
Robust communication network formation:
a decentralized approach
Christopher Diaz1, Alexander Nikolaev1, Abhinav Perla1*  , Alexander Veremyev2 and Eduardo Pasiliao3

Introduction
The formation of a communication network is an optimization problem of considerable
practical interest. It is the problem of organizing a group decision-making process with
a desirable final outcome—a formed network—under a set of constraints that typically
include a (hard or soft) limit on communication capacity, or the number of connections
that each agent could maintain. A group decision-making process describes (explains)
how each agent must behave, i.e., act to build and/or sever communication channels in
its own locality. Centralized group decision-making processes, however, are not always
adequate for the task at hand, e.g., when dealing with applications related to sensor net-
works [1], or when Unmanned Aerial Vehicles need to establish and maintain communi-
cation, while either not having access to a central hub or preferring not to use this direct
transmission channel [2].

Social network formation principles can play a useful role in the modeling of opin-
ion/belief spread en route to achieving the network outcomes. These principles can
define how the agents observe their neighbors’ actions and local connection structure
over time and, based on this information, make better judgments towards what actions
could potentially lead to the best global network outcome [3, 4]. Some research in the

Abstract 

The formation of robust communication networks between independently acting
agents is of practical interest in multiple domains, for example, in sensor placement
and Unmanned Aerial Vehicle communication. These are the cases where it is only
feasible to have the communicating actors modify the network locally, i.e., without
relying on the knowledge of the entire network structure and the other actors’ deci-
sions. This calls for approaches to optimizing network structure in a decentralized way.
We present an actor-oriented modeling approach to design and parameterize models
that enable the creation of networks that exhibit the properties desirable for efficient
information sharing. Computational experiments show that the achieved network
formation rules, specified in a calculated way, allow agents to maintain robust network
structure by activating only a limited number of direct communication channels. The
obtained results are promising, as evidenced by the reported comparisons to optimal
network configuration solutions obtained in a centralized way.

Keywords:  Network optimization, Decentralized optimization, Social networks, Actor-
oriented modeling, Mixed-integer programming, Nelder–Mead algorithm

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Diaz et al. Comput Soc Netw (2019) 6:13
https://doi.org/10.1186/s40649-019-0072-3

*Correspondence:
aperla@buffalo.edu
1 Department of Industrial
and Systems Engineering,
University at Buffalo, Buffalo,
NY, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-6305-4610
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40649-019-0072-3&domain=pdf

Page 2 of 30Diaz et al. Comput Soc Netw (2019) 6:13

domains of network analysis and communication exchange addresses the need to effi-
ciently spread information throughout a network [5, 6]. However, while multiple author
groups examine the topic of modifying structural network properties in a centralized
manner [7–9], only one general social network analysis approach exists to model decen-
tralized decision making; this calls for extending the utility of this approach, called
actor-oriented modeling [10], beyond studying friendship network formation as it was
originally done, towards building networks with desirable properties for efficient infor-
mation exchange, in a decentralized manner. Specifically, in the language of social net-
work analysis, the actors modeled in this paper work to optimally position themselves to
hear and forward rumors. Each actor is assumed to have limited information about its
own embeddedness into a communication network. In the network formation stage, this
information is supplied to each actor periodically via the messages that reach the actor
from and through their peers. Each actor then makes its own local decisions, i.e., decides
to maintain only certain ties in each formation period, eventually stopping at a desirable
network outcome.

This paper makes several contributions en route to formulating and testing a frame-
work for organized communication network formation. First, this paper describes a
decentralized deterministic information propagation (DDIP) network formation model,
where actors link to each other (using or not using available communication channels)
in a decentralized manner and, in doing so, build a network that provides each actor
with an ability for robust reception and propagation of information across the network.
Second, this paper makes advances to enable calculated parameterization of DDIP
models for sustained and reliable exchange of information. Here, in addition to study-
ing DDIP model outputs—the formed networks—using discrete-event simulation, we
employ Markov Chain theory to replace the message-passing component in these simu-
lation runs by more accurate and much faster analytical analyses. This modeling advance
allows us to run an iterative model parameterization algorithm that executes in reason-
able time. Third, the results of this venture are assessed in the testing and evaluation
stage, where the networks produced by the proposed optimized DDIP model are system-
atically compared against the centralized network formation solutions. The centralized
solutions are obtained using Mixed Integer Programs that find optimal communication
network structures given the original layout, i.e., feasible communication channels, of
any network.

The remainder of this paper is organized as follows. “Practical problem setting and rel-
evant literature” provides additional practical motivation for our problem formulation,
followed by a literature review which describes the prior research done in the area of
decentralized communication network analysis. “The decentralized deterministic infor-
mation propagation model for network formation” details the DDIP model. “Parameter
estimation” describes an approach to evaluating the DDIP model performance and for-
mulates a parameter search optimization problem to tune up the model to be useful in
specific communication settings that can be realistically useful. “Computational experi-
ments” describes the generation of synthetic datasets and the design of experiments to
run the parameter search optimization on, and then, reports the computational results
obtained, comparing them to the results obtained from executing the specially formu-
lated mixed integer programs that achieve centrally optimal solutions for the considered

Page 3 of 30Diaz et al. Comput Soc Netw (2019) 6:13

problem instances. “Conclusion” summarizes the findings, offering conclusions and dis-
cussion about the potential future directions of this research.

Practical problem setting and relevant literature
Consider a sensor network (or, more generally, a network of actors) comprised of a group
of sensors (actors) that are linked by a wireless medium and tasked to perform distrib-
uted sensing, decentralized decision making and/or inference tasks. In such networks,
sensors (actors) gather information about the physical world, conduct analyses based on
local information, and then perform the ensuing actions upon the environment, thereby
enabling automated and remote interaction with the environment.

In the above, the meaning of term “actor” differs from the conventional notion where
an object is restricted to “act” in a particular way. Instead, the said actor, besides being
able to act continuously on the environment, is also a network entity that performs net-
working-related functions, i.e., those including receiving, transmitting, processing and
relaying information. For example, a robot may interact with the physical environment;
however, from a networking perspective, the robot constitutes a single entity that is
referred to as actor. Hence, the term actor can embrace heterogeneous devices including
robots, unmanned aerial vehicles and networked actuators.

Applications of wireless sensor and actor networks may include teams of mobile
robots that perceive the environment from multiple different viewpoints based on the
data gathered by sensor networks. However, due to the presence of actors (that are usu-
ally resource-rich devices equipped with better processing capabilities, stronger trans-
mission powers and longer battery life), the wireless sensor and actor networks differ
from wireless sensor networks [1]. Moreover, in the wireless sensor and actor networks,
depending on the application, there may be a need to rapidly respond to external sensor
data input/flow. To successfully inform actions, sensor data must still be valid at the time
of acting. Therefore, the issue of real-time communication is very important in the wire-
less sensor and actor networks, since actions are often required to be performed on the
environment immediately after the sensing takes place [11].

The number of sensor nodes deployed in typical conventional applications may be in
the order of hundreds or thousands. However, such a dense deployment is not necessary
for “actor” actors due to the different coverage requirements and physical interaction
methods supporting the acting tasks. Hence, in the wireless actor networks, the num-
ber of actors is much lower [1]. Therefore, in order to provide effective sensing, coupled
with acting or inference tasks, a distributed local coordination mechanism is necessary
among sensors/actors. Building such a distributed coordination mechanism in uncertain
environments requires broader studies, which examine actor-centered and actor-based
network models. This calls for reviewing the existing works on information dispersion
and decentralized communication networks and also the works from the social network
analysis domain that can be useful in the context of decentralized communication.

There have been a number of works published recently that focus on how informa-
tion flows through networks. Currently, much of the research in this field focuses on
how to maximize the spread of influence across networks [12] and also on how to form
teams [13]. Of greater relevance to this paper, however, are the works within the realm
of information propagation and diffusion that do not focus on maximizing or describing

Page 4 of 30Diaz et al. Comput Soc Netw (2019) 6:13

the effects of influence across networks. In [6], several models are proposed to only
explain how information spreads. In [14], a partially absorbing random walk is employed
to model how information passing can be used to learn the structure of a network. In
[15], a transduction process, also employing absorbing random walks, is developed to
traverse graphs. In [7], an evolutionary game theoretic framework is offered to predict
information diffusion across networks.

The literature on decentralized methods to improve communication efficiency is also
relevant to this paper, particularly because it emphasizes network robustness. Most of
the existing papers on decentralized methods for network modeling focus on achiev-
ing consensus in a network in an organized manner [16]. The authors of [5] create sets
of decentralized conventions that focus on forming consensus throughout a network.
In [17], a more general framework is presented for analyzing multi-agent systems that
enables the actors to reach consensus. In [18], the use of decentralized communication
networks is analyzed with respect to controlling autonomous actors.

There is a gap in the body of literature that pertains to decentralized communication
networks, as most papers are focused on how to create consensus in processing informa-
tion, as opposed to looking at information passing and building robust communication
networks in the first place. This paper aims at filling this gap by relying on the recent
advances in social network analysis.

The use of models to analyze and predict the formation of social networks is a large
topic of research. Descriptive social network techniques were used in [19] to create
new ways to manage crisis de-escalation approaches. The use of social network analysis
with respect to engineering and construction project management is evaluated in [20].
In [21], a model is developed to predict how groups of unconnected agents form social
networks, focusing on how the pattern of interaction between agents causes networks
to form. In [22], the evolution of social and economic networks is studied, where the
dynamics of the individuals that make up the network are of particular importance. The
actor-oriented modeling ideas for social network formation are described, e.g., in [23]
and [10]. In the latter, Snijders et al. introduced a model, in which individuals periodi-
cally make changes to their local networks, with each maximizing their own weighted
“happiness function” value. There has been some research in the use of decentralized
methods to ensure network connectivity, as seen in [24], which focuses on the use of
a decentralized control algorithm to balance the edges of a network. The latter work,
however, focused mainly on making sure that connectivity was preserved and did not
place emphasis on the information passing properties of the resulting graphs; the model
presented in our paper fills this gap.

The decentralized deterministic information propagation model for network
formation
The decentralized deterministic information propagation model (DDIP model) for net-
work formation, introduced in [25] and much more rigorously studied in this paper,
prescribes a particular order of communication network evolution, i.e., change in its
structure, over multiple time periods. In each period, all the actors participate in several
network building-related activities, performed sequentially in stages.

Page 5 of 30Diaz et al. Comput Soc Netw (2019) 6:13

The actor-oriented modeling approach, conceived by Snijders [10] for social net-
work analysis, provides a basis for many of the concepts used in the DDIP network
formation model. In the DDIP model, each actor possesses their own personal objec-
tive function, which is a concept that was introduced in actor-oriented modeling.
However, in the latter, an actor evaluates their personal “happiness” based purely
on local graph structures. This differs in the DDIP model, as the actor’s “happiness”
must inform the agent of their location with respect to far-away peers as well and,
hence, is designed to be a function of the fraction of messages it can receive from all
the other actors in the network.

Another element of the DDIP model that is new compared to original actor-ori-
ented models is the form of the weights defining the objective function for each
actor. In the actor-oriented model [10], each network structure property (aka. “net-
work effect” or “structural signature”) used in each actor’s objective function is
weighted by the given parameters, and these parameters do not change dynamically
as the network is formed. The DDIP model also uses weights in the objective equa-
tion, but these weights are used to place preference on the reception of messages
from each other actor in the network. This preference is updated in every period per
our model and is dependent on the proportion of messages each actor receives in
each period.

Having established the degree of its reference to prior work, let us now review
the DDIP model stages. The sequentially executed network formation activities start
with a message forwarding stage—each actor forwards out messages to their con-
nected network neighbors following an absorbing random walk. The message for-
warding stage is crucial as it enables each actor to update its belief about its own
position with respect to the rest of the network, in a decentralized way, using the
information derived from the fraction of the total messages received from all other
actors in the network. Next is the weight and objective calculation stage—each actor
passes to its neighbors the information regarding the fraction of all messages it
received, so that all actors update their beliefs about how well connected they are:
specifically, these updates lead to the revisions of the actors’ own weight functions
and to the recalculation of their own objectives. Final is the network estimation and
modification stage—actors estimate how the changes to their local network struc-
tures would affect their unique objective functions. The changes for each actor could
potentially lie in either add or drop one incoming tie, or keep the present status-quo.
Actors look to make such changes in the local connection structure that lead to the
largest increase in the reception of messages from all other actors in the network,
with a special emphasis placed on the messages from their estimated far-away peers,
similar to the way actors make changes in [10]. After all the actors have acted in a
single time period in the network estimation and modification stage, the next period
begins, and the message forwarding and update procedures are repeated, until a pre-
set stopping criterion is met. Such a criterion may be based on the amount of time,
or time periods, allocated for the network formation as a global process.

The following subsections provide more rigor in the DDIP model definition, stat-
ing specifically how the employed variables and parameters affect the network build-
ing process, and how each variable is updated stage by stage.

Page 6 of 30Diaz et al. Comput Soc Netw (2019) 6:13

DDIP model basics

Consider a set of actors V = {1, 2, . . . , n} , where each actor corresponds to a node of a
directed communication network, deployed over a region that needs to be monitored.
The key motivation here is that the information gained through sensing the region needs
to be broadcast to rest of the actors, using a directed communication network explicitly
set up for this purpose, to take mission-related decisions.

Let Pi denote the set of actors which are in the communication transmission range
of actor i and can potentially exchange information with actor i: this set refers to what
peers are in the immediate proximity of actor i. To exchange sensed information, the
network actors form directed ties with other actors in their proximity, where a directed
tie is only possible between actors in proximity. Some actors are thus assumed to not be
able to connect with certain peers, consistent with proximity restrictions and reflecting
the fact that some actors may be too far away from each other to communicate directly.
A directed edge between two nodes indicates that information can be transmitted from
one actor to another: specifically, an incoming directed tie i ← j signals that actor i has
actor j as in-directed neighbor and is in a position to receive information from j.

It is worthwhile to discuss the justification for the assumption of the directed nature
of the communication network being formed. While an undirected network is perfect
under a centralized setting, it is impractical under a decentralized setting, as, when an
actor needs to make a decision to connect/disconnect with other actors in its proxim-
ity, some sort of information exchange needs to occur between the two actors to evalu-
ate the utility (happiness) of the undirected tie. Further complexity arises when one of
the actors sharing the undirected tie decides to disconnect/remove the undirected tie.
Hence, we assumed a directed communication network where each actor only has con-
trol over its incoming ties, i.e., each actor identifies the neighbors from which it would
like to be receiving information. When an actor requests a directed tie is to be estab-
lished, the sender actor is compelled to form an outgoing tie, i.e., actors do not have any
control over their outgoing ties. This does not mean that the actors can change their
incoming ties at will, however; the DDIP model controls this process, as will be dis-
cussed below.

Let Ot
i denote the set of actor i’s out-directed neighbors at period t, i.e., the set of actors

to which actor i has an outgoing tie, and let I ti denote the set of actor i’s in-directed
neighbors at period t, i.e., the set of actors from which actor i has an incoming tie.

The variables and parameters listed in Table 1 serve to rigorously present the frame-
work and structure for how the DDIP model forms networks. In each period, all the
actors participate in several network building-related activities, performed sequentially
in stages: the message forwarding (propagation) stage, the weight and objective calcu-
lation stage, and the network state estimation and modification stage, respectively, are
described in detail below.

Forwarding stage: message passing procedure

The DDIP model prescribes to begin each period with a forwarding stage. The goal of
the forwarding stage is to allow each actor to update its belief about its own position
with respect to the rest of the network. This is needed because each actor has only
partial information about the global network topology at any point in time: what they

Page 7 of 30Diaz et al. Comput Soc Netw (2019) 6:13

know is the number of actors involved in the network formation process, the struc-
ture of its local connections with its peers and its proximity restrictions.

The actors engage into the process of passing messages to “learn” which neighbors
seem to be close and which neighbors seem to be further away. The messages propa-
gate through the network according do the partially absorbing random-walk proce-
dure; such a random walk has been previously used, e.g., in [26] to define entropy
centrality, as well as in [14] to learn and exploring graph structures.

During each forwarding stage, each actor i will send off m messages. Each message
is sent with an equal probability to any one of actor i’s out-directed neighbors. After
being forwarded to a neighbor j, the message could be terminated with a probability
α , otherwise it is sent with an equal probability to any one of j’s out-directed neigh-
bors. Each message continues to be forwarded between actors until it is terminated.
Each message carries with it the information of its source actor (the label or ID of
that actor), the last actor who sent it, and a unique identifier that allows any receiving
actor i not to double-count the message if its duplicates ever reaches i, which might
happen as a result of the message running through a cycle (however, each duplicate
will still be forwarded on with a probability α).

Let ptijk denote the fraction of messages received by actor i from source actor j,
through actor k (meaning k is the actor who had the messages immediately before
they reached i), in period t. For application purposes, the message forwarding proce-
dure can be conducted by sending all messages at the same time: i.e., actor i would
send an equal fraction of the m messages to each of its out-directed neighbors. For
example, if the actors are set to send m = 1000 messages per round, an actor with two
outgoing ties would send 500 messages to each of these neighbors. Each neighbor that
receives the messages then reduces their number by factor α and, in turn, forwards

Table 1  Notation, variables, and parameters used in the DDIP model

Variable Definition

V = {1, 2, . . . , n} Set of actors in the network

|V | = n The number of actors in the network

Pi Set of actors in the proximity of actor i

t Time period

tmax The maximum number of periods to run the DDIP model

Ot
i

The set of actor i’s out-directed neighbors at period t

Iti The set of actor i’s in-directed neighbors at period t

gti The local network structure of actor i at period t

m The number of messages each actor sends per period t

ptijk The fraction of messages actor i receives from source j through neighbor k during period t

α The probability of a message being terminated

β
own,t
ij

Actor i’s own (personal) preference for messages from actor j, during period t

β
neigh,t
ij

The average preference of actor i’s out-directed neighbors for messages from actor j during
period t

β
total,t
ij

The overall preference that actor i has for messages from actor j at time t

ρ Preference parameter: The weight of an actor’s own preferences against it’s neighbors
preferences

γ , w Cost parameters: the weights in the objective

Page 8 of 30Diaz et al. Comput Soc Netw (2019) 6:13

the surviving messages to their out-directed neighbors in even fractions. Once the
number of messages received falls under a certain small threshold (e.g., five mes-
sages), the propagation is terminated. The ptijk value can then be calculated by taking
the number of messages that each actor i received from a source actor j through a
connected neighbor k and dividing the result by the initial message count m.

Calculation of weights and objective values

In each period t, each actor i uses the values ptijk , obtained in the message passing stage
in period t, to calculate their objective value: the higher this value, the better network
position the actor finds themselves in. In short, the model encourages each actor to be
able to receive messages from every other actor in the network. To this end, the actor
first calculates their β weights, as described in Table 1.

Let βown,t
ij represent the level of actor i’s own (personal) preference for messages from

actor j, during period t, which is computed as

We model the weight βown,t
ij as an exponential function to ensure that actor i gives a

higher weight to source actors j from whom it does not receive many messages, given
the current network structure.

Let βneigh,t
ij represent the preferences of actor i’s out-directed neighbors for messages

from actor j during period t. Each actor requests the values of βown,t
kj and Ot

k from their
out-directed neighbors ( k ∈ Ot

i ), to compute βneigh,t
ij as

The value βneigh,t
ij is an average of the weights that each out-neighbor of i contains: it

reflects a kind of cooperation between actors. The calculation of βneigh,t
ij allows each

actor to make changes that benefit their neighbors as well. Combining (1) and (2), actor i
computes their total weights, by averaging these components, weighted with the prefer-
ence parameter ρ

Note that each actor in the network has only partial information about the network
topology at any point in time; let gti be the graph reflecting the structure of its local con-
nections with its peers. Each actor i evaluates their “happiness”, given their current local
network structure ( gti),

For clarity, note that the terms “happiness value” and “objective value” are henceforth
used interchangeably. Equation (3) captures how “happy” actor i is about their current

(1)β
own,t
ij = e

(1−(
∑

k p
t
ijk)), ∀j ∈ V , i �= j, k ∈ I ti .

(2)β
neigh,t
ij =

1

|Ot
i |

∑

k ∈ Ot
i

β
own,t
kj , ∀j ∈ V , i �= j, k ∈ Ot

i .

(3)β
total,t
ij = (ρ)β

own,t
ij + (1− ρ)β

neigh,t
ij , ∀j ∈ V , i �= j.

(4)
hi(g

t
i) =

∑

j

β
total,t
ij

∑

k

ptijk − w
∑

k

γ |Ot
k | , ∀j ∈ V , i �= j, k ∈ I ti .

Page 9 of 30Diaz et al. Comput Soc Netw (2019) 6:13

local network structure. The larger the fraction of the messages that actor i receives from
all other actors in the network, the larger the objective value.

To discourage overloading an actor with forwarding too many messages, there is a cost
that is directly related to the number of the outgoing ties, Ot

k , that each in-neighbor k of
actor i possesses in time period t. This cost is expressed using parameters γ and w, intui-
tively, the parameter γ captures the neighbor’s cost for a connection while the parameter w
captures the scaling parameter for the cost and makes up the right portion of the objective
equation, as reflected in (4). The cost parameter ensures the actors from having too many
outgoing ties, without placing any absolute restrictions on the number of ties an actor can
possess. The use of both parameters allows for tuning the different costs used in the model;
giving more flexibility to these parameters allows for a model that can create more robust
networks. As actor i adds an incoming tie to its neighbor k who possesses more outgoing
ties, actor i’s own cost will increase, which will decrease actor i’s own objective value.

As a final remark, note that the β weights are re-evaluated in each period and are used to
(re-)compute the objective function as the global network structure changes over time.

Network estimation stage and modification stage

After each actor has computed their own objective value, they have to make the decisions
on whether or not to make modifications to their local networks. This section describes
how potential modifications are evaluated and compared, and how actors decide which
ones to make.

In each period, each actor has three different options: they can add an incoming tie to one
of their eligible neighbors, delete a currently active incoming tie from one of their con-
nected neighbors, or do nothing (an actor cannot simultaneously add and delete a tie in the
same period). Each actor estimates how their objective might change from making a par-
ticular modification, with the help of the message passing process observations collected in
prior stages; each actor shares their ptijk values and their outgoing ties information Ot

i with
the unconnected neighbors in their proximity.

An actor i estimates the value gain that will result from adding an incoming tie to an eligi-
ble neighbor j ( i ← j ) by computing

Here, actor i looks at the current objective value and adds the estimated increase due
to the fraction of the messages that i would receive from each other actor in the graph
if it were to connect to actor j—this is captured in the middle portion of (5). Then, the
actor subtracts the cost of pulling messages from actor j. Similarly, the actor estimates
the potential effect of disconnecting from one of their currently connected in-neighbors,
j ( i � j ), by computing

(5)

hi(g
t
i←j) = hi(g

t
i)+

1

|Ot
j | + 1

∑

u

∑

k ∈ I tj

ptjuk − wγ (|Ot
j | + 1), ∀k ∈ I tj ,u ∈ V \ {i, j}, j ∈ Pi\I

t
i .

(6)
hi(g

t
i�j) = hi(g

t
i)−

∑

u

∑

j ∈ I ti

ptiuj + wγ |Ot
j | , ∀ u ∈ V \{i, j}, j ∈ I ti .

Page 10 of 30Diaz et al. Comput Soc Netw (2019) 6:13

Here, the actor takes the current objective value and subtracts the fraction of messages
that were received from all actors u ∈ V \ {i, j} that came through actor j; then, the cost
of pulling from actor j is added (this cost would no longer be incurred). Note that the
logic of (6) is not flawless, as actor i might be receiving a large fraction of the same mes-
sages, which came through j, from another actor, so i would believe that losing j would
be costly while it might not be the case.

The DDIP model imposes rules that actors follow when deciding which modifications
should be made to their local network. The actors that have any incoming ties under a
certain limit ( l = 2 ) are considered isolated, and these actors are not allowed to lose out-
directed ties to discourage complete isolation of actors. Having obtained the estimates
per (5) and (6), each actor will make the modification that leads to the largest increase
in their objective value. Once all actors have made their choices, the next period starts.

The presented description of the DDIP model logic motivates us to understand the
impact of model parameters on the DDIP model outcomes. Indeed, a low value of γw (
0 < γw < 0.2 ) is likely to lead to networks which are fully connected, as the cost associ-
ated with adding a tie is almost negligible. Meanwhile, a high value of γw (10 < γw < ∞ )
is likely to lead to networks which are disconnected, as the cost associated with adding a
tie is not worth the messages received as a result of adding the tie. Hence, a parameter
search optimization problem is to determine a well-balanced objective function.

Parameter estimation
It is paramount to find the input parameters for the DDIP model which would allow
for the formation of networks that are robust and efficient for information propagation.
In this regard, we formulate an optimization problem to search through the parameter
space efficiently, and utilize a modified Nelder–Mead algorithm to find the most effec-
tive parameters for a variety of graph sizes.

Due to the iterative nature of the Nelder–Mead algorithm, the DDIP model would
have to be evaluated many times for each parameter setting and graph size. Further,
for each run, the DDIP model would have to simulate the entire path of each message
passed in each period, which proves to be too computationally intensive.

To meet this challenge, in this section, we make advances to employ Markov Chain
theory to replace the message-passing component in the DDIP simulation runs by more
accurate and much faster analytical analyses. Specifically, a Markov Chain approxima-
tion for the message forwarding stage is designed, allowing for calculations of expected
fraction of messages received between all actors in the network to be computed.

The DDIP model introduced in the paper implements a decentralized approach for the
network formation and works on partial information, however, to evaluate the networks
generated, we need the complete network topology. In this regard, to evaluate the net-
works generated while performing the parameter search, we consider an oracle with access
to complete information, i.e., complete network topology. We utilize the oracle to quickly
compute certain network-related metrics, which enables the efficient parameter search.

The flow of this section is as follows: first, introduce the Markov Chain approximation
for the message forwarding stage; second, to quantify the topological properties of the
networks formed under the DDIP model, we introduce the evaluation metrics. Third, we
formulate the parameter search optimization problem.

Page 11 of 30Diaz et al. Comput Soc Netw (2019) 6:13

Markov chain approximation for the message forwarding stage

The Markov Chain approximation for the message forwarding stage allows for calcu-
lating the expected fraction of messages received between all actors in the network,
while not having to simulate the path of every message taken through the network to
termination. The approximation drastically reduces the amount of computation nec-
essary to parameterize the DDIP model.

To calculate the expected fraction of messages any actor i receives from source
actor j, through in-directed neighbor k, we build an auxiliary Markov Chain and com-
pute its absorption probabilities. We define a separate Markov Chain for each pair
“source actor j–target actor i”, where auxiliary states are defined to emulate the mes-
sage passing procedure.

Specifically, each unique Markov Chain has multiple states introduced in conjunc-
tion with each actor: an absorbing auxiliary state for each actor to represent the
termination of the message passing process, an auxiliary source state for each out-
directed neighbor of source actor j, and an auxiliary target state between the target
actor i and each of its in-directed neighbors k (see Fig. 1). The auxiliary source states
are used to ensure messages do not get terminated when they are first sent, while the
auxiliary target states are absorbing and are created to calculate the probability that
a message from source j will reach target i through a specific in-directed neighbor k.

The absorbing random walk process that specifies the propagation of messages in
each period through the network that is being built, given the DDIP model parame-
ters, can be analyzed to compute the transition probabilities for the above-described
Markov Chains, to be used to speed up the simulation of the message-passing. In
doing so, we calculate the probability of a message being absorbed into an auxiliary
target actor, to get the ptijk . Using the transient sub-matrix Q of the transition proba-
bility matrix, the identity matrix I (of the same size), and the target/in-directed neigh-
bor column of the absorption sub-matrix R (denoted Ri,k ) for target i and neighbor k,
one has

Fig. 1  a A sample graph created with 15 actors to depict a sample network. b The Markov State diagram
with actor 0 as source and actor 12 as target; the auxiliary source states are shown in green, the absorbing
auxiliary termination states are shown in yellow, and target auxiliary states which are also absorbing are
shown in blue

Page 12 of 30Diaz et al. Comput Soc Netw (2019) 6:13

The result in (7) is proven in [27] using a slightly different notation. Applying (7) for each
combination of source j, target i, and in-directed neighbor k of i, the values ptijk can be
calculated for each period t exactly.

The ptijk values were originally computed by simulating the path of all m messages gen-
erated per actor until termination. This original simulation would require
O(m ∗ n ∗ (1/α)) calculations, whereas the presented Markov Chain approximation
requires about O(n2) calculations to obtain the same values; besides, it does so exactly,
unlike a set of simulation runs. This shows a drastic decrease in the amount of computa-
tion needed to obtain ptijk , since m is much larger than n.

The presented Markov Chain approximation procedure opens the door to the develop-
ment of iterative model parameterization algorithms that would run in reasonable time.
In this paper, the Nelder–Mead algorithm will be employed to this end. The following
subsections describe how this is accomplished.

Evaluation metrics

To evaluate the quality of the networks generated using the DDIP model, we consider
an all-knowing oracle which has the complete network information during any time
period. We utilize the oracle to compute certain network-related metrics which aid in
the parameter search.

Let G = (V , S) denote the fully connected network, with the nodes V = {1, 2, . . . , n}
and edge set S ⊂ V × V  , consistent with the proximity restrictions Pi . One could also
consider G = (V , S) as the input network for the DDIP model, where S reflects the prox-
imity constraints Pi . Let gt(V ,Et) denote a DDIP model-generated network at time
period t.

We introduce three metrics for examining the quality of a given solution: the edge
ratio (er) , the average inverse distance between each pair of actors in the graph ( µ ), and
the edge efficiency ( η).

The edge ratio, er,

is used to describe the ratio of the number of active edges |E| used in an output graph
from the DDIP model to the number of possible edges |S|. A small er means that the
resulting network of the DDIP model contained relatively few edges compared to the
total number possible.

The average inverse distance (a.k.a network efficiency [28]), µ , is equal to the average
of the sum of the inverse lengths of the shortest paths πij between all pairs of actors i and
j,

(7)ptijk = (I − Q)−1Ri,k , ∀ i, j ∈ V , i �= j, k ∈ I ti .

(8)er =
|Etmax |

|S|
,

(9)µ =
1

n(n− 1)

∑

i

∑

j �=i

1

π(i,j)
.

Page 13 of 30Diaz et al. Comput Soc Netw (2019) 6:13

As µ increases, the average number of edges it takes to go from one actor to any other
actor decreases. This statistic is useful for taking into account graphs that are not fully
connected, since the inverse distance between a pair of unconnected actors is 0 ( 1/∞).

The edge efficiency, η , combines the information captured in both er and µ to evaluate
the quality of solutions produced by the DDIP model

To place emphasis on µ in η , we scale the statistic by an exponential function eaµ , where
a can be altered to decide how much to weigh µ . The η value is also weighted by |s|/n to
take into account the natural density of the sample input graph, allowing to compare less
sparse graphs to dense graphs with ease.

When evaluating solutions (of the parameter search), the produced graphs that have
a higher value of η are preferred, as this favors graphs that achieve a smaller average
distance between actors, while using relatively few edges. We now have the necessary
framework to formulate a parameter search optimization problem using the evaluation
metrics (8–10).

Parameter search optimization problem formulation

We formulate a parameter search optimization problem with the goal of finding the
DDIP model parameters that would result in the DDIP model producing networks
which are efficient and robust with respect to the propagation of information.

There are two main input parameters that are needed to run the model: (1) the cost of
connecting to a neighbor, per each of a neighbors out-directed ties γ , and (2) the scal-
ing factor for neighbor connection cost w. To search for values of these parameters that
would produce the best results, the following parameter search optimization problem is
formulated:

The maximization problem in (11) is that of finding the set of parameters w and γ that
will maximize the average resulting η from running the DDIP model over set of sample
input graphs Ωn of the same size n, while varying the possible edge set S, where x is the
parameter settings used in the DDIP model for γ and w. We consider the multiple input
graphs with varying edge sets in order for the model being applicable to any input graph
of size n; in this regard, multiple synthetic graphs were created upon which the param-
eter search was run, as detailed in the next section.

Nelder–Mead algorithm

The Nelder–Mead algorithm was first developed in [29], with the goal of defining an
algorithm that would be able to search for a good sets of vertices to sample when mini-
mizing an objective equation.

The Nelder–Mead simplex search algorithm is initialized by an input set of vertices
of size “n” (different than n, the number of actors in the graph G), decided by the user,

(10)η =
eaµ

er

n

|S|
=

neaµ

|Etmax |
.

(11)Maximize
γ ,w

f (x(γ ,w)) =
1

|Ωn|

∑

S ∈ Ωn

η
x(γ ,w)
S .

Page 14 of 30Diaz et al. Comput Soc Netw (2019) 6:13

which in this case is an initial set of scaling parameters wi , i = 1, 2, . . . , n+ 1 and γi ,
i = 1, 2, . . . , n+ 1 . Recall that the form of parameter set (pairs) to be searched over is
denoted by x(γi,wi) for i = 1, 2, . . . , n+ 1 . After the initial vertices are inputted into the
algorithm, the parameters are evaluated using the DDIP model, and re-assigned indexes
in order of decreasing ηxi . Specifically, x1(γ1,w1) represents the maximum value of ηxi ,
whereas xn+1 represents the minimum value of ηxi in the simplex (the list of parameters
xi , i = 1, 2, . . . , n+ 1).

Using the sorted simplex and the centroid of parameters xi , i = 1, 2, . . . , n , each itera-
tion of the Nelder–Mead algorithm will search for new vertices to introduce into the
simplex: reflection points, expansion points, and contraction points. These points look
to introduce new vertices into the simplex that will allow the algorithm to find new max-
imums. If none of the points introduced are evaluated to be larger than the worst point
in the simplex xn+1 , the algorithm will shrink the simplex towards the best parameter x1 .
The algorithm continues to evaluate and introduce points into the simplex until a pre-set
stopping criterion is met and returns the best parameter set found.

The pseudocode of the DDIP-specific variation of the Nelder–Mead algorithm to solve
(11) can be found in Appendix (see Algorithm 3).

Computational experiments
To test if the input parameters to the DDIP model, returned by our parameter estima-
tion algorithm, are suitable for building a desirable connection structure for any network
of size n, we create multiple synthetic networks, of a form typically found in UAV-
related applications, upon which we first perform the parameter estimation. This section
describes the creation of the synthetic networks. Further, it explains the experimental
setup under which we perform the parameter estimation through the implementation
of Nelder–Mead algorithm. Finally, the results of this venture are assessed in the testing
and evaluation stage, where the proposed optimized DDIP model outcomes are system-
atically compared against the centralized network formation approach, which employs
Mixed Integer Programs that provide optimal communication network solutions given
the original layout, i.e., feasible communication channels, of any network.

Synthetic network generation

Towards the synthetic generation of various topologies for the node set of the same size
n, two methods were used in this paper: a unit disk method and Exponential Random
Graph Model (ERGM)-based method. The workings of these generators are described in
the following subsections.

Unit disk method

The method is fairly simple, yet follows the communication restrictions for the model
closely. The unit disk method places n actors randomly on an (x, y) plane: the positions
of the actors, x and y, are uniformly distributed between [0, 100]. The allowable edges of
the graph are decided by a distance parameter d. An edge is allowed between two actors
if the Euclidean distance between the actors is less than d. This follows the assumption
that actors can only connect with each other directly if they are in close enough proxim-
ity of each other. The d parameter for the method was increased until it was just large

Page 15 of 30Diaz et al. Comput Soc Netw (2019) 6:13

enough that each actor had at least two connections available, without loss of generality.
To illustrate the networks generated using the unit disk method, see Fig. 2.

ERGM method

The use of ERGM or p∗ graphs is widespread in the domain of social network analysis.
ERGM network generation was studied extensively in [30], where Snijders describes in
detail how ERGM parameters are fit to data (an observed network sample) using statisti-
cal analysis and Markov Chain Monte Carlo estimation techniques. Due to the ability
of the ERGM model to generate networks with similar structural properties to those of
an observed sample, we are able to generate graphs that resemble UAV networks, in a
systematic manner. The ERGM graphs were generated by performing MLE on the struc-
tural properties of sample UAV networks given, for varied network sizes.

To create the ERGM models for each graph size n, sample “observed” graphs were
loaded into “R” software, which was used to fit, test, and simulate the ERGM graphs. The
ERGM packages in “R” work with a predefined set of “structural signatures” or “statis-
tics” (such as the number of edges, number of actors with certain degrees, geometrically
weighted edge shared partners, etc.) and quantify how important each of those is to the
overall structure of the graph, based on how often the statistic appears in the observed
graph. To discourage disconnected sample graphs, the ERGM model for most graph
sizes would include the isolates statistic. Since each model was fitted to graphs without
any isolates, this statistic value is set to −∞ , disallowing isolates in simulated graphs.

If specified, ERGM models will also look at the prevalence of attributes that the
observed graph contains. To try to control for the geometric distance assumption, a
“closeness” parameter was assigned to each actor in the observed graph. This param-
eter was set by assessing how close each actor was to actor 1, meaning that actors that
were closer to 1 would be given the value of 2 or 3, whereas actors that were further
away would be given larger values. This attribute allowed for the ERGM model to gauge
how geographically close actors would affect their proclivity for connecting. Using the
“smalldiff” statistic, the absolute difference between each pair of actors’ closeness values
was measured; the model then was used to produce graphs where only adjacent actors

Fig. 2  Synthetic sample graphs generated from Unit Disk Method

Page 16 of 30Diaz et al. Comput Soc Netw (2019) 6:13

would be able to connect to each other. This becomes possible because the “smalldiff”
parameter makes actors with smaller differences in the closeness values more likely to be
potentially connected.

After the parameters were fitted to the observed graphs, a brief goodness of fit test was
performed to make sure the output graphs were similar to the observed input. Graphs
were then simulated and captured to be used as sample instances to run the DDIP model
on. Since the ERGM parameters for each graph size are not scalable, then a different set
of statistics was obtained for varied network sizes (see Appendix for details).

To illustrate the significant statistics in an ERGM model, we fit an observed UAV
network of size n = 15 (refer to Fig. 3). Further, we generated the synthetic networks
with the significant statistics of an observed sample. Figure 4 illustrates how the input
(“observed”) UAV network compares to a representative synthetically generated ERGM
network.

From the utilization of the networks that were generated from the unit disk and ERGM
methods, the DDIP now had a suitable test bed of sample input graphs to run the param-
eter search optimization problem to infer the DDIP model input parameters.

Experiment setup

To ensure that the developed Nelder–Mead algorithm works with input graphs Ωn that
are diverse, half of the sample graphs in Ωn were generated using the Unit Disk model,
and the other half were generated using the ERGM model. The sample input set Ωn
was built so as to make sure that the Nelder–Mead algorithm searches for parameters
that maximize ηxi for all graphs of size n, so that the effects of structural differences
between sample graphs in Ωn would be mitigated. To reduce the computational time,
the algorithm termination parameter was set for the number of iterations without out-
put improvement. If the algorithm would not find a new maximum after a pre-specified
number of iterations, it would terminate.

Recall that the Nelder–Mead algorithm is used to identify the best DDIP parameters
which allow for the formation of networks that are robust and efficient for information
exchange. Upon identifying the best DDIP parameters, for a network of specific size,

Fig. 3  ERGM fit to an observed UAV network with 15 actors to identify the significant statistics. Note that
the following statistics are found significant in this fitting exercise: the number of edges in the graph, the
geometrically weighed edgewise shared partner term (gwesp), the small difference attribute, and the
number of isolates. Based on the computed parameter estimates, this model is likely to produce graphs with
relatively few edges and shared connections between neighbors; also, the directly connected neighbors in
the resulting networks would tend to see small differences in closeness values

Page 17 of 30Diaz et al. Comput Soc Netw (2019) 6:13

from the Nelder–Mead algorithm, the actors can implement the DDIP to form a robust
communication network. In this regard, we can implement the parameter estimation in
a centralized manner, i.e., offline in a computer and the identified best parameter values
can be provided as an input to actors for implementing DDIP. The parameter estimation
needs to be performed only once, for each network size. Hence, even under limited com-
putational capabilities, the actors can implement DDIP.

Nelder–Mead implementation

The Nelder–Mead algorithm was implemented for graphs of size n = 10, 15, and 20. For
each graph size, the scaling weight a for average inverse distance in the edged efficiency
in (10) was set to 3.15. This value was found fitting to produce edge efficiency values
that were more balanced between the inverse distance of the outputs and the number of
edges used in the graph. Each algorithm run was initialized with a set of six pre-defined
parameter vertices that varied slightly between graph sizes. These initial vertices were
set based on initial testing of the DDIP model and the expected calculations for the local
objective function values for actors in the graph.

Fig. 4  Comparison of synthetic ERGM-generated sample networks with the observed UAV network. a, b
synthetic sample networks vs. the input (“observed”) network with 10 actors; since the size of graph was
relatively small, the simulated sample graphs tended to be very similar in shape. c, d synthetic sample
networks vs. the input network with 20 actors; sample networks did not have ties reaching across the entire
graphs, meeting the requirement that only close actors should be able to connect

Page 18 of 30Diaz et al. Comput Soc Netw (2019) 6:13

For graphs of size n = 10 and 15, ten input sample graphs were evaluated: five Unit
Disk graphs and five ERGM graphs. For these graph sizes, the maximum number of
stalling iterations was set to five as the termination parameter. For the graphs of size n
= 20, six sample input graphs were evaluated. Also, the maximum number of stalling
iterations was set to three as the termination parameter. Further, each DDIP model
run was initialized with each actor connecting to one randomly chosen neighbor, to
see how the DDIP model solutions vary with different initial connection setups.

The results of the Nelder–Mead algorithm runs are shown in Table 2. The algorithm
preferred a larger γ value for n = 20, and smaller γ values for n = 10 and 15. Also, the
algorithm preferred a smaller w value for n = 20. Overall, the values for γ and w were
a bit larger than we expected, which caused the er value to be fairly small, while some-
what sacrificing the average optimal µ for each graph size. Also, the scaling factor a in
η was found to play a big role in how the model reacts.

To compare the DDIP model generated networks with the fully connected network
would be naive. So, we decided to compare the DDIP model-generated networks with
the networks generated in a centralized setting. We approached this challenge by
building a Mixed Integer Program as described in the next section.

Optimal network configurations

To find the optimal network configurations, given a set of allowable edges S, a limit
on the number of active connections |E|, and a maximum possible graph efficiency µ ,
we use the linear mixed integer programming (MIP) formulation technique which is
similar in spirit to the one developed in [31]. The key difference is that in this paper,
the network needs to be directed and another cohesiveness measure is considered.
Our goal is to find optimal network configuration given the limit on the number of
connections, rather than to minimize the number of connections given the cohesive-
ness requirement. Nevertheless, the technique that allows us to model distances in
a graph using linear constraints is similar. For further reference, see a solution to a
related problem in [32].

Let binary variables xij for all allowable edges (i, j) ∈ S define the set of active edges
E, i.e., xij = 1 if (i, j) ∈ E and, xij = 0 if allowable edge is not active. To model the dis-
tances in the network constructed by active edges, the MIP formulation uses the fol-
lowing extra variables:

–	 w
(ℓ)
ij for all i, j = 1, . . . , n; i �= j; ℓ = 1, . . . , L : w(ℓ)

ij = 1 if there is a path of length at
most ℓ from node i to j in a subgraph defined by active edges (s, t) with xst = 1 , and 0
otherwise;

Table 2  Nelder–Mead algorithm parameter results

Graph Size γ w

n = 10 0.642 1.096

n = 15 0.555 1.210

n = 20 1.288 0.863

Page 19 of 30Diaz et al. Comput Soc Netw (2019) 6:13

–	 y
(ℓ)

ikj for all i, j = 1, . . . , n; i �= j �= k; ℓ = 2, . . . , L, (i, k) ∈ S : y(ℓ)ikj = 1 if there is a path
of length at most ℓ from node i to j in a subgraph defined by active edges (s, t) with
xst = 1 which goes through a node k, and 0 otherwise.

Note that the distance variables are defined for ℓ = 1, . . . , L , where L is some constant
whose appropriate choice will be described later. Observe that if w(ℓ)

ij − w
(ℓ−1)
ij = 1 for

a some ℓ and a pair of nodes i, j, then the distance from node i to j is equal to ℓ .
Therefore, the number of pairs of nodes with distance (shortest path length) exactly ℓ
(ℓ = 2, . . . , L) is equal to

and the efficiency µ of the graph of active connections E can be written as

if L is greater than the maximum possible finite distance (diameter) in the graph of active
connections. Then, the linear problem formulation which minimizes µ given the limit on
the number of active connections K can be written as follows:

Problem 1  (MIP for optimal network configuration)

n
∑

i,j=1:i �=j

(w
(ℓ)
ij − w

(ℓ−1)
ij),

(12)µ =
1

n(n− 1)

n
∑

i,j=1:i �=j

(

w
(1)
ij +

L
∑

ℓ=2

1

ℓ

(

w
(ℓ)
ij − w

(ℓ−1)
ij

)

)

,

(13a)max µ =
1

n(n− 1)

n
∑

i,j=1:i �=j

(

w
(1)
ij +

L
∑

ℓ=2

1

ℓ

(

w
(ℓ)
ij − w

(ℓ−1)
ij

)

)

(13b)
subject to

w
(1)
ij = xij , ∀(i, j) ∈ S

(13c)w
(1)
ij = 0, ∀(i, j) /∈ S, i �= j

(13d)w
(ℓ)
ij ≥ w

(ℓ−1)
ij , ∀i, j ∈ V , i �= j, ℓ ∈ {2, . . . , L}

(13e)w
(ℓ)
ij ≤ xij +

∑

k �=j:(i,k)∈S

y
(ℓ)

ikj , ∀(i, j) ∈ S, ℓ ∈ {2, . . . , L}

(13f)w
(ℓ)
ij ≤

∑

k �=j:(i,k)∈S

y
(ℓ)

ikj , ∀(i, j) /∈ S, i �= j, ℓ ∈ {2, . . . , L}

(13g)y
(ℓ)

ikj ≤ xik , y
(ℓ)

ikj ≤ w
(ℓ−1)
kj , ∀i, j ∈ V , (i, k) ∈ S, i �= j �= k , ℓ ∈ {2, . . . , L}

Page 20 of 30Diaz et al. Comput Soc Netw (2019) 6:13

Observe that the problem formulation models distance variables w(ℓ)
ij and y(ℓ)ikj recur-

sively in such a way that if there is no path of distance at most ℓ from node i to node j
which uses the set of active connections (s, t) such that xst = 1 then w(ℓ)

ij = 0 and y(ℓ)ikj = 0
(constraints 13b–13g). If the distance from node i to j is ℓ > 1 , it might be feasible to
have w(ℓ)

ij = 0 and y(ℓ)ikj = 0 as well. However, this cannot happen in an optimal solution,
and to demonstrate that, we note that for a given pair of nodes i, j its contribution to the
objective function (13a) without scaling can be rewritten as

Observe that each term w(ℓ)
ij for any ℓ = 1, . . . , L comes with positive coefficient, which,

taking into account the maximization nature of the problem, guarantees that in an opti-
mal solution w(ℓ)

ij = 1 for all ℓ ≥ πij (the length of the shortest path from node i to j).
To ensure that the objective function of the optimal solution of the formulation above

corresponds to the correct value of graph efficiency ( µ ) and the obtained solution is
indeed the graph with the maximum possible efficiency µ , one can use L = n− 1 . How-
ever, using large values of L results in larger MIP formulations since the number of vari-
ables and constraints grows linearly with L.

Hence, to use as smallest L as possible, we employ sequential solution technique
(Exact Iterative Algorithm described below), which is also similar to the one described
in [31, 32]. Specifically, we set L = diam(G) (graph diameter, the largest finite distance
in a graph) first and solve this problem, where G = (V , S) consists a set of all allowable
connections. If the diameter of the obtained network is greater than L, then we increase
L and solve the problem again until the diameter of the obtained network will not be
greater than L. This technique allows to substantially reduce the computational time and
the amount of variables. The next proposition provides a formal proof that at the end
such a procedure returns an optimal network configuration. Let diam(G) and dij denote
the diameter of a graph G and a distance from node i to node j (length of the largest
shortest path), and let �dij≤L be the indicator function which is equal to 1 if dij ≤ L and
0, otherwise. Then, the following proposition holds.

Proposition 1  Let E∗ be the optimal solution of Problem 1 for some L = L0 and
G∗ = (V ,E∗) . If diam(G∗) ≤ L0 , then G∗ is also an optimal solution of Problem 1 for
L = n− 1.

(13h)
∑

(i,j)∈S

xij ≤ K ,

(13i)xij ,∈ {0, 1}, ∀(i, j) ∈ S

(13j)w
(ℓ)
ij , y

(ℓ)

ikj ∈ {0, 1}, ∀i, j ∈ V , (i, k) ∈ S, i �= j �= k , ℓ ∈ {1, . . . , L}.

(14)

w
(1)
ij +

L
∑

ℓ=2

1

ℓ

(

w
(ℓ)
ij − w

(ℓ−1)
ij

)

= w
(1)
ij +

1

2

(

w
(2)
ij − w

(1)
ij

)

+ · · · +
1

L

(

w
(L)
ij − w

(L−1)
ij

)

=

(

1−
1

2

)

w
(1)
ij +

(

1

2
−

1

3

)

w
(2)
ij + · · · +

(

1

L− 1
−

1

L

)

w
(L−1)
ij +

1

L
w
(L)
ij .

Page 21 of 30Diaz et al. Comput Soc Netw (2019) 6:13

Proof  For any graph G = (V ,E) let ⌊µ⌋L = 1
n(n−1)

∑n
i,j=1:i �=j

1
dij
�dij≤L , which can be

viewed as a truncated version of the graph efficiency µ , where any distance of greater
than L in a graph G is treated as if the nodes are disconnected ( dij = ∞ ). In fact, the
objective function of Problem 1 for any given L represents the truncated version of a
graph efficiency ⌊µ⌋L.

Note that any feasible solution of Problem 1 with L = n− 1 is also a feasible solution
for Problem 1 for any given L = 1, . . . , n− 1 . Conversely, from any optimal solution of
Problem 1 for any given L = 1, . . . , n− 1 the feasible solution of Problem 1 can also be
easily constructed using the recursive procedure. Moreover, note that ⌊µ⌋L ≤ µ for any
L = 1, . . . , n− 1 , and , if L ≥ diam(G) , then ⌊µ⌋L = µ , which ends the proof of the prop-
osition. � �

Algorithm 1 gives the formal description of the steps that we use to find the optimal
network configurations in accordance with our MIP.

Algorithm 1 Exact Iterative Algorithm
Input: A graph G = (V, S) and a limit on the number of active connections K
Output: Subset E∗ ⊆ S

1: begin
2: L0 ←− diam(G)
3: E∗ ←− optimal solution of Problem 1 for L = L0
4: G∗ ←− (V,E∗)
5: L1 ←− diam(G∗)
6: while L1 > L0 do
7: L0 ←− L1
8: E∗ ←− optimal solution of Problem 1 for L = L0
9: G∗ ←− (V,E∗)
10: L1 ←− diam(G∗)
11: end while
12: return E∗

13: end

Experimental results

Multiple combinations of the DDIP model parameters were tested and best selections
identified. For the test instances with the networks of size n = 10, 15, 20 , the w param-
eters used were 0.642, 0.555, and 1.288, and the γ parameters used were 1.096, 1.210, and
0.863, respectively.

The DDIP instances were tested using Python 2.7 on a Dell Inspiron 15 7000 (2.3 GHz
Intel Core i5-6200U processor, 8 GB RAM) for ten periods, ten times per test input
graph, per each graph size. The MIP formulations were implemented and solved with
Gurobi Optimizer 8.1 [33] using Python interface. See Figs. 5 and 6 for the comparison
between the networks generated with the DDIP model and the networks generated by
the MIP (Problem 1) for each test instance.

The values of the network performance metrics were calculated for all the resulting
networks that were generated with the DDIP model. The values of µ and η were also
computed for the fully connected instances ( er = 1 ), and also, for the MIP solutions
(obtained under the constraint |E|MIP = Avg |E|DDIP ), for each sample graph. Table 3
reports the average results for each performance metric and compares the results of the
DDIP model to the metrics of the fully connected graphs and MIP solutions for each
graph size and type.

Page 22 of 30Diaz et al. Comput Soc Netw (2019) 6:13

The results in Table 3 indicate that the DDIP model is able to form networks that con-
tain efficient structures for information propagation. As expected, for each graph size,
the average inverse distance values µ for the DDIP model networks were less than the
µ values over fully connected graphs of the same size and type. Further, the resulting
edge efficiency values η from the DDIP model networks were larger than the η values for
the fully connected networks. The DDIP model performed poorly in comparison with
the MIP generated networks, which is to be expected as MIP was run under complete

Fig. 5  Network configurations (blue arcs) obtained using DDIP and MIP on a sample of Unit Disk input
graphs: the output graphs with maximum possible efficiency, µ , with a given limit on the number of active
connections |E|. Gray arcs are the allowable arcs which were not used by a solution

Page 23 of 30Diaz et al. Comput Soc Netw (2019) 6:13

information (in a centralized way), while the DDIP model was run under partial infor-
mation (in a decentralized way). Note, however, that the DDIP-generated graphs are
more balanced than their MIP counterparts (see Figs. 5 and 6), in that in DDIP solutions
the nodes are not overloaded, while MIP typically returns a hub-and-spoke type struc-
ture that is very efficient at the expense of some node(s) being overloaded. These results,
combined with the low average edge ratio er values of the DDIP output networks, show

Fig. 6  Network configurations (blue arcs) obtained using DDIP and MIP on a sample of ERGM input
graphs: the output graphs with maximum possible efficiency, µ , with a given limit on the number of active
connections |E|. Gray arcs are the allowable arcs which were not used by a solution

Page 24 of 30Diaz et al. Comput Soc Netw (2019) 6:13

Ta
bl

e 
3 

D
D

IP
 m

od
el

 re
su

lt
s

fo
r d

iff
er

en
t n

um
be

rs
 o

f a
ct

or
s

Sa
m

pl
e

Ty
pe

G
ra

ph
 S

iz
e

Fu
lly

 C
on

ne
ct

ed
D

D
IP

M
IP

 S
ol

ut
io

n

Ti
es

 (|
S|

)
µ

η
Av

g
Ti

es
 (|

E|
)

Av
g
e
r

Av
g
µ

Av
g
η

Ru
n

tim
e

Ti
es

 (|
E|

)
µ

η

U
ni

t D
is

k
n
=

1
0

42
0.

71
1

2.
23

6
22

.8
89

0.
54

5
0.

47
9

1.
99

8
30

.5
44

23
0.

60
2

2.
89

6

n
=

1
5

60
0.

51
9

1.
28

1
35

.2
23

0.
58

7
0.

38
1.

42
4

11
2.

58
9

35
0.

45
4

1.
79

1

n
=

2
0

13
0

0.
59

4
0.

99
8

51
.1

42
0.

39
3

0.
33

4
1.

12
8

31
7.

73
1

51
0.

48
6

1.
81

2

ER
G

M
n
=

1
0

58
0.

82
2

2.
29

8
25

.8
75

0.
44

6
0.

58
2.

42
3

30
.2

17
26

0.
62

9
2.

78
9

n
=

1
5

68
0.

61
6

1.
53

5
35

.6
0.

52
3

0.
43

6
1.

67
6

11
0.

57
3

36
0.

52
2.

14
3

n
=

2
0

10
4

0.
58

1
1.

19
7

46
.2

5
0.

44
4

0.
34

4
1.

28
7

29
9.

72
7

46
0.

48
1.

97
2

Page 25 of 30Diaz et al. Comput Soc Netw (2019) 6:13

that the model was able to form networks with relatively few ties and good connectivity
properties.

Conclusion
The topic of spreading information across networks is widely studied in network sci-
ence. Most works in the field of information passing, as it relates to social network analy-
sis, focus on the spread of influence across networks and utilize centralized methods in
order to find network formation solutions. In certain cases, such as deciding on how to
form communication networks for autonomous UAVs, the use of centralized methods is
not feasible. This paper thus offers a useful and promising approach towards decentral-
ized network formation modeling that leads to the creation of robust networks that con-
tain structural properties suited for information passing.

The results of the DDIP model application showcase that this new modeling approach
can be used to create robust networks. It does have limitations: e.g., in its current form,
the DDIP model relies on deterministic rules, which limits its flexibility. The DDIP
model was initialized with each actor connecting to one randomly chosen neighbor,
to see how the DDIP model solutions vary with different initial connection setups. We
observed that some of the final networks were not strongly connected. One could miti-
gate this issue by allowing the actors to run the DDIP model multiple times.

Further potential extensions and improvements over the presented model could focus
on adding parameters and rules to respond to the changes in the network proximity
structure. From the analysis perspective, allowing the actors to change their physical
positions in space (i.e., accounting for movement) and allowing for external changes to
the possible edge set (i.e., accounting for adversarial attacks) would indeed offer interest-
ing extensions.

Abbreviations
DDIP: decentralized deterministic information propagation; ERGM: exponential random graph models; MIP: mixed
integer programming.

Acknowledgements
Not applicable.

Authors’ contributions
All the authors contributed equally in the modeling and writing of the manuscript. All authors read and approved the
final manuscript.

Funding
This work was funded in part by the AFRL Mathematical Modeling and Optimization Institute, by the National Science
Foundation Award No. 1635611, and by the U.S. Air Force Summer Faculty Fellowship (Granted to the second author by
the Air Force Office of Scientific Research). The work of A. Veremyev was supported in part by the U.S. Air Force Research
Laboratory (AFRL) award FA8651-16-2-0009.

 Availability of data and materials
The codes for generating the sample networks and the model leading to the conclusions of this article are available at
https​://githu​b.com/perla​abhin​avraj​/DDIP.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY, USA. 2 Department of Industrial
Engineering and Management Systems, University of Central Florida, Orlando, FL, USA. 3 AFRL Munitions Directorate, Air
Force Research Laboratory, Eglin, FL, USA.

https://github.com/perlaabhinavraj/DDIP

Page 26 of 30Diaz et al. Comput Soc Netw (2019) 6:13

Appendix
ERGM sample graph settings

For each graph size n, an ERGM model was created and fitted to an “observed” graph
that was built manually. For each n, the ERGM estimation procedure had to choose
fitting parameters based on the structure of the underlying observed input graph. Fig-
ures 7 and 8 show the ERGM statistics that were fitted as well as the corresponding
parameter estimates for each graph size.

For n = 10, there was not much information for the ERGM model to fit parameters
to, because of how small the input graph was. There was only one parameter deemed
significant, capturing the difference between closeness attributes of connected actors.

Figure 8 describes the set of parameters that were fitted to the input graph of size
n = 20. The ERGM model for this graph size was able to find some relatively use-
ful information from the input graph. It was found that density, the gwesp statistic,
the number of triangles, the difference between “closeness” attributes, and the num-
ber of isolates to be significant. Based on these values, the ERGM simulation gener-
ated graphs with a low density, high propensity to share connections with connected
neighbors, a low number of triangles, no isolates, and more connections between
neighbors of similar “closeness” values.

Fig. 7  ERGM parameters for 10 actor graph size

Fig. 8  ERGM parameters for 20 actor graph size

Page 27 of 30Diaz et al. Comput Soc Netw (2019) 6:13

Algorithm pseudocodes

Algorithm 2 describes the flow of the DDIP model.

Page 28 of 30Diaz et al. Comput Soc Netw (2019) 6:13

Algorithm 3 Nelder-Mead Parameter Optimization Algorithm for Decentralized
Network Formation Model
1: X ← {xa,v

i |i = 1..n + 1, } /*Initialize Parameter Set X to Be Used*/
2: tmax ← t0 /*Initialize Stalling Termination Parameter tmax*/
3: tstall ← 0 /*Initialize Stall Count Parameter*/
4: x∗ ← 0 /*Initialize best Value x∗ to 0*/
5: while tstall < tmax do
6: for xi in X do
7: for p in P do
8: Run Formation Model on xi using sample graph p /*Use xi’s to obtain f(xi)*/
9: xv

i ← xv
i ∪ f(xi) /*Add to xi’s saved values*, and Add to the count of values

for xi*/
10: xa

i ← 1/|v|
∑

v(x
v
i) /*Update the Average of Parameter xi*/

11: end for
12: end for
13: Sort X by increasing value of xa

i , reassign i /*(x1 largest, xn+1 smallest)*/
14: x0 ← 1

n

∑n
i=1 xi /*Calculate the centroid of the parameter space*/

15: xr ← x0 + α(x0 − xn+1) /*Calculate Reflective Parameter Point xr*/
16: xa

r , ← f(xr) /*Run model on xr, obtain outcome*/
17: if xa

r < xa
1 and xa

r >= xa
n then

18: xn+1 ← xr

19: if xa
1 > x∗ then

20: x∗ ← xa
1 /*Save new best value*/

21: tstall ← 0 /*Reset Stalling Count Parameter*/
22: else
23: tstall ← tstall + 1 /*Increment the Stalling Count Parameter*/
24: end if
25: continue /*Go back to While Loop*/
26: else if xa

r > xa
1 then

27: xe ← x0 + γ(xr − x0) /*Calculate Expansion Parameter Point xe*/
28: xa

e , ← f(xe) /*Run model on xe, obtain outcome*/
29: if xa

e > xr then
30: xn+1 ← xe

31: if xa
e > x∗ then

32: x∗ ← xa
e /*If xa

e is the new global Min, update values*/
33: tstall ← 0
34: else
35: tstall ← tstall + 1
36: end if
37: continue /*Go back to While Loop*/

The first section of the Nelder–Mead algorithm shown above details how parameters
are evaluated and searched for. The second section shows how the contraction and
shrink procedures are calculated. The model was implemented using the standard values
for the parameters: σ = .5 , ρ = .5 , γ = 2 and α = 1.

Page 29 of 30Diaz et al. Comput Soc Netw (2019) 6:13

Algorithm 4 Nelder-Mead Algorithm Part 2
38: else
39: xn+1 ← xa

r
40: if xa

r > x∗ then
41: x∗ ← xa

r /*If xa
r is the new global Min, update values*/

42: tstall ← 0
43: else
44: tstall ← tstall + 1
45: end if
46: continue /*Go back to While Loop*/
47: end if
48: else
49: xc ← x0 + ρ(xn+1 − x0) /*Calculate Contraction Parameter Point xc*/
50: xa

c , xv
c ← f(xc) /*Run model on xc, obtain value*/

51: if xa
c > xn+1 then

52: xn+1 ← xc

53: if xa
1 > x∗ then

54: x∗ ← xa
1 /*If xa

1 is the new global Min, update values*/
55: tstall ← 0
56: else
57: tstall ← tstall + 1
58: end if
59: continue
60: else
61: for i > 1,andi < n+ 1 do
62: xi = x1 + σ(xi − x1) /*Calculate Shrink Parameter Points*/
63: end for
64: if xa

1 > x∗ then
65: x∗ ← xa

1 /*If xa
1 is the new global Min, update values*/

66: tstall ← 0
67: else
68: tstall ← tstall + 1
69: end if
70: continue
71: end if
72: end if
73: end while
74: return x1

Received: 12 April 2019 Accepted: 4 November 2019

References
	1.	 Akyildiz I, Kasimoglu I. Wireless sensor and actor networks: research challenges. Ad Hoc Netw J. 2004;2(4):351.
	2.	 Beard RW, McLain TW, Nelson DB, Kingston D, Johanson D. Decentralized cooperative aerial surveillance using fixed-

wing miniature UAVs. Proc IEEE. 2006;94(7):1306.
	3.	 Bala V, Goyal S. Learning from neighbours. Rev Econ Stud. 1998;65(3):595.
	4.	 Gale D, Kariv S. Bayesian learning in social networks. Games Econ Behav. 2003;45(2):329.
	5.	 Villatoro D, Sabater-Mir J, Sen S. Robust convention emergence in social networks through self-reinforcing struc-

tures dissolution. ACM Trans Auton Adapt Syst. 2013;8(1):2:1. https​://doi.org/10.1145/24512​48.24512​50.
	6.	 Safar M, Mahdi K, Torabi S. Network robustness and irreversibility of information diffusion in Complex networks. J

Comput Sci. 2011;2(3):198. https​://doi.org/10.1016/j.jocs.2011.05.005.
	7.	 Jiang C, Chen Y, Liu K. Evolutionary dynamics of information diffusion over social networks. IEEE Trans Signal Process.

2014;62(17):4573. https​://doi.org/10.1109/TSP.2014.23397​99.
	8.	 Greenan CC. Diffusion of innovations in dynamic networks. J R Stat Soc Series A. 2015;178(1):147. https​://doi.

org/10.1111/rssa.12054​/pdf.
	9.	 Pandit S, Yang Y, Chawla N. Maximizing information spread through influence structures in social networks. In: 2012

IEEE 12th international conference on data mining workshops (ICDMW); 2012. p. 258–65. https​://doi.org/10.1109/
ICDMW​.2012.140

	10.	 Snijders TA, Van de Bunt GG, Steglich CE. Introduction to stochastic actor-based models for network dynamics.
Social Netw. 2010;32(1):44.

https://doi.org/10.1145/2451248.2451250
https://doi.org/10.1016/j.jocs.2011.05.005
https://doi.org/10.1109/TSP.2014.2339799
https://doi.org/10.1111/rssa.12054/pdf
https://doi.org/10.1111/rssa.12054/pdf
https://doi.org/10.1109/ICDMW.2012.140
https://doi.org/10.1109/ICDMW.2012.140

Page 30 of 30Diaz et al. Comput Soc Netw (2019) 6:13

	11.	 Melodia T, Pompili D, Gungor VC, Akyildiz IF. A Distributed coordination framework for wireless sensor and actor
networks. In: Proceedings of the 6th ACM international symposium on mobile Ad Hoc networking and computing.
New York: ACM; 2005 MobiHoc ’05, p. 99–110. https​://doi.org/10.1145/10626​89.10627​04.

	12.	 Samadi M, Nikolaev A, Nagi R. A subjective evidence model for influence maximization in social networks. Omega.
2016;59:263.

	13.	 Farasat A, Nikolaev AG. Social structure optimization in team formation. Comput Op Res. 2016;74:127.
	14.	 Wu XM, Li Z, So AM, Wright J, Chang SF. Learning with partially absorbing random walks. In: Advances in neural

information processing systems; 2012, p. 3077–85. http://paper​s.nips.cc/paper​/4833-learn​ing-with-parti​ally-absor​
bing-rando​m-walks​.

	15.	 De J, Zhang X, Cheng L. Transduction on directed graphs via absorbing random walks. arXiv preprint arXiv​
:1402.4566; 2014;1402:4566.

	16.	 Kan Z, Yucelen T, Doucette E, Pasiliao E. A finite-time consensus framework over time-varying graph topologies with
temporal constraints. J Dyn Syst Meas Control. 2017;139(7):071012.

	17.	 Olfati-Saber R, Fax A, Murray RM. Consensus and cooperation in networked multi-agent systems. Proc IEEE.
2007;95(1):215.

	18.	 Smith B, Egerstedt M, Howard A. Automatic deployment and formation control of decentralized multi-agent
networks. In: IEEE international conference on robotics and automation, 2008. ICRA; 2008, p. 134–139. https​://doi.
org/10.1109/ROBOT​.2008.45431​98.

	19.	 Lanham M, Morgan G, Carley K. Social network modeling and agent-based simulation in support of crisis de-
escalation. IEEE Trans Syst Man Cyber Syst. 2014;44(1):103. https​://doi.org/10.1109/TSMCC​.2012.22302​55.

	20.	 Chinowsky P, Diekmann J, Galotti V. Social network model of construction. J Constr Eng Manag. 2008;134(10):804.
https​://doi.org/10.1061/(ASCE)0733-9364(2008)134:10(804).

	21.	 Watts A. A dynamic model of network formation. Games Econ Behav. 2001;34(2):331. https​://doi.org/10.1006/
game.2000.0803.

	22.	 Jackson MO, Watts A. The evolution of social and economic networks. J Econ Theory. 2002;106(2):265. https​://doi.
org/10.1006/jeth.2001.2903.

	23.	 Snijders TA. The statistical evaluation of social network dynamics. Sociol Methodol. 2001;31(1):361.
	24.	 Sabattini L, Secchi C, Chopra N. Decentralized control for maintenance of strong connectivity for directed

graphs. In: 21st mediterranean conference on control and automation; 2013, p. 978–86. https​://doi.org/10.1109/
MED.2013.66088​40

	25.	 Diaz C, Nikolaev A, Pasiliao E. A Decentralized deterministic information propagation model for robust communica-
tion. In: International conference on computational social networks. Springer; 2018, p. 235–46.

	26.	 Nikolaev AG, Razib R, Kucheriya A. On efficient use of entropy centrality for social network analysis and community
detection. Soc Netw. 2015;40:154.

	27.	 Kemeny JG, Snell JL. Others, Finite markov chains, vol. 356. Princeton: van Nostrand Princeton; 1960.
	28.	 Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701.
	29.	 Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308. https​://doi.org/10.1093/

comjn​l/7.4.308.
	30.	 Snijders TAB. Markov chain monte Carlo estimation of exponential random graph models. J Soc Str. 2002;3(2):1.
	31.	 Mukherjee T, Veremyev A, Kumar P, Pasiliao E Jr. The minimum edge compact spanner network design problem.

2017. arXiv preprint arXiv​:1712.04010​
	32.	 Veremyev A, Prokopyev OA, Pasiliao EL. Critical nodes for distance-based connectivity and related problems in

graphs. Networks. 2015;66(3):170.
	33.	 L. Gurobi Optimization. Gurobi optimizer reference manual. 2018. http://www.gurob​i.com

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/1062689.1062704
http://papers.nips.cc/paper/4833-learning-with-partially-absorbing-random-walks
http://papers.nips.cc/paper/4833-learning-with-partially-absorbing-random-walks
http://arxiv.org/abs/1402.4566
http://arxiv.org/abs/1402.4566
https://doi.org/10.1109/ROBOT.2008.4543198
https://doi.org/10.1109/ROBOT.2008.4543198
https://doi.org/10.1109/TSMCC.2012.2230255
https://doi.org/10.1061/(ASCE)0733-9364(2008)134:10(804)
https://doi.org/10.1006/game.2000.0803
https://doi.org/10.1006/game.2000.0803
https://doi.org/10.1006/jeth.2001.2903
https://doi.org/10.1006/jeth.2001.2903
https://doi.org/10.1109/MED.2013.6608840
https://doi.org/10.1109/MED.2013.6608840
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
http://arxiv.org/abs/1712.04010
http://www.gurobi.com

	Robust communication network formation: a decentralized approach
	Abstract
	Introduction
	Practical problem setting and relevant literature
	The decentralized deterministic information propagation model for network formation
	DDIP model basics
	Forwarding stage: message passing procedure
	Calculation of weights and objective values
	Network estimation stage and modification stage

	Parameter estimation
	Markov chain approximation for the message forwarding stage
	Evaluation metrics
	Parameter search optimization problem formulation
	Nelder–Mead algorithm

	Computational experiments
	Synthetic network generation
	Unit disk method
	ERGM method

	Experiment setup
	Nelder–Mead implementation

	Optimal network configurations
	Experimental results

	Conclusion
	Acknowledgements
	References

