performance of a centrality measure is evaluated by comput-
ing the spread-score of the top most central node as per the centrality measure.

For the deterministic threshold model, the spread-scores of top most central nodes
according to the traditional and proposed hybrid centrality measures in all considered
real-world networks for different possible threshold value in the interval (0,1) with a step
increase of 0.1 are plotted in Fig. 2. The figure shows the number of infections on the
y-axis and the threshold values on the x-axis. As a specific example consider the plot for
Twitter Lists. The number of infections have a large dip when the threshold increases
from 0.1 to 0.2. The worst performing metric at the threshold of 0.2 is EC. When
increasing the threshold from 0.2 to 0.3, we see another dip in number of infections,
with DC and BC performing almost equally while BC was superior at the 0.2 threshold.
CC and proposed centrality measures outperform the other measures across the rest of
the thresholds. The main aim to plot these is to understand, for which interval of thresh-
old values, the spread-scores for various centrality measures vary majorly. It is clear
from the plots that for most of the considered real-world networks, the spread scores
vary mostly in the sub-interval [0.3, 0.6]. Yet, the spread-scores for different measures
are not clear and comparable from these plots. Therefore, the results of the simulation
for threshold value 0.3, 0.4, 0.5, and 0.6, i.e., for threshold in terms of percentage set at
30%, 40%, 50% and 60% are presented in Tables 8, 9, 10, and 11, respectively. For each
of the tables, the first column shows the network name, the second column shows the
spread-scores of Betweenness Centrality, the third column shows the spread-scores of
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Fig. 2 Spread-scores of top-most central nodes according to the traditional and proposed hybrid centrality
measures in considered real-world networks for different threshold values as per the deterministic threshold
model

Closeness Centrality, the fourth column shows the spread-scores for the Degree Central-

ity and the fifth column shows the spread-scores for Eigenvector Centrality. The other
half of the table, from the sixth column onward shows the scores of the proposed hybrid

measures. Namely, the sixth column shows the spread-score for HADC, the seventh
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Table 1 Considered real-world networks
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Instance name n m Avg.deg. Density ¢ Assortativity Max clique Network type
Chicago 1467 1298  1.7696 0.0012  0.0001 —0.5049 2 Transport net-
Road [36] work
Chilean Power 347 444 25591 0.0074  0.0865 —0.0773 4 Energy network
Grid [38]
Euroroad [36] 1174 1417 2414 0.0021 0.0167 0.1267 3 Transport net-
work
London 266 308 23158 0.0087  0.0363 0.1531 3 Transport net-
Metro [34] work
Madrid 209 240 2.2967 0.011 0.0056 01776 3 Transport net-
Metro [34] work
Mexico 147 164 22313 0.0153  0.0034 —0.1105 3 Transport net-
Metro [34] work
Minnesota 2642 3303 25004 0.0009 0.0716 —0.1848 3 Transport net-
Road [31] work
Moscow 134 156 23284 00175 00174 04492 3 Transport net-
Metro [34] work
New York 433 475 2194 0.0051 00173 —0.0297 3 Transport net-
Metro [34] work
Oldenburg 6105 7029 23027  0.0004 0.0108 0.0554 3 Transport net-
Road [32] work
Openflights [34] 2939 15677 106683  0.0036 04526 00509 22 Transport net-
work
Osaka Metro [34] 108 123 22778 0.0213  0.0001 0.1965 2 Transport net-
work
p2p-Gnu- 6301 20777 65948 0.001 0.0109 0.0356 5 Internet peer-to-
tella08 [37] peer network
Paris Metro [34] 299 356  2.3813 0.008 0.0204 —0.0297 3 Transport net-
work
as20000102 [37] 6474 13895 4.2926  0.0007 02522 —01704 10 Autonomous
systems graph
Seoul Metro [34] 392 437 22296 0.0057  0.006 0.0313 3 Transport net-
work
Shanghai 148 158 2.1351 0.0145  0.0029 —0.0318 3 Transport net-
Metro [34] work
Tokyo Metro [34] 217 262 24147 00112 00237 0.1983 3 Transport net-
work
US Air [35] 332 2126 128072 00387 06252 —02079 22 Transport net-
work
US Power 4941 6594 26691 0.0005  0.0801 0.0035 6 Energy network
Grid [39]
NRPG data [33] 246 373 30325 00124 0.071 —0.0932 3 Energy network

column for EADC with o = 0.25, the eight column for EADC with « = 0.5 and the ninth

column for EADC with o = 0.75.

We have emphasized in bold, the best spread-score in Table 8, 9, 10, 11, 12 and 13
for each network instances given in Table 7 overvarious models, when the seed node is

picked according to the considered centrality measures. As seen in Table 8, at a lower

threshold, CC performs better than other traditional measures for most networks. How-

ever, as we increase the threshold, we observe that DC starts performing better than

other traditional measures, as shown in Table 9. Since our measures are a hybrid of both

the measures, they are able to maintain high scores across the thresholds. As an example

if we look at Table 9 for Twitter Lists, the measures have similar results as CC, on the
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Table 2 Expected response-time of the proposed hybrid measures and the traditional
centrality measures when the most central node is made the service center

Instance name BC DC CC EC HABC EABC (¢ = 0.5) EABC (o = 0.75)
Chicago Road 0.49 0.49 0.49 0.49 0.49 0.49 0.49
Chilean Power Grid 0.29 033 0.29 0.33 0.29 0.29 0.29
Euroroad 0.88 0.88 0.89 1.05 0.88 0.88 0.88
London Metro 0.83 0.83 0.80 0.83 0.80 0.80 0.80
Madrid Metro 046 046 044 0.66 046 046 0.42
Mexico Metro 0.50 0.50 0.54 0.50 0.50 0.50 0.54
Minnesota Road 2.29 3.21 2.15 3.1 329 2.29 345
Moscow Metro 040 040 0.37 0.39 0.39 0.39 0.37
New York Metro 1.11 13 1.12 13 1.1 1.1 1.1
Oldenburg Road 1.66 1.66 1.68 264 1.66 1.66 1.66
Openflights 0.16 0.16 0.16 0.16 0.16 0.16 0.16
Osaka Metro 048 048 044 048 048 048 0.42
p2p-Gnutella08 0.29 0.27 0.27 0.27 0.27 0.27 0.27
Paris Metro 0.55 0.55 0.55 0.56 0.51 0.51 0.51
2520000102 0.12 0.12 0.12 0.12 0.12 0.12 0.12
Seoul Metro 1.06 1.25 1.06 123 1.02 1.02 1.02
Shanghai Metro 0.53 0.53 0.64 0.53 0.64 0.53 0.64
Tokyo Metro 0.57 0.57 0.57 0.57 0.57 0.57 0.49
US Air 0.10 0.10 0.10 0.10 0.10 0.10 0.10
US Power Grid 0.92 1.34 0.83 212 0.83 0.83 0.83
NRPG 0.30 045 0.30 037 0.30 0.30 0.30

other hand, in the same table for soc-pages-media and soc-gamesec-RO the results are
similar to DC. It is evident from the tables that the proposed measures are a hybridiza-
tion of DC and CC, and therefore, they perform at par with the better performing tradi-
tional measures across various thresholds. In some cases, the proposed measures even
outperform all the traditional measures.

Apart from the deterministic linear threshold model, we have also evaluated the perfor-
mance of the proposed measures as well as traditional measure using stochastic diffusion
models, namely independent cascade (IC) and stochastic linear threshold (LT). The results
of these experiments are shown in Tables 13 and 12, respectively. The results shown in
the tables are the averages taken over 100 independent iterations of the diffusion models.
From Table 12, we see that HADC and EADC with @ = 0.75 have the highest number of
expected infections across most networks. For some networks such as soc-pages-public-
figure, they outperform all of the traditional measures. In the network Twitter lists, CC
is the top performing traditional measure while in the network soc-pages-media, DC and
EC are the top performing traditional measures. In both cases HADC and EADC with
a = 0.75 perform optimally as they are a type of hybridization between CC and DC. In
case of the IC model as shown in Table 13, we see that no measure performs consistently
across the networks. As none of the traditional measures are able to perform consistently
across the networks, a hybridization between them may lead to sub-optimal results.

We present the Spearman’s rank correlation coefficient, Kendall’s rank correlation
coefficient and Fagin’s intersection metric [40] to evaluate the correlation between
traditional centrality measures and proposed hybrid centrality measures in Tables 14,
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Table 7 Considered real-world social networks

Instance name n m Avg.deg. Density ¢ Assortativity (D) Max clique
soc-gplus [31] 23,628 39242 33217 0.0001 0.0037 —0387 7
Twitter Lists [36] 23,370 33,101 2.8328 0.0001 0.0215 —04741 7
soc-hamsterer [31] 2426 16,630 13.7098 00057 02314 0.0474 25
soc-pages-government [31] 7057 89,455 253521 0.0036 0.2238 0.0294 28
soc-pages-politician [31] 5908 41,729 14.1263 0.0024 03011 0.0184 21
soc-pages-shows [31] 3892 17,262 88705 0.0023  0.5906 0.5605 57
soc-wiki-elec [31] 7118 107,071 30.0846 0.0042  0.1255 —0.0514 17
soc-advogato [31] 6551 51,332 156715 0.0024  0.0925 —0.0526 19
soc-pages-public-figure [31] 11,565 67,114  11.6064 0.001 0.1666 0.2024 21
soc-anybeat [31] 12,645 67,053 106055 0.0008 00217 —0.1219 25
soc-pages-sport [31] 13,866 86,858 125282 0.0009  0.1292 —0.0268 29
soc-epinions [31] 26,588 100,120 7.5312 0.0003  0.0892 0.0572 16
soc-pages-media [31] 27917 206,259 14.7766 0.0005  0.114  0.0221 31
soc-pages-company [31] 14,113 52,310 7413 0.0005 0.1532 0.0135 21
soc-gamesec-RO [31] 41,773 125,826 6.0243 0.0001 0.0753 0.114 7

Table 8 Number of infected nodes when the top-ranked node is chosen as the source
of the infection for threshold = 30%

Instance BC cc DC EC HADC EADC EADC EADC

name (¢ = 0.25) (¢ = 0.5) (¢ = 0.75)

soc-gplus 1,4951 14,951 14,951 14,951 14,951 14,951 14,951 14,951

Twitter Lists 484 1180 553 539 1180 1180 1180 1180

soc-hamsterer 1879 1879 1879 1879 1879 1879 1879 1879

soc-pages- 4316 4316 4316 3695 4316 4316 4316 4316
government

soc-pages- 2185 2185 946 674 2185 2185 2185 2185
politician

soc-pages- 1283 1283 1242 210 1283 279 1283 1283
shows

soc-wiki-elec 7061 7061 7061 7061 7061 7061 7061 7061

soc-advogato 5014 5014 5014 5014 5014 5014 5014 5014

soc-pages 10,095 10,095 10,029 1485 10,184 1485 10,184 10,184

soc-anybeat 12,538 12,538 12,538 12,538 12,538 12,538 12538 12,538

soc-pages- 13,739 13,739 13,739 13,739 13,739 13,739 13,739 13739
sport

soc-epinions 2094 3106 25,283 25,283 25,283 25,283 25,283 3106

soc-pages- 26,982 26981 26981 26981 26981 26,981 26,981 26,981
media

soc-pages- 1065 12,432 12,432 163 12,432 12,432 12,432 12,432
company

soc-gamesec- 219 219 554 555 219 554 219 219
RO

15 and 16, respectively. For our purposes we compute the Fagin’s rank intersection
for top-1000 ranks in the network. In case the number of nodes is less than or equal
to 1000, the rank intersection is computed for all nodes in the network. For each of
tables, the first column shows the Network Name. The next four columns show the
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Table 9 Number of infected nodes when the top-ranked node is chosen as the source
of the infection for threshold = 40%

Instance BC CcC DC EC HADC EADC EADC EADC

name (¢ = 0.25) (¢ = 0.5) (e = 0.75)

soc-gplus 14,556 14,556 14,556 14,556 14,556 14,556 14,556 14,556

Twitter Lists 473 912 452 522 912 912 912 912

soc-hamsterer 1666 1666 1666 1666 1666 1666 1666 1666

soc-pages- 3372 3372 3372 1446 3372 3372 3372 3372
government

soc-pages- 552 552 652 387 552 552 552 552
politician

soc-pages- 297 297 299 141 297 196 297 297
shows

soc-wiki-elec 7061 7061 7061 7061 7061 7061 7061 7061

soc-advogato 4667 4667 4667 4667 4667 4667 4667 4667

soc-pages 1143 1143 7825 1328 1223 1328 1223 1223

soc-anybeat 12,287 12,287 12,287 12,287 12,287 12,287 12287 12287

soc-pages- 1082 1082 1082 1082 1082 1082 1082 1082
sport

soc-epinions 1383 1824 22,581 22,581 22,581 22,581 22,581 1824

soc-pages- 1101 1189 1694 1694 1694 1694 1694 1694
media

soc-pages- 467 561 561 121 561 561 561 561
company

soc-gamesec- 129 129 180 175 129 180 129 129

RO

Table 10 Number of infected nodes when the top-ranked node is chosen as the source
of the infection for threshold = 50%

Instance BC CcC DC EC HADC EADC EADC EADC

name (o = 0.25) (e = 0.5) (e = 0.75)

soc-gplus 11,482 11,482 11,482 11,482 11,482 11,482 11,482 11,482

Twitter Lists 473 850 452 522 850 850 850 850

soc-hamsterer 1091 1091 1091 1091 1091 1091 1091 1091

SoC-pages- 2631 2631 2631 1094 2631 2631 2631 2631
government

SOC-pages- 483 483 640 380 483 483 483 483
politician

soc-pages- 218 218 216 137 218 172 218 218
shows

soc-wiki-elec 7061 7061 7061 7061 7061 7061 7061 7061

soc-advogato 4584 4584 4584 4584 4584 4584 4584 4584

soc-pages- 905 905 958 1242 831 1242 831 831
public-figure

soc-anybeat 12,221 12,221 12,221 12,221 12,221 12,221 12,221 12,221

soc-pages- 837 837 837 837 837 837 837 837
sport

soc-epinions 1310 1715 1709 1709 1709 1709 1709 1715

soc-pages- 9 984 1159 1159 1159 1159 1159 1159
media

soc-pages- 417 492 492 101 492 492 492 492
company

soc-gamesec- 124 124 158 159 124 158 124 124

RO
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Table 11 Number of infected nodes when the top-ranked node is chosen as the source
of the infection for threshold = 60%

Instance name BC CcC DC EC HADC EADC EADC EADC (e = 0.75)
(o = 0.25) (¢ = 0.5)

soc-gplus 8741 8741 8741 8741 8741 8741 8741 8741

Twitter Lists 402 633 417 500 633 633 633 633

soc-hamsterer 567 567 567 567 567 567 567 567

soc-pages- 1712 1712 1712 944 1712 1712 1712 1712
government

soc-pages- 334 334 558 340 334 334 334 334
politician

soc-pages- 161 161 161 124 161 150 161 161
shows

soc-wiki-elec 5241 5241 5241 5241 5241 5241 5241 5241

soc-advogato 1795 1795 1795 1795 1795 1795 1795 1795

soc-pages- 498 498 570 1062 508 1062 508 508
public-figure

soc-anybeat 10130 10130 10130 10130 10130 10130 10130 10130

soc-pages- 633 633 633 633 633 633 633 633
sport

soc-epinions 897 1107 981 981 981 981 981 1107

soc-pages- 640 724 863 863 863 863 863 863
media

soc-pages- 275 326 326 95 326 326 326 326
company

soc-gamesec- 101 101 119 121 101 119 101 101
RO

respective correlation between HADC and the traditional measures, namely BC, CC,
DC and EC. The next four columns, from columns 6 to 9 show the respective correla-
tion between EADC with @ = 0.25 and the traditional measures, BC, CC, DC and EC.
Finally the columns from 10 to 13 show the the respective correlation between EADC
with @ = 0.75and BC, CC, DC and EC.

From the Spearman’s and Kendall’s rank correlation coefficients, we observe that our
measures have a small positive correlation with traditional measures. The correlation
is small enough to conclude that the proposed measures rank nodes differently from
traditional measures. The correlations are positive and almost same for all traditional
measures. This indicates that our measures share some characteristics with them and
are able to switch between traditional measures to perform optimally across networks
and thresholds. Fagin’s intersection metric has a higher value due to only considering
top-1000 ranked nodes to compute the metric.
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Table 12 Expected number of infected nodes when the top-ranked node is chosen
as the source of the infection for stochastic linear threshold model

Instance BC cC DC EC HADC EADC EADC EADC

name (¢ =0.25 (¢ =0.5 (ax=0.75

soc-gplus 11,990.96 11,990.96 11,990.96 11,990.96 11,990.96 11,990.96 11,990.96 11,990.96

Twitter Lists 67122 1298.42 6973 59226 1298.42 1298.42 1298.42 1298.42

soc-hamsterer 1242.72 1242.72 1242.72 1242.72 1242.72 1242.72 1242.72 1242.72

soc-pages- 4027.29 4027.29  4027.29 2916.12 4027.29 4027.29 4027.29 4027.29
government

soc-pages- 1907.98 1907.98 112345 72417 1907.98 1907.98 1907.98 1907.98
politician

soc-pages- 748.47 748.47 743.79 2533 748.47 347.11 748.47 748.47
shows

soc-wiki-elec 6623.02 6623.02 6623.02 6623.02 6623.02 6623.02 6623.02 6623.02

soc-advogato 37411 3741.1 37411 37411 3741.1 3741.1 37411 37411

soc-pages- 4415.09 4415.09 392815 202533 4535.9 202533 4535.9 4535.9
public-
figure

soc-anybeat 11,394.31 11,394.31 11,394.31 11,394.31 11,394.31 11,394.31 11,394.31 11,394.31

soc-pages- 4064.69 4064.69 4064.69 4064.69 4064.69 4064.69 4064.69 4064.69
sport

soc-epinions 6660.87 8353.97 7469.31 7469.31 7469.31 7469.31 7469.31 8353.97

soc-pages- 7927.39 10,11852 10,916.34 10,916.34 10,916.34 10,916.34 10,916.34 10,916.34
media

soc-pages- 1644.77 2429.62 2429.62 161.55 2429.62 2429.62 2429.62 2429.62
company

soc-gamesec- 1101.8 1101.8 1293.95 1235.01 1101.8 1293.95 1101.8 1101.8

RO

Table 13 Expected number of infected nodes when the top ranked node is chosen
as the source of the infection for independent cascade model

Instance name BC CcC DC EC HADC EADC EADC EADC
(¢ =0.25 (¢ =0.5) (o =0.75)
)

soc-gplus 14,4871 1447236 1448101 1448063 1447288 14,480.8 14,487.43 1447727

Twitter Lists 11,989.12  11,955.72 11,992.85 11,964.66 1190641 119172 1191664 11,908.19

soc-hamsterer 937.39 937.74 938.05 936.18 937.11 937.69 936.21 937.34

soc-pages- 3148.14 3149.21 3148.54 3077.98 315089  3152.66 3140.53 314439
government

soc-pages- 2771.62 2769.67 2640.67 2586.06 277033 277198 2769.76 2774.51
politician

soc-pages- 1437.09 1442.95 1431.11 1308.85 144445 1330.98 1445.35 1446.3
shows

soc-wiki-elec 2060.71 2062.82 20615 206138 206132 2061.22 2061.67 2061.75

soc-advogato 2508.59 2504.19  2505.09 250353 250448 250625 25052 2503.19

soc-pages-pub-  4951.71 494931 4955.46 479201 493883 479236 4946.97 4940.21
lic-figure

soc-anybeat 5989.9 5992.17 599056  5989.8 5989.71 599155 5994.93 5991.79

soc-pages-sport  7147.25 7147.66 714217 714991 7146.72 7150 7149.07 714333

soc-epinions 8131.74 808385 797135 796632 797266  7963.08 796707  8074.81

soc-pages- 13272.46 1321794 1307114 1306932 1306838 13071.39 13067.68 1307513
media

soc-pages- 7085.8 702744 7036.72 6951.13 703837 7033.11 7033.63 7030.34
company

soc-gamesec- 23,789.15  23,782.03 23,75748 23,762.35 23,795.5 2374852 23,793.17 23,783.46

RO
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Conclusion
In this paper, we have proposed new hybrid centrality measures based on closeness
(harmonic) and decay measures. The first hybridization is used to solve service cover-
age problem in flow networks where the demand for services is assumed to be pro-
portional to the betweenness centrality. The proposed measures can also be used in
another application that requires installing a facility farthest from the failure prone
nodes. The solution in this case will be the node with minimum expected response-
efficiency. The second hybridization attempts to find most ideal node for spreading
information to the maximum fraction of population while considering a complex con-
tagion. The proposed hybridization of centrality measures for both applications are
based on the formulation for node-weighted centrality measures. The experimental
results on several real-world networks show that the proposed measures perform rel-
atively better than the individual traditional measures and also rank nodes differently.
Although, the reference centrality measures considered in this paper are due to the
nature of considered applications, the framework allows using other measures based
on the requirement. Analyzing the proposed measures on various other real-world
networks and at the place of betweenness and degree centrality, hybridizing other
measures specific to some particular applications are the possible future directions.
The analysis of real-world networks where nonuniform weights are given at nodes
using node-weighted centrality measures is another open direction. Another inter-
esting direction is using hybrid centrality measures in multi-layer networks [47]. In
multi-layer networks, we may use one layer of the network to compute node weights
to be used for hybridization in other layers.
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