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Introduction
The influence of social context on individual behaviour is a notable topic in various 
fields. In its most basic form, the problem can be reduced to the question of how a cer-
tain property (attribute, behaviour, decision, and trait) spreads throughout a social sys-
tem. To analyse such processes in greater detail, modelling is a viable way of gaining new 
insights. Agent-based models (ABM) can cover heterogeneity among individuals and 
provide a useful tool to study social contagion dynamics. Applications of ABM capture 
phenomena as diverse as rumour spreading [28], memory transmission [27], attitude 
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In the standard situation of networked populations, link neighbours represent one of 
the main influences leading to social diffusion of behaviour. When distinct attributes 
coexist, not only the network structure, but also the distribution of these traits shape 
the typical neighbourhood of each individual. While assortativity refers to the forma-
tion of links between similar individuals inducing the network structure, here, we sepa-
rate the formation of links from the actual distribution of an attribute on the topology. 
This is achieved by first generating different network types (e.g., lattice, scale free, and 
small world), followed by the procedure of distributing attributes. With this separation, 
we try to isolate the effect that attribute distribution has on network diffusion from the 
effect of the network structure itself. We compare random distributions, where behav-
iour types are highly mixed, and homophilic distributions, where similar individuals are 
very likely to be linked, and examine the effects on social contagion in a population of 
mainly reciprocal behaviour types. In addition, we gradually mix homophilic distribu-
tion, by random rewiring, adding links and relocating individuals. Our main results is 
that attribute distribution strongly influences collective behaviour and the actual effect 
depends on the network type. Under homophilic distribution the equilibrium collec-
tive behaviour of a population tends to be more divers, implying that random distri-
butions are limited for illustration of collective behaviour. We find that our results are 
robust when we use different gradual mixing methods on homophilic distribution.
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polarization [39], and social norm contagion in the case study of protection rackets of 
the Sicilian Mafia [30].

The structure of the interaction network is known to be deeply connected to the over-
all spreading pattern [7, 10, 18, 36, 43, 44]. Many studies have been dedicated to deepen 
our understanding of the role of network features, such as central nodes [2], clustering 
[15], and weak ties [13] and structural characteristics such as centrality and bridging ties 
have been identified to foster diffusion processes [44].

Diffusion patterns are highly contextual. They do not only depend on the general net-
work structure, but also on who tends to be connected with whom. The tendency to 
associate with beings similar to oneself is known as homophily or assortative mixing 
[32]. Preferences in ‘who to interact with’ generate social patterns known as bonding and 
bridging [35]. While bonding between homogeneous groups can be valuable for margin-
alized members of society, bridging of heterogeneous groups allows different individuals 
to share and exchange information and ideas and build consensus among groups repre-
senting diverse interests [34].

A common way to include the homophily effect in ABMs is to utilize a network gen-
erator that uses a higher chance to generate links between similar individuals [6, 16, 19, 
24]. However, since the proportions of population shares have a direct effect on link for-
mation and thus topology, the resulting network may differ from a network that is gen-
erated by an unbiased generator. On the other hand, many studies on networked ABM 
generation simplify the distribution of traits, assuming that they are random [9, 33, 36].

The structural proximity (network structure) and the attribute proximity (homophily 
effect) have been tackled by several lines of research. Node embedding refers to tech-
niques that try to find ‘similar’ nodes in the graph, being a valuable way for classification, 
link prediction, and graph visualization. In this context, most work focuses on struc-
tural proximity [8, 47], while the homophily effect of attributes was incorporated in [25]. 
Community embedding [4] has been shown to be beneficial for community detection 
and node classification. Community detection is especially beneficial in the analysis of 
real-world data sets, but to our knowledge, less applicable to improve ABM network 
generation.

How homophily affects diffusion and contagion in ABM networks with heterogene-
ous agents has been studied in [11] using a probability model of homophily. This study 
merges the network generation and the attribute distribution and is limited to Erdős–
Rényi random network models. Conditions under which a behaviour diffuses and 
becomes persistent in the population have been investigated in [17]. This study captures 
many important aspects of diffusion such as the level of homophily, but comes short in 
investigating the homophily effect on different network types due to their focus on adop-
tion types and the type of interaction mechanisms.

With this study, we want to present an attribute distribution mechanism for heteroge-
neous agents, usable for various network types. The mechanism generates homophilic 
attribute distributions, where individuals with identical traits are highly clustered, while 
the network structure is unaffected by the attribute distribution. We refer to different 
distribution of attributes on the network topopolgy as allocation. To decouple the net-
work generation and the allocation of individuals, we first generate a topology with an 
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unbiased network generator, and after the network generation is complete, position the 
heterogeneous individuals.

The analysis of the effect of the homophilic attribute distribution mechanism focusses 
on a comparison of diffusion in homophilic and random allocations. For this, we use 
a general model of diffusion that promotes a simple social contagion process through 
the population. To facilitate the discussion on the contagious property, we interpret the 
property as a continuous variable that governs a decision making process. Various con-
texts of the contagious process are suitable, e.g., environmental awareness or competi-
tiveness, provided that the decision can be related to a continuous scale.

We can compare diffusion in different allocations on various network types: lattice 
topologies, scale-free topologies, cave-people topologies, spatial-proximity topologies, 
and small-world topologies. In addition, we generate and explore intermediate attribute 
distributions, which combine features of both the mixed and homophilic allocations. For 
this, we introduce random alterations via rewiring and constant changes of the topology, 
and target-oriented alterations via additional long ties and repositioning of individuals.

Method
We use a software modelling approach to create a population of agents, who make a 
certain decision at every time step. The attribute that governs this decision is on a con-
tinuous scale from 0 to 1. Individuals are connected via links resulting in an underlying 
interaction network topology. The influence of link neighbours creates diffusion dynam-
ics within the modelled population, leading to social contagion processes of the property 
in question. The model is generic in the sense that the actual decision that is made does 
not need to be specified and can be interpreted, e.g., as environmental awareness [22] or 
an investment in game theory [3].

Agent behaviour types

In addition to the structure of a population, social contagion is also deeply connected to 
the response of individuals to their surroundings. Not all individuals or groups react in 
the same way to their environment. While some are easier influenced by their peers and 
reciprocate observed behaviour, others might be less flexible and do not change their 
actions based on the behaviour of others. A simple example of such non-reciprocators 
is the strategy of so-called continuous cooperators in the public goods game [3]. These 
players do not deviate from their decision to always invest in the creation of a public 
good, even when their peers do not contribute.

In the presented model, the population is divided in three types of agents: non-recip-
rocative type A, non-reciprocative type B, and reciprocative type S. Their attribute is 
given by the decision mechanism, which differs for each type. This behavioural type, not 
to be confused with the contagious property, is constant over time for each individual. 
Type A and type B individuals abide to the same decision and cannot be influenced by 
their neighbourhood. Their decision attribute is constantly 0 and 1, respectively, and 
thus not directly affected by social contagion. Type S individuals make their decision 
using a best-response mechanism, reflecting the mean decision of its direct neighbour-
hood (link neighbours).
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The focus of our investigation is on spreading dynamics and local pattern formation 
through the population share of reciprocal individuals S, induced by the decisions of 
non-reciprocal types A and B.

Network topologies

We use six different topology types, as shown in Fig. 1. Each nodes represents an indi-
vidual. Link neighbourhood is shown via gray lines.

•	 Both the grid topology (Fig.  1a) and the torus topology (Fig.  1b) consist of a reg-
ular distribution of link neighbours on a lattice (“large world”). The torus topology 
includes periodic boundary conditions.

•	 The scale-free network (Fig.  1c) exhibits a distribution of degrees (i.e., number of 
links for each node) that follows a power law and is generated using the preferential-
attachment algorithm by [1].

•	 The cave-people topology (Fig. 1d) is a version of the caveman networks [31] but with 
less symmetry. The algorithm uses a parameter to define the cluster size c1 and the 
number of clusters c2 . The probability to have a link between individuals of the same 
cluster is 50%, and the probability of ties between clusters is 4 c2.

•	 The spatial-proximity topology (Fig.  1e) depicts networks with a high clustering 
based on spatial proximity and was introduced in [41] to model spreading dynamics 
of epidemics (SIR model).

•	 The small-world topology (Fig. 1f ) is based on the Kleinberg model [20], using a lat-
tice topology and a number of long-range links, added to the network, leading to 
a shorter average path-length on the network. When adding long-range links, the 
probability of connecting two random nodes is proportional to 1/dq with q being the 
clustering coefficient and d the distance of the nodes.

Fig. 1  Investigated network types: a grid, b torus, c scale free, d cave people, e spatial proximity, and f small 
world
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Attribute distributions

The population consists of three different types of agents. The minority of the individu-
als in the system ( 10% ) are of the non-reciprocative type A or type B, with the identical 
population shares NA = NB = 5% . The majority of the population consists of reciprocal 
individuals type S with a population share NS = 90% . The allocation gives the propor-
tion of bonding (links between similar individuals) and bridging (links between differ-
ent individuals), ultimately shaping the contagion dynamics. In random distributions, 
the average neighbourhood of all individuals is only influenced by the population shares. 
Homophilic distributions result in highly self-similar link neighbourhoods of each indi-
vidual. Figure 2 shows the allocation mechanisms for different distributions of type A 
(green rectangles) and type B (red squares) and type S (black and coloured circles) on 
the network. Random positioning on the network results in mixed attribute distribu-
tion (Fig. 2a) which generally leads to low bonding and high bridging in the network. 
Ordered distributions (Fig. 2b, c) are given by homophilic allocations, generally leading 
to high bonding and low bridging.

Homophilic attribute distribution mechanism

To create homophilic attribute distributions, we use a mechanism to generate highly 
ordered allocations, which operates as follows: first, two random nodes are chosen. One 
of them is transformed into a type A node, and the other one into a type B node. All 
the other nodes do not have any type at this stage. Second, all link neighbours of type A 
and type B that do not have a type assigned to them yet are selected. The selected nodes 
form a ’pool’ of potential type A and type B nodes, respectively. In each step, a random 
node from the pool of potential type As is transformed into type A. Simultaneously, this 
process is done for the pool of potential type Bs, so that one type A and one type B are 
added in each step. This process is repeated until the desired number of types A and 
B is reached. When a pool becomes empty and further transformations are required, a 
new pool is created consisting of the type-less link neighbours of all already transformed 
nodes of type A or type B. All nodes which are not transformed into type A and type B 
are considered as reciprocal type S nodes. For the rare cases in which one type hinders 
the growth of the other type completely, such that the final number of NA or NB cannot 

Fig. 2  Attribute distribution: a randomly mixed, b, c homophilic allocations with an adjacent area in c. 
Symbols represent individual agents of type A (green triangles), type B (red squares), and type S (black 
and coloured circles). Enlarged symbols denote the initial agent of the homophilic attribute distribution 
mechanisms, coloured circles indicate the remaining pool of potential non-reciprocal agents
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be reached, the procedure is cancelled and the initial nodes of type A and type B are 
re-selected.

Figure 2b shows this process on the grid topology for NA = 11 (green rectangles) and 
NB = 11 (red squares). The algorithm starts with the enlarged nodes and progresses to 
include the next proximate nodes of the neighbourhoods. Blue circles and orange circles 
mark nodes of the pools of potential candidates, which have not been selected to trans-
form. Figure 2c shows the mechanism when type A and type B are in close proximity. 
Here, the pools of potential As and Bs intersect, such that the trait distribution evolves 
into deformed regions of type A and type B. However, in large populations, these cases 
are rarely observed for most of the used topology types, with the exception of scale-free 
networks.

Intermediate homophilic distributions

Social ties of populations are not necessarily static, but often dynamic. Who interacts 
with whom can change over time, leading to constant updates of the network structure 
[12, 46]. It has been shown that dynamic social networks can promote cooperation [37] 
and that adaptive networks have important consequences for the spreading of diseases 
[14].

Attribute distribution in real-world examples with social contagion typically displays 
intermediate states of mixed and homophilic allocations. Diffusion is known to be 
amplified by bridging ties, which link two otherwise unconnected network clusters [26, 
45], weak ties [13], referring to less frequent interactions, and long ties [5], connecting 
socially distant locations. These notations are interchangeable to a certain degree. Struc-
tural changes associated with bridging can dramatically accelerate the spread of disease, 
the diffusion of job information, the adoption of new technologies, and the coordination 
of collective action [5].

Another aspect influencing diffusion in a societal context is relocation, such as stu-
dent exchange and university enrolment [40], and migration, influencing the evolution 
of norms [29]. Leaving a familiar environment to replace it with a new neighbourhood 
introduces drastic changes to the network, both at the point of origin, as well as at the 
destination point and is thus of great interest when investigating attribute distribution 
effects in populations.

To capture variations in bonding and bridging, we introduce three gradual alterations 
mechanisms of the structural proximity between individuals. These mechanisms relate 
to the phenomena of adjusting of social ties, long-range interactions, and exchange of 
the societal environment. These random and target-oriented changes in the network 
have been implemented to test the robustness of diffusion effects under the homophilic 
attribute treatment.

Dynamic rewiring

To perform a dynamic analysis of the network, we adjust the social ties between individ-
uals by a similar approach as presented in [38], but replacing the need for a satisfaction 
level and fitness with a random choice of individuals, keeping the rewiring dynamics as 
generic as possible. The adjustment of ties between an individual i and an individual j 
is done by removal of their link followed by rewiring of i with a random chosen link 
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neighbour of j. The number of adjusted ties is given by R. An illustration of the rewiring 
of R = 50 is shown in Fig. 3a. Correlated with the adjustments, measuring the level of 
homophily can be done by calculating the mean of ki(x)/ki for each individual i with the 
link number ki(x) of its neighbours of identical type X and link degree k.

In real social networks, individuals are able to leave the system and new ones are able 
to join. However, in our investigation, the number of individuals of certain types needs 
to be kept constant, so that different simulation runs can be compared. This means every 
time a individual of a certain type leaves the system, a new one needs to enter it. Since 
it does not enter at the same position, the new node might have different links, but the 
same type. Therefore, this process can also be approximated by dynamic rewiring.

Structural bridges and relocation

We increase bridging by adding long ties between non-reciprocative and reciprocative 
individuals. For illustion, Fig. 3b shows the homophilic attribute distribution with four 
long-distant links between randomly chosen type A and type S individuals (bridged type 
S nodes are highlighted as black circles). Furthermore, we perform positional swaps 
between two randomly chosen individuals, one non-reciprocative and the other of recip-
rocative type, to capture reallocations. Figure 3c shows the allocation of four swaps of 
type A with type S individuals when initially having the homophilic allocation (swapped 
type S nodes are highlighted as black circles).

For each long tie or swap, both individuals A and S are randomly chosen, with the 
additional condition that each individual is only allowed to swap once. In general, both 
mechanisms can be applied to the two non-reciprocative type A or type B, leading to a 
smooth transition from homophilic to mixed allocations when increasing the number of 
alterations. Since we are particular interested in changes which foster the promotion of a 
single behaviour in the population, we limit additional long ties and swapping to type A 
and type S individuals (target-oriented alterations) while leaving type B unaltered.

Model
The model consists of N software agents of three populations shares NA,NB,NS . Each 
agent has an internal behaviour state, which is reflected by the decision variable d. Non-
reciprocative agents of type A have a fixed behaviour given by d = 1 , and type B’s behav-
iour is given by d = 0 . Since we consider repeated decision making, type S individuals i 

Fig. 3  Intermediate attribute distribution: a rewiring of R = 50 links, b additional structural bridges, and c 
relocation via swapping, b, c shown for four alterations between type A and type S (black circles) individuals, 
all shown for the initial homophilic attribute distribution
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decide on their behaviour di ∈ [0, 1] in each round t. Their decision is based on a best-
response mechanisms: Their decision variable d is the mean value of all link-neighbours’ 
decision variables:

with k being the node’s degree and n referring to individual link neighbours of the node 
i.

The resulting mean behavioural state of the population share of type S 
d̂(t) = 1/NS

∑

j dj(t) gives an overall measurement of the tendency of susceptible indi-
viduals. The standard deviation of the behavioural state

holds information on the heterogeneity of decisions in the population. After a certain 
time t = T  , an equilibrium state is reached leading to the overall behavioural state 
d̄ = d̂(T ) and h̄ = h(T ).

Simulations

We investigate the diffusion process of the decision variable dj in the population in all 
networks detailed above for both random and homophilic allocations. We then use 
rewiring, structural bridges (long ties) and relocation (swapping) to statistically inves-
tigate the effect of topological changes on the overall population state. The numeri-
cal details of our simulations are as follows: we use a population of N = 400 with 
NA = NB = 20 and NS = 360 . All results were obtained for time steps T = 2000 . Lat-
tice-based topologies are sized 20× 20 . The cave-people networks use 20 clusters con-
sisting of 20 individuals each. The average node degree of the spatial-proximity topology 
is k̂ = 6 . The small-world topology uses the optimal clustering exponent q = 2 of the 
Kleinberg model [21]. Statistical analysis is based on s = 500 simulation runs for each set 
of parameters. Additional investigations on larger populations have been performed for 
N = 800, 1600, 2500.

We use Netlogo 6.0.4 and the network extension package for simulations, and Python 
3.6 to run and evaluate NetLogo-based data using the pyNetLogo library [23].

Results
Our results focus on the collective state of the population, given by the average decision 
d̄ of type S individuals when an equilibrium state is reached. In addition, we observe the 
heterogeneity h̄ of the collective decision in the reciprocative population. In addition to 
statistically averaged observations, we explore single simulation examples to highlight 
some relevant cases and to provide deeper insights into differences in attribute distribu-
tion depending on the topology type. First, we show results on the dependency of alloca-
tions in regard to different networks “Effects of attribute distribution on various network 
types”. This is followed by our investigation on intermediate attribute distribution by 

(1)di = 1/k

k
∑

n=1

dn,

(2)h(t) =

√

∑

j

(dj − d̂(t))2/(NS − 1)
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presenting effects of rewiring “Rewiring” of effects of additional long ties “Additional 
long ties” and positional swapping “Relocation”.

Effects of attribute distribution on various network types

Performing a statistical analysis of s = 500 simulations for each of the six topologies, 
the collective decision d̄ is distributed around D = 1/s

∑

d̄ ≃ 0.5 for both, the randomly 
mixed and homophilic allocations, as shown in Fig. 4a as violin plots. Since NA = NB , 
this result is naturally occurring, however, the probability density depends strongly on 
the network type and allocation. Figure 4a shows different topologies on the x-axis and 
the colour code refers to randomly mixed allocations [red (light gray)] and homophilic 
allocations [dark blue (dark gray)].

Random allocation exhibits similar distribution ranges of d̄ on all topologies, with 
the narrowest distribution for small-world topologies and the widest for scale-free net-
works. In contrast, homophilic allocations lead to a great variation in distribution ranges 
with a strong dependence on the network structure. Here, torus topologies show the 
smallest statistical variations due to the periodic boundary conditions. Collective deci-
sion on scale-free networks shows a broad distribution, covering the complete range 
between type A or type B decisions. For most network types, an increase of the probabil-
ity range of d̄ has been observed for the homophilic allocation compared to randomly 
mixed, being especially pronounced for the scale-free and cave-people topologies. The 
only exception, showing a decrease, is the torus network.

Figure 4b shows the heterogeneity h̄ of s = 500 simulations as boxplots. For both allo-
cation types, the network structure affects the heterogeneity of decisions significantly, 
with the mean heterogeneity H = 1/s

∑

h being highest for scale-free networks (ran-
dom: H ≃ 0.27 , and homophilic: H ≃ 0.33 ) and lowest for small-world topologies 
(random: H ≃ 0.11 , and homophilic: H ≃ 0.11 ). Effects of random and homophilic 
allocations are diverse: Two topologies show a decrease in mean heterogeneity (torus, 
cave people), three network types show minor changes (grid,spatial proximity, and small 
world) and one network shows an increase in H (scale free) as well a strong decrease in 
correlated statistical distribution under homophilic allocation.
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Fig. 4  Random and homophilic allocation: a violin plots of the collective decision d̄ and b boxplots of the 
heterogeneity h̄ , for random mixed allocation [left, red (light gray)] and homophilic allocation [right, blue 
(dark gray)]. Parameters: N = 400, T = 2000, s = 500
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The results of Fig.  4 have been tested for larger populations N = 800, 1600, 2500 
and matching number of non-reciprocative agents NA = NB = 5% and prolonging the 
simulation time T = 5000, 1000, 1500 accordingly. For all topology types, the statistical 
results on collective behaviour d̄ and h̄ have been replicable.

Pattern formation

To highlight different effects of allocation on scale-free and cave-people networks, Fig. 5 
provides four examples networks with N = 200 . The colour code from blue over white 
to yellow represents the decision dj ∈ [0, 1] at T = 200 , with small values of dj in blue 
and high values in yellow. Comparing the random allocation Fig. 5a, c with the homo-
philic allocation Fig. 5b, d on both network types, several characteristics can be noted. 
Branches of a single scale-free network may hold different tendencies in dj , resulting in a 
rather heterogeneous behaviour of the overall populations. While both allocations show 
this feature, using homophilic allocations increases this phenomenon since the forma-
tion of encapsulated branches, only influenced by one type of non-reciprocal type A or 
B, is more likely. Figure 5c shows a random allocation on the cave-people topology, lead-
ing to a dispersion of type A, B agents through the majority of clusters. Figure 5d shows 
the homophilic allocation, where the influence of non-reciprocators is rather localized 
due to the accumulation in a single cluster. Here, the influence on clusters of solely type 
S individuals is weak, such that most clusters show intermediate behaviour of small 

Fig. 5  Examples of pattern formation: (top) scale-free networks with a random, and b homophilic allocation; 
(bottom) cave-people networks with c random and d homophilic allocation. Colour code reflects the 
decision variable with small dj in blue, medium in white and high in yellow. N = 200, T = 200
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heterogeneity. Further examples of the grid, torus, spatial-proximity, and small-world 
topologies are provided in “Appendix” Figs. 11, 12, 13, and 14.

Rewiring

To test the results on the homophilic attribute distribution of Fig 4 [left, blue (dark gray) 
violin plots], three levels of rewiring have been evaluated, as shown in Fig. 6. Dynamic 
rewiring of the topologies has been investigated for R = 0, 200, 400, 800 with R = 0 coin-
ciding with the results of Fig. 4. No significant changes in the statistical dispersion are 
observed. Moreover, we tested the level of homphily over different time lines of the evo-
lution of the collective behaviour. We observed no significant changes over time for the 
collective level of homophily. The level of homophily of the reciprocative type C showed 
a very slight decrease which appeared to be negligible. We conclude that the effects of 
homophilic allocation on statistical properties of collective behaviour are robust towards 
a reasonale number of adjustments of social ties.

Additional long ties

To test the effect of long-tie interaction and promotion of the behaviour of typ A, alter-
ations of the interaction options are introduced via additional links. First, the basic 
network topology as introduced in “Attribute distributions” and the homophilic alloca-
tion is generated. Afterwards, additional long ties are added as depicted in “Structural 
bridges and relocation” and permanently placed prior to the start of the simulation run. 
The number of alterations x, corresponding to the number of additional links, is varied 
for different simulations runs.

To analyse the impact of structural bridging, s = 500 simulations have been evalu-
ated for every x = 0, 2, 4, . . . , 78, 80 . The results for the six different network types 
are shown in Fig. 7, where each plot shows one highlighted result (coloured, includ-
ing the standard deviation as filled area) to the corresponding topology noted in the 
legend. The reinforcement of type A strategies ( d = 1 ) via A–S long ties is clearly 
visible for all topologies by a decrease of d̄ when raising x. While all topologies show 
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a logarithmic increase, small-world networks show a near linear correlation and the 
overall increase is the smallest. In case of scale-free networks, the standard deviation 
(filled area) is the largest compared to other network types for all x and decreases 
the strongest the more links are added.

Regarding the heterogeneity under variation of x, we observe no significant effects 
on h̄ for three topologies (torus, cave people, and small world) and linear decreases 
for three topologies (grid, scale free, and spatial proximity) when using different 
numbers additional ties (see “Appendix”: Fig. 9).

Relocation

An alternative way to analyse intermediate allocations is to use relocation of single 
individuals. This method allows for a stepwise alterations by varying the number of 
swaps but of lesser number than additional links. The number of maximally possi-
ble alterations is half of the type A population share. The procedure, as introduced 
in “Structural bridges and relocation”, is applied after generating the network and 
homophilic allocation, and before the start of the simulation run.

Using individual swaps to blend the ordering of the homophilic allocation, we vary 
the number of relocations x = 0, 1, . . . , 9, 10 and generate s = 500 simulations for 
each network type. Result for the six different topologies is shown in Fig.  8, with 
highlighting one result (mean value coloured line, standard deviation filled area) as 
marked in the legend (top left). The tendency towards type A decisions is clearly 
enhanced for all topologies, being logarithmic for most cases, except scale-free and 
small-world networks, which show a linear correlation. Similar to our observations 
of long ties, scale-free networks exhibit the largest standard deviation and no sig-
nificant effects on the heterogeneity h̄ have been observed for variation in x (see 
“Appendix”: Fig. 10).
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Discussion
Diffusion processes in populations are governed by various factors, shaping the spread-
ing of behaviour, traits, or decisions. One such factor is given by the network structure, 
encompassing network types such as scale-free and small-world topologies. Regard-
ing heterogeneous populations, another important aspect is the allocation of individu-
als, which strongly influences the direct and unique neighbourhood of each individual. 
Many approaches that explore ordered allocation on networks combine the network 
generation with the probability to connect similar individuals, such that the resulting 
network structure emerges as a function of the behaviour-type proportions.

In this study, we detach the network generation and allocation of individuals, using 
separate mechanisms: one to generate a specific network type, followed by the pro-
cedure to position heterogeneous attributes, referred to as attribute distribution or 
allocation. To identify effects of allocations, we compare collective behaviour and 
pattern formation on two contrasting scenarios: random and homophilic allocations. 
Generally speaking, random allocations lead to a normal distribution of traits in the 
individual neighbourhoods, and homophilic allocations lead to a higher separation of 
different types and higher bonding between similar individuals. In addition, the influ-
ence of allocations is examined on various network types (lattice, scale-free, cave-
people, spatial-proximity, and small-world topologies).

We observe a strong effect of allocation on social contagion. Moreover, the actual 
impact depends on the network type. A general comparison of random and homophilic 
allocations shows a tendency towards an increase of possible collective behaviour states 
of the population for the homophilic allocation on all considered network types, except 
the torus network. For the latter, the lattice structure with periodic boundary condi-
tions favours the spreading towards uniform behaviour. Since nearest neighbour inter-
actions are local, homophilic allocations are more likely to foster extreme behaviour, 
often resulting in two population shares exhibiting opposite behaviour. The most promi-
nent example for this observation are scale-free networks. Homophilic allocation on 
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scale-free networks, which consists of a few highly connected hubs and several branches 
of lower connected nodes, leads to a strong increase in the distribution range of the col-
lective behaviour as well as the heterogeneity of behaviour within a population.

Extending our investigation to scenarios that emit mixed traits of random and homo-
philic allocations, stepwise alteration of the population structure is introduced. Here, 
we compare two options: additional links (long ties) between heterogeneous individuals 
and mixing of heterogeneous individuals (relocation), both for the initially homophilic 
population. For both alterations, we find similar responses of the collective behavioural 
state on all network types. Here, similar progressions of the collective state towards the 
behaviour, which is stepwise more spread throughout the network, are clearly visible. 
Moreover, due to the negligible impact of these alterations on the statistical distribu-
tion of possible collective states, we conclude that restructuring via additional ties and 
mixing via relocation have a weaker influence on the pattern formation than the overall 
allocation.

The presented approach outlines network diffusion in a simple population, categorised 
in three distinct behaviour types. While this construction serves sufficiently for a first 
assessment, widening the discussion to more realistic behavioural observations is possi-
ble, but exceeds the scope of this primary investigation. Moreover, the allocation mecha-
nism for homophilic allocations can be adapted by incorporating a chance to slightly 
increase mixing in each group, allowing for softer distributions. In addition, setting 
the attribute distribution in relation to real data [42] could support possible enhance-
ments to the allocation mechanism. We assume that differences in average degrees and 
betweenness centrality are crucial for the effects observed on different network types 
and these specific influences can be further explored.

Conclusion
In summary, we separated network generation and attribute distribution to highlight 
isolated effects of structural proximity and attribute proximity. We presented a homo-
philic attribute distribution mechanism and compared the results of random and homo-
philic attribute distributions using a basic diffusion mechanism on the network. Our 
main finding is that the effect of attribute distribution is diverse and depends strongly 
on the network type (structural proximity). A general observation on attribute distribu-
tion was that random allocations tend to limit possible collective states in the majority 
of observed network types. These results indicate that random distribution of attributes 
used in networked ABM might be limited and of less accuracy for statistical analysis of 
collective behaviour than expected. We conclude that the homophilic distribution is a 
substantial feature for improving agent-based modelling and can be easily implemented 
on various network topologies with the here presented homophilic attribute distribution 
mechanism.
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Appendix
See Figs. 9, 10, 11, 12, 13 and 14.
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Fig. 11  Examples of pattern formation on grid networks: a random allocation, b homophilic allocation. 
Parameters N = 14× 14, T = 200

Fig. 12  Examples of pattern formation on torus networks: a random allocation, b homophilic allocation. 
Parameters N = 10× 20, T = 200

Fig. 13  Examples of pattern formation on spatial-proximity networks: a random allocation, b homophilic 
allocation. Parameters N = 200, T = 200
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