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Introduction
The ideas, principles and advantages gathered about complex networks during last 
decades affect disparate scenarios, since networks revealed as an effective approach to 
model, understand and control many real-world phenomena [1, 2]. Today, the ordinary 
course of our society more and more relies on the correct functioning and stability of its 
underlying networks, from power lines to air traffic and railways, as well as social, com-
mercial, computer networks and many others.

One of the main reasons that could compromise the correct functioning of a net-
work is the failing of one or more nodes, whose side effect is preventing other active 
nodes from connecting to the rest of network, leading to a partitioned or even destroyed 
system.

The vulnerability analysis holds a significant role in establishing to what extent a net-
work still provides expected services notwithstanding failures in its structure, either 
natural or man-made. This property, known as robustness, is crucial in many cases and 
should be considered among the set of the properties of a network, such as the node 
types, its dynamics, the degree distribution an so on. Despite its importance, it is still 
missing a sharp definition; in the literature, it can be intended as the ability of a network 
“to deliver an anticipated level of performance” [3], or “to maintain its efficiency after 
failures” [4, 5].
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Definition apart, a further and more relevant step is how to improve the network 
robustness; a first approach is protecting sensitive/critical nodes, but actually this solu-
tion is not effective when facing massive attacks, as for instance when malicious coop-
erate to subvert computer networks. More useful attempts are the insertion of new 
autonomous nodes, or the rewiring of specific (possibly extensive) portion of the net-
work; such solutions though could require significant physical modifications and/or 
imply high costs (e.g. think to a railway system).

A more viable alternative is the addition of a small number of new connections 
between specific nodes to increase the overall network robustness. Several criteria can 
be adopted to achieve this goal, from random links addition [6], to low-betweenness/
low-degree addition strategies [7], algebraic connectivity based addition [8] or even inter 
degree-degree strategy for multiplex networks [9].

The choice of which nodes should be considered is also affected by the type of the 
network involved; here, we focus in particular on Scale-Free (SF) networks, modelling 
many real-world scenarios. Although intuition could suggest to strengthen hub links, 
being hubs the nodes with high degree (that play a strategic role for in SF networks con-
nectiveness), here we investigate on adding links between nodes with a secondary role 
respect to hubs, specifically between nodes belonging to the network periphery. The 
idea of improving such long-range connections aims at creating a sort of backup paths 
to leverage in case of hub failures due to attacks. The introduction of long-range links 
to enhance some properties of a network has been proposed in the past in a different 
context. For example, in [10–13], the authors exploit long-range links to improve the 
PageRank score of a target node.

The work presented in this paper investigates on this idea to improve the robustness 
of a network. Basically, we propose to add one or more links between the farthest nodes 
in the network; several experiments carried out with attacks before and after the addi-
tion of such links show that this approach is effective yet efficient in preserving network 
functionalities, hence enhancing its robustness.

The paper is organized as follows: in "Related works" section, an overview of related 
works is presented, while in "Robustness improvement strategy" section, our proposal is 
introduced in detail, followed by a set of experiments conducted on different networks, 
illustrated and discussed in "Robustness assessment" section. Our final remarks are sum-
marized in "Conclusions" section.

Related works
The literature concerning robustness for complex networks steadily grows up over these 
last years due to their larger adoption in the modelling of complex systems. Papers cov-
ering this topic can be split into two large groups: theoretical studies on the meaning of 
robustness in the field of complex networks and a vibrant line of work concerning com-
plex network robustness failures in the real-world case studies.

The literature devoted a big effort to define the meaning of robustness and to find met-
rics useful to evaluate it in several contexts. For example, it is generally quantified by 
measuring the impact of the removal of nodes (and their corresponding links) on specific 
network properties. The paper [14] evaluates robustness using the Largest Connected 
Component (LCC), while paper [15] engages percolation thresholds; other examples are 
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the elasticity that captures throughput under node and link removal [16], the spectrum 
of a graph [17], or other more sophisticated approaches [18]. Paper [19] discusses the 
robustness of the link prediction in complex network [20] under several attack strategies 
to the network: random attack, centrality-based attacks, similarity-based attacks and 
simulated annealing-based attack. The paper [21] introduces the sub-graph robustness 
problem under random attacks, localized attacks and targeted attacks. The last attack 
strategy is quite frequent case in a real world mainly in popular social network platforms 
that are generally not completely mapped. The authors of [21] discuss metrics used to 
evaluate the robustness of complex networks via edge betweenness centrality, the num-
ber of links cut sets and node Wiener impact; they also propose a variable neighbour-
hood search heuristic to improve it by adding a few well-placed links. Finally, in [22], the 
authors deal with the robustness of community structure rather than that of complex 
networks.

Among the factors robustness depend on, the network structure is still one of the 
most relevant [23]. For instance, it is well established that Scale-Free networks are more 
robust than Erdős-Rényi to random failures, but it is particularly susceptible to inten-
tional attacks that target their hubs, i.e. few nodes with very high degree that hold most 
of network connectedness [24]. The work [21] shows that the sub-network robustness 
depends on several factors including network topology, attack mode, sampling method 
and the amount of data missing, generalizing some well-known robustness principles of 
complex networks.

In [3], the authors evaluate the relationship between network hierarchy and robustness 
using classical metrics to quantify robustness under several targeted failures, while in 
[25] the authors study the connection between robustness of community structure and 
the critical threshold of the resolution parameter, used to explore communities at differ-
ent scales. In addition, the dynamics of the network must be considered [26] since the 
behaviour of robustness in dynamic systems is different than the one of static systems 
(some real systems for example can spontaneously recover from failures after a while, as 
in brain seizures). In [27], the changing of dependency among nodes over time is studied 
using an evolving network model consisting of failure and recovery mechanisms.

Paper [28] addresses the problem of combined attacks and [29] presents the problem 
of the cascading failures between interdependent networks, whereas [30] discusses the 
interplay between cascading failures and virus propagation.

Several applications are deeply discussed in the literature; we believe that one of the 
most interesting real-world application areas where robustness can impact significantly 
is social network, supply chain, power grid and public transport network. The paper 
[31] performs a comparative study based on distance distribution in social networks and 
shows an example applied to Amazon. The paper [32] presents Chilean Internet back-
bone as a case study to show the robustness, considering three and four extra links.

The authors of [33] present some interesting applications of complex network robust-
ness to the supply chain problem and also discuss its risks, including the global sup-
ply chain one, planning for catastrophic events and increasing chain agility and risk 
mitigation. The authors model the system with a couple of interfering networks (an 
undirected and a direct network) and craft a time-varied functional equation to study 
the dynamic process of failed loads propagation in such interdependent network. The 
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numerical simulations show that an abnormal crash of the network is recorded also with 
the removal of a small number of nodes. In [34], the authors study the robustness of 
manufacturing industry and validate it using an empirical dataset. Such industry is char-
acterized by large-scale interdependent networks, a complex structure that connects 
companies according to commercial (buy or sell) transactions among them. The authors 
highlight macroscopic and microscopic characteristics of the network and shed light on 
vulnerabilities of the system.

In [35], the application of Network of Networks (NON) robustness for grid networks 
is discussed.

Another common area where complex network robustness is studied is the transport 
networks. Several case studies can be found in the literature; for instance, [36] analy-
ses the vulnerability of the Shanghai urban rail, [37] proposes some ad hoc measuring 
of vulnerability of transportation network, [38] analyses the UK rail network in term of 
resilience and robustness, and [39] uses the case study of San Paulo transport network to 
discuss about the connection between structure and robustness.

With respect to all works cited in this section, in our work:

•	 the idea of exploiting long-range connections is not present in other papers; hence, 
to the best of our knowledge, this represents a main novelty;

•	 we do not introduce new robustness definitions, rather we assume as measure the 
LCC size [14] variation before and after attacks, mainly since it conveys information 
about the number and size of the connected network components;

•	 the type of network we focus on is the Scale-Free (SF), since this model better 
approximates real-world networks;

•	 the type of attack we consider for robustness assessment is those described in 
[40], i.e. targeted, degree-based attacks that particularly affect SF networks (as [23] 
pointed out);

•	 we do not address specific robustness issues as sub-graph [21], community structure 
[22], network hierarchy [3], or even dynamics [26]; these questions are currently out 
of our scope;

•	 the robustness question has a relevant impact on many real-world networks. For this 
reason, in addition to synthetic ones, we performed experiments on some real sce-
narios, as biological, social, technological and the Web (see "Robustness assessment" 
section).

Robustness improvement strategy
A commonly studied robustness enhancing technique is rewiring, i.e. the number and 
type of nodes are left untouched, while links among them can be modified according 
to some global strategy. Of course, the chosen strategy should avoid significant costs; 
therefore, one wants to achieve a more robust network while adding as few links as pos-
sible. The heuristic we propose in this paper is a wiring strategy based on adding long-
distance links, i.e. connecting nodes belonging to the periphery of the network. The 
proposed strategy is applied to Scale-Free (SF) networks since they are the most com-
mon model for many real-world networks [2]. SF networks present a power–law degree 
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distribution (i.e. a typical SF network shows few nodes with a very high-degree (hubs) 
and a large amount of nodes with very low degree) that is exploited by our strategy in 
order to improve the network robustness. Therefore, two different strategies against loss 
of connectivity can be evaluated:

1	 increasing the number of links that connect the hubs (or their neighbours), i.e. acting 
on the so-called short-distance links;

2	 conversely, increasing the number of links connecting node in the periphery (long-
distance links).

The former strategy is based on the intuition that enhancing the connectivity among 
the hubs makes it harder to get a disconnected net. However, this strategy fails when 
hubs are directly attacked and, in addition, can be very expensive since hubs usually are 
very important nodes inside the network, hence creating new links for them could imply 
higher costs. On the other hand, the latter strategy, although counter-intuitive, is less 
expensive since it involves nodes playing a less relevant role in the network, and aims at 
creating new paths between them. Connecting long-distance nodes actually creates a set 
of backup paths whose impact is higher than adding “yet another” link between hubs; 
indeed, we believe that long-distance links act as bridges between the neighbourhood of 
two different hubs that can be effectively used in case of failures/attacks.

Figure 1 illustrates the proposed mechanism. As a toy example, the figure shows a por-
tion of a Scale-Free network composed by six nodes, where two of them (nodes 3 and 
4) are hubs. If we remove one of the two hubs (e.g. node 3), it is likely that the network 
splits in two separate components. Moreover, the distance (i.e. the shortest path) among 
hubs is always very short, since hubs are usually directly connected (or they are just at 
few steps far away). The strong connection among hubs mainly depends on two factors, 
(1) hubs are generally the core around which the network grown, and (2) they have many 
links; hence, they are connected with a high probability. In summary, it is highly unlikely 
that two hubs are very distant each other.

Applying the proposed strategy to the example, we made the network more robust by 
adding a new link (dashed line) between nodes 1 and 6. This increases the robustness 
since the resulting network remains connected even if hubs 3 and 4 are removed.

Fig. 1  SF network rewiring strategy
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Robustness assessment
In order to evaluate the proposed strategy, we simulate an attack on several networks 
before and after the addition of new links between unconnected nodes and use as 
robustness measure the size of the Largest Connected Component (LCC), i.e. the 
largest sub-network in which any nodes pair is connected by some path. We compare 
various rewiring strategies in addition to our proposal. In the following, we detail the 
test networks, the attack process and other rewiring approaches considered.

Experiments outline

Test networks

Experiments dataset consists of five synthetic and four real-world networks. Specifi-
cally, we test on five Scale-Free (SF) networks with 1k nodes and average degree 2, 
generated using a refined version of the model presented in [41] and implemented in 
Pajek [42], while the four real-world networks come from NetworkRepository [43], 
featured with 1k ∼ 3k nodes and average degree �k� ≪ N  , where N is the number of 
nodes, i.e. they are sparse. The real-world networks belong to four different catego-
ries (biological, social, technological and web), and for each of them, we extract the 
LCC before performing the simulations. All networks are undirected or considered as 
such. See Table 1 for more details about the pre-processed networks.

Attacks

During each experiment, we perform two types of degree-based attack on the verti-
ces which differ on when nodes degree is computed. As seen in [40], during the ini-
tial degree attack (ID) we compute the degree of each node at the beginning and we 
remove the nodes in descending degree order, while during the recalculated degree 
attack (RD) we compute the degree before any removal step and remove only the 
node with the highest degree.

Other strategies

Here, we briefly introduce other robustness enhancement strategies that are based on 
the creation of new links and that are used in the next section as baselines.

Table 1  Full list of  the  test networks. The column |N| is  the  number of  nodes, column 
|E| is  the  number of  edges, column 〈k〉 is  the  average degree, column C  is  the  average 
clustering coefficient (as defined in [44]), and column lG is the average path length

Network Category |N| |E| 〈k〉 C lG

Scale-Free {1–5} Synthetic 1000 ~ 2000 ∼ 2 ~ 0.01 ~ 4.65

Bio-yeast-protein-inter Biological 1458 1993 1.36 0.07 6.81

soc-hamsterster Social 2000 16097 8.04 0.54 3.58

Tech-routers Technological 2113 6633 3.13 0.24 4.60

Web-edu Web 3031 6475 2.13 0.56 4.27
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•	 Random based (R) [45]: one of the most extensively used strategies just adds new 
links between randomly chosen unconnected pair of nodes. Of course, the time 
complexity of this strategy is very low (O(1));

•	 Degree based [45]: another class of strategies that employs preferential attachment 
between nodes depending on their degree. Low-degree (LK) strategy connects nodes 
with the lowest degree in the network, while the high-degree (HK) strategy connects 
nodes with the highest degree. The time complexity of this strategy depends on the 
sorting algorithm used to sort nodes in degree order, so we assume it is O(NlogN), 
where N is the number of nodes in the network;

•	 Betweenness based: in a similar fashion as the degree strategy, we try connecting 
nodes with the lowest (LB) or the highest betweenness (HB). The betweenness of a 
node is a centrality measure defined as the ratio of the shortest paths between every 
pair of nodes that pass through that node [46]. The time complexity is polynomial 
because of the betweenness computation and of the sorting of the nodes according 
to their value, so it is O(NM + N logN ) , where M is the number of links in the net-
work.

It should be noted that in the above strategies neither self-loops nor multiple links are 
allowed, since the attacks are performed on the nodes and those links would be removed 
all at once with one of the incident nodes.

Finally, we leave out the complexity of testing if the link already exists and the multiple 
picks if the chosen pair of nodes is already connected.

Results

In this section, we present the results of the robustness enhancement simulations 
obtained by applying our proposed strategy. Each experiment is repeated ten times and 
averaged in order to remove any bias. In addition, we average again the results on the 
five Scale-Free networks to remove any realization-related bias.

Figure 2 reports the dismantling curves of the network obtained adding from 0 to 50 
new links according to the proposed long-distance wiring strategy. Note that the LCC is 
computed during an ID attack (as defined in the previous section). As shown in the fig-
ure, there is a clear gain in robustness, that becomes more substantial as the number of 
added links increases. Specifically, by introducing long-distance links, we obtain a peak 
increment of about 16% of LCC size by introducing 2.5% of new links. To help quantify 
the robustness enhancement, we also report the LCC size gains in the figure inset, and 
also peak values of each curve in Table 2. These results confirm our intuition that a small 
fraction of new links placed in the right place can provide a significant improvement in 
the network resilience.

As shown in Fig.  3 and Table  2, the above results also hold in the case of the more 
aggressive RD attack strategy. This is a further confirmation that long-distance links 
are able to increase the robustness of the original network independently of the degree-
based node removal type of attacks used. Unless otherwise specified, in the rest of the 
paper, all results are obtained by considering the RD attack algorithm.

The next question we try to address concerns the comparison of performance of our 
wiring strategy (LD) with respect to the other robustness enhancement techniques 
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cited in the previous section. The first set of experiments (Fig. 4) reports the incre-
ments of robustness of a SF networks obtained by adding 10 links using LD, LB, 
HB, LK, HK and R strategies. Specifically, the inset shows the gain in LCC size with 
respect to the original network for different strategies. The results highlight that LD 
strategy outperforms all the others. Of course, the gain is larger when we add 50 new 
links (see Fig.  5). In this case, LD gets a peak gain that is twice with respect to the 
second best strategy. Therefore, we conclude that LD seems a good wiring strategy 
even in comparison with other approaches. The peak values of LCC size gain for each 
strategy are found in Table 3.

In order to quantify the magnitude of the increase in performance of LD strategy 
with respect to others, in Fig. 6 we plot a comparison between LB and LD by varying 

Fig. 2  SF networks robustness enhancement by using long-distance strategy under ID attack. The inset 
shows the gain (or delta) in the size of the LCC with respect to the original network

Table 2  SF networks peak increase in  LCC size using long-distance and  low-degree 
strategies under ID and RD attack

Attack type ID RD

Strategy LD LK LD LK

Added links Delta Nodes Delta Nodes Delta Nodes Delta Nodes

5 0.022 22 0.006 6 0.027 27 0.006 6

10 0.054 54 0.009 9 0.054 54 0.011 11

15 0.080 80 0.013 13 0.076 76 0.015 15

20 0.100 100 0.019 19 0.090 90 0.020 20

25 0.113 113 0.025 25 0.112 112 0.025 25

30 0.125 125 0.029 29 0.125 125 0.029 29

35 0.139 139 0.033 33 0.135 135 0.033 33

40 0.151 151 0.036 36 0.144 144 0.039 39

45 0.164 164 0.040 40 0.157 157 0.044 44

50 0.166 166 0.043 43 0.168 168 0.049 49
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the number of links added. Similar figures could be shown for the other strategies, 
but we omit them for the sake of concision and space as the results would be similar 
in the best case. As shown in the figure, LD performs initially worse than LB with 
a low number of new links, but this trend changes just after removing about 13% of 
nodes. After such a threshold, LD usually creates networks that are more robust than 
those obtained by using an LB-based wiring strategy. In fact, LD exhibits a peak per-
formance of about 15% greater than LB when a fraction of 20% of nodes is removed.

Before moving to real-world networks, we investigate why the low-degree strategy 
performs better when few nodes are removed in the network. Please note that similar 
considerations can be made for the low-betweenness case. To get an insight, we plot the 

Fig. 3  SF networks robustness enhancement by using long-distance strategy under RD attack. The inset 
shows the gain (or delta) in the size of the LCC with respect to the original network

Fig. 4  SF networks robustness enhancement by using different strategies under RD attack. All plots are 
obtained by adding 10 new links. The inset shows the gain (or delta) in the size of the LCC with respect to the 
original network
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Fig. 5  SF networks robustness enhancement by using different strategies under RD attack. All plots are 
obtained by adding 50 new links. The inset shows the gain (or delta) in the size of the LCC with respect to the 
original network

Table 3  SF networks peak increase in  LCC size by  using different strategies under  RD 
attack with 10 and 50 new links

Added links 10 50

Strategy Delta Nodes Delta Nodes

HB 0.000 0 0.000 0

HK 0.000 0 0.000 0

LD 0.054 54 0.168 168

LB 0.008 8 0.045 45

LK 0.011 11 0.049 49

R 0.029 29 0.091 91

Fig. 6  SF networks robustness enhancement: comparison between LD and LB strategies under RD attack. 
Each plot represents the (normalized) difference between the LCC size of the network rewired by using LD 
strategy and that obtained using an LB-based robustness enhancement method
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synthetic networks using a force-directed layout, specifically the Fruchterman–Reingold 
and visually inspect which nodes are connected by the two strategies. One of the net-
works is shown in Fig. 7. We colour links that are added by the LD and LK strategies 
(and also the nodes they connect) and use a third colour if there is an overlap between 
the two. Our intuition is that LK strategy tends to connect nodes that are closer to the 
rich-group of the network, thereby creating alternative paths that keep it connected as 
hubs are removed, while LD strategy focuses on the periphery creating new paths that 
are left untouched when the rich-group is destroyed (i.e. when many nodes are removed 
along with the links introduced by LK strategy).

After investigating the LD strategy behaviour on synthetic SF networks, we test it on 
real-world networks. Specifically, we test on a biological network (bio-yeast-protein-
inter), on a social network (soc-hamsterster), on a technological network (tech-routers) 
and on a Web network (web-edu). Refer to Table 1 for details about them.

Figure 8 shows the LCC size gain (w.r.t. the original instance) for each of those net-
works. Again, we add from 5 to 50 new links by using the LD strategy and perform a RD-
based node removal attack. The strategy shows variable performance depending on the 
considered network, but the gain is always greater than zero, meaning that the LD strat-
egy can be successfully used to enhance networks modelling real-world systems. Peak 
values of these plots can be found in column “LD” of Table 4.

(a) bio-yeast-protein-inter (b) soc-hamsterster

(c) tech-routers (d) web-edu
Fig. 8  Real-world networks robustness enhancement by using long-distance strategy under RD attack
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Finally, in Fig. 9, we show a comparison between LD and LB strategies on the above-
mentioned real-world networks. Even in this case, LD is a more promising wiring 
strategy than the latter. In fact, it provides larger gains in robustness (computed as the 
difference between the gains), with a peak value of almost 28% on the web-edu network. 
All peak values of can be found in column “LD–LB” of Table 4.

Conclusions
This paper presents a new strategy to address the problem of network robustness 
enhancement.

The proposed strategy tries to increase the interconnection among nodes by introduc-
ing new links that connect long-distance ones. This operation is quite counter-intuitive 
since the most common way to enhance network connectivity is by reinforcing the most 
important junctions (as hubs in SF networks).

To validate the proposal, we simulated attacks on several networks—both synthetic 
and real-world—before and after the addition of long-distance links and compared dif-
ferent rewiring strategies using the Largest Connected Component size as a robustness 
measure. The results show that our proposed strategy outperforms other popular ones.

(a) bio-yeast-protein-inter (b) soc-hamsterster

(c) tech-routers (d) web-edu
Fig. 9  Real-world networks robustness enhancement: comparison between LD and LB strategies under 
RD attack. Each plot represents the (normalized) difference between the LCC size of the network rewired by 
using LD strategy and that obtained using an LB-based robustness enhancement method
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Further investigations are needed to study the theoretical reasons that make the long-
distance links a better choice than others apparently more intuitive. Other questions also 
deserve future attention, as other robustness measure criteria than LCC size, the resil-
ience of our proposal with respect to specific SF network attacks, as well as its feasibility 
to other structures (as Erdős-Rényi and Watts-Strogatz).
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20 0.136 412 0.091 275

30 0.244 739 0.157 475

40 0.342 1036 0.219 663

50 0.433 1312 0.279 845
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