
Efficiently counting complex multilayer
temporal motifs in large‑scale networks
Hanjo D. Boekhout1, Walter A. Kosters1 and Frank W. Takes1,2*

Introduction
The field of network science [1], also referred to as (social) network analysis [2], aims to
understand complex systems by studying the interactions between entities within such
a system as a network. Examples include (online) social networks, communication net-
works, collaboration networks, and economic networks.

Over the past years, at least four developments have affected the field. First, there is an
ever increasing desire to understand and learn from network dynamics, i.e., the tempo-
ral evolution of networks [3, 4]. Second, different types of interactions may be observed
between nodes in the network, forming the so-called multilayer networks [5] (some-
times referred to as multiplex networks, see [6] for a discussion on terminology). It has
repeatedly been shown that taking multiple types of interaction into account can result
in novel insights that would not be discovered when layers were aggregated or analyzed
individually. Third, with the wide availability of data from the Internet, social media

Abstract 

This paper proposes novel algorithms for efficiently counting complex network motifs
in dynamic networks that are changing over time. Network motifs are small charac-
teristic configurations of a few nodes and edges, and have repeatedly been shown to
provide insightful information for understanding the meso-level structure of a network.
Here, we deal with counting more complex temporal motifs in large-scale networks
that may consist of millions of nodes and edges. The first contribution is an efficient
approach to count temporal motifs in multilayer networks and networks with par-
tial timing, two prevalent aspects of many real-world complex networks. We analyze
the complexity of these algorithms and empirically validate their performance on a
number of real-world user communication networks extracted from online knowledge
exchange platforms. Among other things, we find that the multilayer aspects pro-
vide significant insights in how complex user interaction patterns differ substantially
between online platforms. The second contribution is an analysis of the viability of
motif counting algorithms for motifs that are larger than the triad motifs studied in
previous work. We provide a novel categorization of motifs of size four, and determine
how and at what computational cost these motifs can still be counted efficiently.
In doing so, we delineate the “computational frontier” of temporal motif counting
algorithms.

Keywords:  Temporal motifs, Motif counting, Multilayer network motifs, Multilayer
networks

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Boekhout et al. Comput Soc Netw (2019) 6:8
https://doi.org/10.1186/s40649-019-0068-z

*Correspondence:
takes@uva.nl
2 CORPNET, University
of Amsterdam, Amsterdam,
The Netherlands
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40649-019-0068-z&domain=pdf

Page 2 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

websites, and online platforms, there is more and more need to analyze large-scale net-
works with millions of nodes and links, requiring highly efficient algorithms. Fourth,
many studies in network science limit themselves to attempting to explain macro-level
properties of the network as a whole (e.g., degree distributions), using microlevel prop-
erties of the nodes (e.g., node degrees). However, in recent years, it has been shown that
there are also noteworthy patterns at the meso-level of a network. One example of such
a meso-level pattern is a network motif: a small configuration of a few nodes and edges
that occurs throughout the network at a high rate [7, 8]. These motifs can reconfirm the
existing hypotheses about certain interaction patterns, but they can also provide new
insight into previously unknown meso-level patterns and underlying behavior in the net-
work [9–12]. In this paper, we propose an approach for counting these network motifs.
Crucially, we do so in networks that (a) have temporal information, (b) consist of multi-
ple layers, and (c) potentially contain millions of nodes and links.

Network motifs provide insights that go beyond studying either individual nodes or
the network as a whole, allowing the role of groups of nodes in particular configura-
tions to be studied. In biological networks, the regulating function of feed-forward loop
motifs has frequently been identified [13]. In economic networks, motifs of corporate
interlinkage were able to highlight particular corporate structures such as crosshold-
ings [11], as well as unveil the influence of the financial sector in creating complex cor-
porate structures [14]. And in user communication networks, specific network motifs
revealed, for example, blocking behavior in online conversations [15]. Given the impor-
tance of motifs in understanding the structure of networked systems, identifying motifs
and understanding their implications are of crucial importance to network science.

Research on methods and algorithms for the detection of motifs dates back to early
work on the problem of mining frequent subgraphs [16]. We will henceforth refer to
the task performed by these subgraph enumeration methods as motif enumeration. The
advantage of algorithms for motif enumeration is that they iterate over all possible sub-
graphs of a given size, allowing the actual subgraphs themselves to be identified in the
network, and their composition to be inspected afterwards. The clear drawback of motif
enumeration is the large amount of memory required to store the obtained motifs, as
well as the running time, which is typically dependent on the size of the network and
grows exponentially with the size of the subgraph. Although multilayer motif enumera-
tion algorithms have been explored [11, 17], even for patterns of a few nodes and edges,
these algorithms quickly become too computationally intensive. This limits the applica-
bility of these approaches for finding larger patterns, or for analyzing larger networks.

As an alternative to enumeration, motif sampling techniques have been intro-
duced [18, 19]. They are extremely useful if the goal is to unveil only the most fre-
quently occurring motifs. However, sampling methods suffer from an inherent
uncertainty in their estimation. Although work on motif sampling when the structure
of the network is scale-free and thus nonrandom has been done [20], the simultane-
ous presence of a multilayer structure makes it difficult if not impossible to derive
sufficiently reliable analytical bounds on the errors of motif sampling algorithms.
Practically, this means that in the multilayer setting, it is nontrivial to derive a good
sampling rate, such that all motifs are discovered. Especially, if the motif counts are

Page 3 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

skewed, infrequent motifs may be overlooked. This disqualifies the use of sampling
for our particular research goal: exactly counting how often all possible multilayer
motifs occur in a given network.

Thus, to counter the limitations of motif enumeration and sampling, this paper builds
upon recent algorithmic developments made in motif counting [7, 15, 21]. The advan-
tage of motif counting over motif enumeration is that motif counting algorithms do not
require the enormous amount of memory needed by motif enumeration to store all iso-
morphic subgraphs. In addition, it was shown that for motifs of size 2 and 3, time-effi-
cient algorithms that can count motifs in networks with millions of nodes and edges in a
matter of minutes can be utilized [7]. An obvious downside of motif counting is that it is
no longer possible to track precisely where in the network, the motifs occur, or to deter-
mine precisely which nodes are involved in these motifs. However, it should be noted
that if one is interested in only a few frequent motifs, and not all motifs, one could, after
counting, simply only enumerate these few motifs, which is still far more efficient than
enumerating all motifs.

Thus far, we have defined motifs (sometimes also called graphlets) as little subgraphs
that frequently occur in the network. In other texts, motifs are specifically defined as
subgraphs that occur more frequently than a certain threshold frequency, possibly deter-
mined based on motif frequencies in a null model. This final step, in which what is called
motif significance is determined, is beyond the scope of this paper, as our focus is on
counting algorithms. However, it should be noted that the trivial post-processing step for
determining motif significance can easily be added, for example as described in [11, 19].

In this work, we consider the task of counting multilayer temporal network motifs in
six different temporal networks that all model communication between human users.
For each link between users, we know the timestamp at which the communication took
place. Examples include user communication on a social network and a network of e-mail
communication between employees of a large organization. We also analyze four data-
sets from the so-called online expert knowledge exchange websites, where users can com-
municate and discuss about questions from a particular domain. The considered datasets
each contain elements that one encounters when studying real-world multilayer network
datasets: some of the layers of the multilayer network may be undirected rather than
directed, and some layers may be partially timed or have no temporal information at all.
We set out to investigate what patterns of communication, i.e., which temporal motifs,
occur in these datasets, and how these motifs differ between the various networks.

Three challenges arise as a result of the research agenda set out above. First of all,
existing temporal motif counting algorithms work on one-layer networks rather than
multilayer networks. Second, existing efficient implementations of algorithms for motif
counting do not yet incorporate partial timing, which is frequently encountered in real-
world network data. Third and last, it is unclear to what extent motifs consisting of more
than 3 nodes and edges can efficiently be counted using the motif counting algorithms
proposed in [15]. In general, it is unknown what the possibilities and limitations of these
approaches are in understanding more complex and larger patterns of interaction in
temporal networks.

The main contribution of this paper is twofold. We start by introducing a solution to
the first two problems above, proposing a multilayer temporal motif counting algorithm

Page 4 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

that is able to efficiently deal with partial timing. Here, we build on previous work by
Paranjape et al. [15], extending the approach presented in [21]. Using experiments on
various large-scale datasets, we analyze the performance of this multilayer algorithm
in relation to the existing layer-agnostic motif counting algorithm. Then, using the so-
called motif footprints, we analyze the obtained motifs, allowing us to understand the
differences in communication patterns between users in the various online platforms
represented by the data. An open source implementation of our algorithm is made avail-
able, ensuring that the approach can easily be reused in future studies.

The second contribution is theoretical and entails an in-depth analysis of larger motifs,
in particular those of size 4. We introduce a categorization of size motifs, and outline
precisely for which categories of larger motifs which we can still employ motif counting
algorithms efficiently. As such, we explore and delineate what one could call the “compu-
tational frontier” of efficient motif counting algorithms in large-scale complex networks.

The remainder of the paper is organized as follows. First, relevant related and previous
work is presented in the "Related work" section. Then, the "Multilayer temporal motifs" sec-
tion provides the necessary background and definitions related to our object of study: mul-
tilayer temporal motifs. Next, the proposed algorithms to count these motifs are outlined in
the "Multilayer counting algorithms" section. Then, in the "Counting larger motifs" section,
the analysis of how these types of algorithms may scale to larger motifs is presented. The
"Datasets" section describes the real-world network datasets used in the "Experiments" sec-
tion to perform experiments. Finally, the "Conclusion and future work" section summarizes
our results and contributions and provides suggestions for future work.

Related work
In this section, we discuss work related to the various subproblems of counting multi-
layer temporal motifs, in particular distinguishing between methods for motif enumera-
tion, motif counting, multilayer networks, and temporal networks.

One subproblem is counting or enumerating of static motifs, ignoring the network
dynamics. Three categories of static motif enumeration exist: all-motif enumeration, sin-
gle-motif enumeration, and motif-set enumeration. The first category, all-motif enumer-
ation, comes closest to pure counting, as it enumerates all motifs of size k in the network.
A well-known algorithm to perform all-motif enumeration is ESU, aka FANMOD [19,
22, 23]. It starts from each node and enumerates all motifs of size k that contain only
that node and higher labeled vertices. This algorithm allows parallel execution from
each node. Due to the skewed degree distribution in real-world networks, i.e., few nodes
have a relatively high degree, some nodes will be involved in a relatively high number of
motifs which leads to unbalanced parallel tasks. Shahrivari and Jalili [24] introduced an
improvement on ESU named PSE. Instead of starting the enumeration from each node,
PSE starts from each edge. In addition, the authors introduced the Subenum algorithm
which includes two-phase subgraph isomorphism detection and ordered labellling.
Experimentally, Subenum was shown to reach near-linear speed-up when adding addi-
tional threads of execution and clearly outperformed previous all-motif enumeration
algorithms.

Single-motif and motif-set enumeration are, for example, useful for enumerat-
ing motifs that are found to be interesting based on pure counting results. Grochow

Page 5 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

et al. [25] introduced a single-motif counting algorithm. This algorithm was one of the
first to map the motif onto the network instead of enumerating all subgraphs and testing
for subgraph isomorphism. Furthermore, it takes advantage of subgraph symmetries to
avoid spending time finding a motif more than once, and introduces subgraph hashing
which significantly reduces isomorphism tests needed. The motif-set enumeration algo-
rithm g-tries, introduced by Ribeiro and Silva [26], utilizes the fact that motifs can share
a common subgraph to create the so-called g-tries: trees where each level adds a node to
the motifs which it represents. These g-tries are used to map motifs onto the network.
Like the single-motif algorithm by Grochow et al. [25], it also uses symmetry breaking.
Experimentally, the authors showed that g-tries outperforms the algorithm by Grochow
et al. when querying the same set of motifs.

For static motif counting, it is often most efficient to consider the structure of the
motifs that you wish to count. For example, Marcus and Shavitt [27] presented efficient
counting algorithms for several 4-node motifs. The authors did so by providing a sepa-
rate algorithm for several types of 4-node motifs: the tailed triangles, four-nodal cliques,
four-nodal cycles, and four-nodal paths and claws. As expected from pure counting algo-
rithms, the authors proved experimentally that their counting algorithms outperformed
the all-motif enumeration algorithm FANMOD (ESU).

Gonen and Shavitt [28] introduced local motif counting algorithms to count the num-
ber of motifs which a single node is involved in, as well as an approximation algorithm
for the number of motifs for the entire network. They introduced algorithms for count-
ing k-length cycles (with a chord), ( k − 1)-length paths, tailed triangles, and 4-cliques.

For multilayer motifs, we need to look at more recent work. In February 2017, Kivela
and Porter [29] extended the graph isomorphisms to multilayer networks. Furthermore,
they extended it to temporal networks by representing them as multilayer networks.
This can be done by considering temporal networks as time sequence graphs. These
extensions provided a foundation for further research of multilayer networks, such as
motif analysis. In March 2017, Battison et al. [17] examined how many subgraphs exist
for motifs with a small number of nodes and applied multilayer motif analysis on a brain
network. However, they did not describe how they actually counted/discovered the mul-
tilayer motifs. In October 2017, Enright and Meeks [30] investigated the parameterized
complexity of counting small subgraphs in multilayer networks. The authors found that
if all but one of the layers are drawn from classes of bounded vertex cover number or
all of the layers have almost bounded degree, then the problem is FPT (fixed-parameter
tractable); otherwise, it is W[1]-hard. In November 2017, Takes et al. [11] performed
multiplex motif enumeration on a corporate network. The authors proposed a multiplex
adaptation of Subenum, where a multiplex graph is converted into a directed labeled
graph. An edge label then encodes which edge types are and are not present between
the two nodes that it connects. Furthermore, the authors build on the stub-matching
model [31] for the null model to preserve interlayer assortativity [5].

The temporal motif problem has developed over the years to more accurately cap-
ture the timing information. In 2009, Braha and Bar-Yam [3] took snapshots of the
network, where each snapshot covered a single day. However, the snapshots them-
selves lose the information regarding the order of events. In 2010, Zhao et al. [32]
considered two events (edges) linked if they share a node and succeed one another

Page 6 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

within a time limit ∆t . However, this enforces only local time adjacency. Kovanen
et al. [33], in 2011, called such events ∆t-adjacent and considered two events ∆t-con-
nected if there is a sequence of ∆t-adjacent events joining them. A temporal motif is
then defined as a set of events that are all ∆t-connected. Finally, in February 2017,
Paranjape et al. [15] count temporal motifs where every pair of edges is at most δ time
apart, thus fully utilizing the timing information. We build upon these techniques,
which we henceforth refer to as the delta-time-window approach, adding both partial
timing and functionality to handle multiple network layers.

Multilayer temporal motifs
In this section, we provide necessary definitions and introduce notation for the algo-
rithms described in the remainder of this paper. We follow the notation and defini-
tions introduced in [15] and build upon the definitions in [21].

We consider the basic building block of a network structure to be an edge: a (directed)
link between an ordered pair of nodes. It can be defined as a tuple (u, v) with u denot-
ing the source node and v the target node. Given a node set V of size n = |V | , a static
graph G = (V ,E) is defined by a set E containing edges (ui, vi) , for i = 1, 2, . . . ,m , with
ui, vi ∈ V  . For temporal edges, we add a timestamp t, and for layered edges we add a
layer number l. Thus, in a multilayer temporal graph H, an edge is defined as (ui, vi, ti, li) ,
where ti ∈ {−1} ∪ R

+ and li ∈ {1, . . . ,Λ} , with Λ the number of layers. A timestamp of
−1 indicates that there is no known timestamp for that edge (in case of partial timing).
Note that this introduces simultaneous edges, i.e., edges with the same timestamp. The
underlying static graph of a multilayer temporal graph is the graph formed by ignoring
all timestamps, layers, and duplicate edges. For the algorithms in this paper, we assume
edges to always be directed. However, results for undirected edges can be obtained
through post-processing. This leads us to the following definition.

Definition  A r-node, s-edge, δ-temporal, �-layer motif is a sequence of s edges,
M = ((u1, v1, t1, l1), (u2, v2, t2, l2), . . . , (us, vs, ts, ls)) that are time-ordered within a δ
duration, i.e., t1 < t2 < · · · < ts and ts − t1 ≤ δ , and range over at most � different layers,
such that the underlying static graph is connected and has r nodes.

Note that multiple edges between the same pair of nodes are possible and individu-
ally counted and that timestamps induce an ordering on the edges. Furthermore, this
definition allows � different layers in the motif M, but also allows fewer layers. For exam-
ple, Fig. 1b (e.g., M1,3,3 ) shows a 3-node, 3-edge, δ-temporal, 3-layer motif including just
2 layers, given a suitable δ . We say that a motif M = ((u1, v1, t1, l1), . . . , (us, vs, ts, ls))
occurs in a multilayer temporal graph H when there is a time-ordered sequence
S = ((w1, x1, t

′
1, l

′
1), . . . , (ws, xs, t

′
s, l

′
s)) of s unique edges in H, such that

1.	 there exists a bijection f, such that f (wi) = ui and f (xi) = vi (i = 1, . . . , s),
2.	 the edges all occur within δ time, i.e., t ′s − t ′1 ≤ δ , and
3.	 there exists a bijection g on the layers, such that g(l′i) = li (i = 1, . . . , s) , which holds

for all motifs within a single search.

Page 7 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

Each such sequence of edges is called an instance of the motif M, and the goal of this
paper is to count the number of such instances. The main problem, for which algo-
rithms are proposed in the "Multilayer counting algorithms" section, is as follows:

Given set values for r, s, δ and � and a multilayer temporal graph H, compute the
number of occurrences of each motif.

The fast algorithms presented in [15] focus on 2,3-node (i.e., 2 or 3 nodes), 3-edge δ-
temporal motifs, providing the overview of all such motifs in Fig. 1a. In the "Count-
ing larger motifs" section, we investigate whether these methods can be extended to
count 4-node, 4-edge motifs. Returning to the multilayer aspect, crucially, we note
that altering an edge’s layer does not affect the temporal order or edge configuration.
Therefore, every δ-temporal �-layer motif can be associated with a single δ-tempo-
ral motif. Figure 1b shows all 3-node, 3-edge, δ-temporal, 3-layer motifs, given a sin-
gle δ-temporal motif M1,3 from Fig. 1a. The number of associated δ-temporal �-layer
motifs for a single δ-temporal motif depends on the number of possible layer permu-
tations. Therefore, for each s-edge, δ-temporal motif, there exist �s δ-temporal, �-layer
motifs. Thus, there are 33 × 36 = 972 2,3-node, 3-edge, δ-temporal, 3-layer motifs.

To reference one δ-temporal �-layer motif, we add a layer-specific index into the pos-
sible permutations of Fig. 1a. For 3-layer networks, the 33 = 27 layer permutations are
shown in Fig. 1b. Note that in this figure, motifs 1, 2, 4, 5, 10, 11, 13, and 14 are in total
23 = 8 permutations of 2-layer motifs.

a

M1,3,1 M1,3,2 M1,3,3

M1,3,4 M1,3,5 M1,3,6

M1,3,7 M1,3,8 M1,3,9

M1,3,10 M1,3,11 M1,3,12

M1,3,13 M1,3,14 M1,3,15

M1,3,16 M1,3,17 M1,3,18

M1,3,19 M1,3,20 M1,3,21

M1,3,22 M1,3,23 M1,3,24

M1,3,25 M1,3,26 M1,3,27

1

2

3 1

2

3 1

2

3

1

2

3 1

2

3 1

2

3

1

2

3 1

2

3 1

2

3

1

2

3 1

2

3 1

2

3

1

2

3 1

2

3 1

2

3

1

2

3 1

2

3 1

2

3

1

2

3 1

2

3 1

2

3

1

2

3 1

2

3 1

2

3

1

2

3 1

2

3 1

2

3

b

Fig. 1  Overview of different motif types. a All 2,3-node, 3-edge δ-temporal motifs (Figure from [15]. The edge
numbers indicate their temporal order. b All 3-layer variants of M1,3

Page 8 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

Multilayer counting algorithms
In this section, we will first present the multilayer algorithms, which are extended ver-
sions of the algorithms proposed as part of the delta-time-window approach discussed
in [15], now incorporating both the multilayer aspect as well as partial timing. The mul-
tilayer general algorithm is discussed in the "General motif counting" section, and multi-
layer 3-node star and triangle motif counting algorithms are presented in the "Star motif
counting" section and the "Triangle motif counting" section.

General motif counting

The general algorithm for counting the number of instances of (multilayer) temporal
motifs consists of a 3-step procedure. First, all instances U ′ of the static motif U, under-
lying M, in the static graph G, underlying the multilayer temporal graph H, are iden-
tified. This can be accomplished with known algorithms for enumerating static motifs.
Second, for each motif instance U ′ , all temporal edges between pairs of nodes forming
an edge in U ′ are gathered into an ordered sequence S′ . We extend this step, by filtering
these temporal edges, such that the layers from the edges match those in U. We denote
the resulting sequence of edges by S′′ , which then consists of only those edges required
to count the instances of our multilayer temporal motif U. Finally, the number of subse-
quences of edges in S′′ occurring within δ time units that correspond to instances of M
are counted. Algorithm 1 describes the algorithm used to identify and count these sub-
sequences. Note that the second and third steps of this algorithm can be done in parallel
for each static motif U ′ found in the first step.

When simultaneous edges occur, the order of the edges is determined not by their
timestamp but their order in the sequence S′′ . In the case of partial timing with a

Page 9 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

layer consisting of only untimed edges, the resulting motif counts can easily be post-
processed to obtain the same result for every ordering. However, if a layer itself is
partially timed, the order of simultaneous edges has an impact on the resulting motif
counts. Therefore, on an implementation level, to ensure consistent output, we have
enforced this to be the order in which the edges appear in the input file.

Partial timing With respect to the original algorithm in [15], the highlighted code
in Algorithm 1 denotes the changes for partial timing. In lines 2–3, we loop over all
untimed edges and increase the relevant counters and subsequently never decre-
ment any counters given these edges. In other words, untimed edges are never for-
gotten, acknowledging that they could have formed at any given time and should be
considered part of every delta-timeframe. However, this approach does mean that the
untimed edges are always considered to be the first in the order of events. To ensure
that we can decrement the counters correctly in the main for loop (lines 4–7), we keep
track of these untimed edges in separate counters “pcounts[.]”. The additional updates,
incrementing and decrementing, of the counters, based on these “pcounts” counters,
are done in lines 17 and 14, respectively. These updates take into account that untimed
edges counted in “pcounts” are always first, which is why a prefix is used for decre-
menting instead of a suffix. On an implementation level, the additional for loop in
lines 13–14 can easily be merged with the preceding for loop. Thus, we only add a
small number of operations per edge which should not significantly impact the algo-
rithm’s time complexity. Furthermore, any untimed edges will now only require a call
to IncrementCounts, reducing the average number of operations per edge the more
untimed edges there are.

Multilayer aspect The addition of multiple layers is realized by adding a parameter l
to each edge-related parameter. For example, in line 10, we only need to change the
variable e to include the associated layer (e, l). These changes only really impact the
number of possible keys for the array “counts[.]”.

As the overall approach of our multilayer algorithm does not differ from that of the
original one-layer algorithm, the same arguments for efficiency still apply. This means
that it will perform with linear complexity for 2-node motifs, but its use for 3-node
and larger motifs would be inefficient. Therefore, we also extended the faster 3-node
algorithms to the multilayer perspective described below.

Star motif counting

Star motifs are motifs that consist of a center node u and edges to r − 1 neighbors,
with no edges connecting these neighbors. Example star motifs are M1,1 , M1,5 , and
M5,5 in Fig. 1a. We define each edge in a star motif by its neighbor node (nbr), its
direction towards or away from u (dir), its timestamp (t), and its layer (l). For the mul-
tilayer triangle and star algorithms, we will look specifically at 3-node 3-edge �-layer
star motifs. The static motifs underlying these star motifs can be divided into three
classes: pre, post, and mid, as depicted in Fig. 2. While processing the time-ordered

Page 10 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

sequence of edges, we consider the current edge being processed as the singular edge
in the motifs, i.e., edge 3 for pre. Algorithm 2 provides the algorithmic framework
for the triangle and star counting algorithms, with full multilayer implementations of
Push(), Pop(), and ProcessCurrent() in Algorithm 3.

Fig. 2  The pre, post, and mid classes of temporal star motifs (figure from [15])

Page 11 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

Partial timing The highlighted code indicates the changes required for handling partially
timed networks. Just like for the general algorithm, we first require the untimed edges to
be preprocessed (lines 4–9). For each counter, we add a p-preceded counter to count the
untimed edges. Furthermore, the procedures are updated with a type parameter which deter-
mines which operations are and are not performed. When they are called with type set as
indicated in Algorithm 2, we count considering partially timed motifs. However, if they were
all set to 0, the algorithm would function no different than the original one-layer algorithm.

During the preprocessing in lines 4–9, the fully untimed motifs are counted. For par-
tially timed pre motifs, we account for untimed edges in lines 21, 27, and 31, in the same
manner as we did for the general algorithm earlier. To count partially timed mid motifs,
we must distinguish between two cases. First, we must consider the single edge, edge 2,
to be timed. In this case, we require an additional type of mid motif counter ( ppre_mid ),
which is used to count the number of combinations of edges 1 and 3 of the mid type
motif found. We require this additional counter, because unlike all other cases this coun-
ter counts both an untimed and a timed edge. It is updated in lines 22 and 30 and used
to update the motif counter in line 33. The second case considers the single edge to be
untimed. In this case, only the third edge would be a timed edge and all these edges are
added to the ppost_nodes counter in lines 4–5. Subsequently lines 8, 33, and 34 ensure
these partially timed mid motifs which are counted during the preprocessing stage. Sim-
ilarly, all partially timed post motifs are counted by lines 4–5, 8, and 32.

Multilayer aspect We can see that adding layers does not change the main method of
operation, but only requires us to add a layer index for every direction index to each
counter. Therefore, we update the original counter definitions to the following:

•	 pre_nodes[dir, vi , l] counts the number of times node vi has appeared in an edge
alongside u with direction dir and layer l in the timeframe [ tj − δ, tj)

•	 pre_sum[dir1 , l1 , dir2 , l2 ] counts the number of sequentially ordered pairs of edges
in [ tj − δ, tj ) with the first edge having direction dir1 in layer l1 and the second
edge direction dir2 in layer l2

•	 count_pre[dir1 , l1 , dir2 , l2 , dir3 , l3 ] counts the full motifs found within δ time, with
dir1 , dir2 , and dir3 indicating the directions and l1 , l2 , and l3 indicating the layers of
the three edges, respectively

•	 post_nodes[dir, vi , l], post_sum[dir1 , l1 , dir2 , l2 ], and count_post[dir1 , l1 , dir2 , l2 ,
dir3 , l3 ] analogous to the pre counters but for the timeframe ( tj,tj + δ].

•	 mid_sum[dir1 , l1 , dir2 , l2 ] counts the number of pairs of edges where the first edge
is in direction dir1 , with layer l1 , and occurred at time t < tj and the second edge is
in direction dir2 , with layer l2 , and occurred at time t ′ > tj , such that t ′ − t ≤ δ

•	 count_mid[dir1 , l1 , dir2 , l2 , dir3 , l3 ] analogous to the pre and post counters.

In the "Complexity of multilayer triangle and star algorithms" section, we will discuss
how including layers does impact the space and time complexities of the algorithm.

Note that, like the original algorithm [15], our multilayer algorithm also includes
instances of 2-node motifs, which we subtract from the count using the multilayer
general algorithm (as this algorithm is still optimal for size 2). The full process of
counting multilayer temporal star motifs is then:

Page 12 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

1.	 for each node u in the multilayer temporal graph H, consider u as the center node
and get a time-ordered list of all edges containing u;

2.	 use Algorithms 2 and 3 to count star motifs;
3.	 for each neighbor v of u, subtract the 2-node motif counts using Algorithm 1.

This procedure can be done in parallel for each node u.

Triangle motif counting

Triangle motifs are motifs where the edges form a triangle (see Fig. 1b). We define
each triangle by nodes u and v and a common neighbor. Each edge in a triangle motif
is defined by a neighbor node, an indicator whether it is connected to u or v (uorv),
a direction, a timestamp, and a layer. The algorithmic framework, defined in Algo-
rithm 2, used to count star motifs, can also be utilized for triangle motifs. The new
implementations of Push(), Pop(), and ProcessCurrent() are described in Algorithm 4.
Note that, where the process for star motifs could be parallelized for the center node,
it can now for each connected node pair u, v. After all, if we consider a connected
node pair u, v to be the center node, then the triangle motif has two edges to one
neighbor, just like a star motif, and a self edge, which we can view as the edge to the
second neighbor of a star motif.

Therefore, unlike for counting star motifs, when we count triangle motifs we do not
have a single-center node and two neighbors, but two center nodes and one neighbor.
This means that we must distinguish between behaviour for updating using an edge

Page 13 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

connected to u or v. Therefore, all counters are updated with an additional field (uorv)
which determines if the first edge was either connected to u or v. The edge between
u and v is used as the final edge to complete the triangle. To this end, these edges are
only processed in ProcessCurrent() in lines 36–43. Again, the highlighted code indi-
cates the updates for counting partially timed motifs. We can see that these changes
are very similar to those for star motifs, so we will not discuss them in detail. Analo-
gously to the one-layer algorithm, we assign each triangle to the pair of nodes with
the largest edge count, so that as many triangles as possible are processed at once.

Complexity of multilayer triangle and star algorithms

Our multilayer algorithm has time complexity O(|S′′|) , i.e., is linear in the size of the
filtered sequence of edges. This is due to the fact that the mode of operation is essen-
tially the same as the original one-layer algorithms [15] and that only the relevant lay-
ers remain in S′′ . This is different for Algorithms 2 and 3. Our multilayer star algorithm
performs O(�) operations for both Push and Pop functions and O(�2) for ProcessCur-
rent, adding O(�2) operations for each edge. This also holds for partially timed networks.
However, for small � , �2 is negligible with respect to time complexity, i.e., O(�2) would in
practice add only a constant, and the multilayer algorithm remains linear in the size of
the input sequence. Note that for a one-layer network, O(�2) = O(1) . Similarly, for our
multilayer triangle algorithm, we go from an original complexity of O(1) to O(�2).

Compared to the original algorithm, the sizes of the “sum” and “count” counters
increase, respectively, by a factor of �2 and �3 . With small � and the largest of these data
structures being of size 8�3 , the space requirements for these counters are negligible.
However, the “nodes” counters require a far greater amount of space. In our multilayer
algorithm, we increase the size of the “nodes” counters by a factor � . Thus, each “nodes”
counter consists of 4�k integers, where k is the number of neighbors. In the worst case,
all other nodes are neighbors and k equals n− 1 . Therefore, the much smaller factor � is
negligible in space complexity.

Counting larger motifs
In this section, we explore motifs with more than 3 nodes and edges. Specifically, we deter-
mine which motifs can still be counted faster than O(m2) . Larger motifs are of interest,
because only a small set of meaningful interaction patterns can be captured with 3 nodes.
For example, in [11], several meaningful 4- and 5-node multiplex motifs were extracted
from corporate networks. In biological networks, it is not uncommon for motifs to consist
of a much larger number of nodes and edges. For example, in [25], in protein–protein inter-
action networks, meaningful motifs consisting of up to 20 nodes and 27 edges were found.

The first step in extending the algorithms introduced in [15] (and explained in a mul-
tilayer context in the "Multilayer counting algorithms" section) is to add a single node
and edge. Therefore, we focus specifically on 4-node, 4-edge, δ-temporal, �-layer motifs
in the "Categorization of 4-node, 4-edge motifs" section. We categorize these motifs
into various types and investigate whether each of these types could be counted using a
similar approach as used for 3-node, 3-edge motifs. We find that there is one particular
constraining phenomenon, namely that of neighbor loops, that in some cases hinders us
from handling such larger motifs efficiently, as explained in the "Neighbor loops" section.

Page 14 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

In the "Complexity of algorithms and counting approach viability for larger motifs" sec-
tion, we discuss the viability of counting other size motifs using the delta-timewindow
approach within O(m2) time.

Categorization of 4‑node, 4‑edge motifs

In this section, we take a particular interest in 4-node, 4-edge motifs. Much like for
3-node, 3-edge motifs, every 4-node, 4-edge multilayer temporal motif is directly associ-
ated with a 4-node, 4-edge temporal motif. In the previous section, we also discovered
that the approach to counting temporal motifs does not change when we allow multi-
ple layers. Since we wish to investigate if the same type of approach also works for the
larger motifs, outside of data structure and algorithm descriptions, we omit layer-related
aspects.

We define each 4-node, 4-edge motif to consist of two connected nodes u and v and
two neighbor nodes x and y. In all following 4-node, 4-edge motif figures, the top left
node is considered to be u and the bottom left node v. The 3-node, 3-edge motifs could
be split into two types of motifs: star and triangle motifs. Similarly 4-node, 4-edge motifs
can be split into five types of motifs:

•	 Square or circle motifs (sq) are motifs that form a square. Such a motif consists of the
edges (u, v), (u, x), (v, y), (x, y) regardless of the direction of the edges. An example
Square motif is shown in Fig. 3a.

•	 Tailed-Triangle motifs (tt) are motifs that form a triangle and have an additional “tail”.
Such a motif consists of the edges (u, v), (u, x), (v, x), (v, y) regardless of the direction
of the edges, where (v, y) is of course the tail. An example Tailed-Triangle motif is
shown in Fig. 3b.

•	 Star motifs (st) are motifs with all edges connecting to a single node. Such a motif
consists of the edges (u, v), (u, x), (u, x), (u, y) regardless of the direction of the edges.
An example Star motif is shown in Fig. 3c.

•	 Mid-Path motifs (mp) are motifs that form a path of length three with a double edge
at its center. Such a motif consists of the edges (u, v), (u, x), (u, v), (v, y) regardless of
the direction of the edges. An example Mid-Path motif is shown in Fig. 3d.

•	 Head-Path motifs (hp) are motifs that form a path of length three with a double edge
at the head of the path. Such a motif consists of the edges (u, v), (u, x), (u, x), (v, y)
regardless of the direction of the edges. An example Head-Path motif is shown in
Fig. 3e.

We denote each of these motifs using the index shown in parentheses (e.g., tt). Each of
these types has a number of different variations, given temporal edges. Figure 4a–e pro-
vides overviews of these different variations for each respective type. For readability, the

1

2

3

4

a

1

2 3

4

b

1

2
3
4

c

3

21

4

d

2
1
3

4

e
Fig. 3  Types of 4-node, 4-edge, temporal motifs. a Square, b Tailed-triangle, c Star, d Mid-Path, e Head-Path

Page 15 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

figures only show undirected variants of these motifs; the 24 directed variations can triv-
ially be derived. All other 4-node, 4-edge temporal motifs are isomorphic to one of these
variations. For every type, we discuss how the concepts of the fast algorithms from the
previous section can be applied. The Tailed-Triangle, Mid-Path, and Head-Path motifs
will be discussed in the "Tailed-Triangle, Mid-Path, and Head-Path motifs" section, Star
motifs in the "Star motifs" section, and Square motifs in the "Square motifs" section.

Tailed‑Triangle, Mid‑Path, and Head‑Path motifs

For Tailed-Triangle, Mid-Path, and Head-Path motifs, we can approach the problem in a
similar way as in the "Triangle motif counting" section for triangle motifs. Each of these
motifs can be defined from the perspective of a single-node pair u, v. For Tailed-Triangle
motifs, we take edge u, v to be part of the triangle, with the tail connected to v. Because
we require the tail to connect to the node pair u, v, we cannot assign a triangle to an arbi-
trary edge. After all, the edge that is not directly connected to the tail cannot be used to
define u, v. Thus, we must invoke the counting algorithm for every node pair connected
by an edge. This means that we would go, at least, from a complexity of O(k

√
τ) to worst

case O(km), with O(τ) being the complexity of the fastest available out-of-the-box triangle
counting algorithm, and k = maxv∈V deg(v) . However, every node pair can be processed
in parallel and only the worst case node pairs are processed in O(k) time, provided that
we maintain a time complexity for the counting algorithms linear in the size of the input
edge sequence. For highly parallel execution, we would then still consider this approach
efficient.

For Mid-Path and Head-Path motifs, we approach the problem from the node
pair u, v that defines the middle edge of the path, because every edge in the path is

Msq,1 Msq,2 Msq,3

2

1

3

4

2

1

4

3

3

1

4

2

a

Mtt,1,1 Mtt,1,2 Mtt,1,3

Mtt,2,1 Mtt,2,2 Mtt,2,3

Mtt,3,1 Mtt,3,2 Mtt,3,3

Mtt,4,1 Mtt,4,2 Mtt,4,3

3

1 2

4

2

1 3

4

1

2 3

4

4

1 2

3

2

1 4

3

1

2 4

3

4

1 3

2

3

1 4

2

1

3 4

2

4

2 3

1

3

2 4

1

2

3 4

1

b

Mst,1 Mst,2 Mst,3

Mst,4 Mst,5 Mst,6

1

2
3
4 1

2
4
3 1

3
4
2

4

1
2
3 4

1
3
2 2

1
4
3

c

Mmp,1 Mmp,2 Mmp,3

Mmp,4 Mmp,5 Mmp,6

3

21

4

2

31

4

2

41

3

1

32

4

1

42

3

1

43

2

d

Mhp,1 Mhp,2

Mhp,3 Mhp,4

Mhp,5 Mhp,6

Mhp,7 Mhp,8

Mhp,9 Mhp,10

Mhp,11 Mhp,12

3
2
1

4

4
2
1

3

2
3
1

4

4
3
1

2

2
4
1

3

3
4
1

2

1
3
2

4

4
3
2

1

1
4
2

3

3
4
2

1

1
4
3

2

2
4
3

1

e
Fig. 4  Overview of all 4-node, 4-edge motif temporal variations per type. a Square motifs, b Tailed-triangle
motifs, c Star temporal motifs, d Mid-Path motifs, e Head-Path motifs

Page 16 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

connected to this node pair. Analogous to Tailed-Triangle motifs, this means that we
get, at least, a worst case complexity of O(km).

By approaching these motif types in this manner, we can count motifs analogously to
triangle motifs. To be able to count 4-node, 4-edge temporal motifs, we need substruc-
tures that keep count for one, two, and three edges. Because the use of a delta-time-
window requires us to update counters given a single edge, all of those substructures
need to be updated using the knowledge of only one edge. Herein lies the biggest obsta-
cle in counting 4-node motifs based on a node pair u, v. After all, a single edge will only
contain information for (at most) one neighbor, whilst some substructures have to be
updated as if we have knowledge of both neighbors. To mitigate this problem, we avoid
substructures that require direct knowledge of both neighbors. Instead, we define “all”
counters, which record the sum of the counts for all neighbors, so that we can obtain
the sum of the count for all neighbors that are not the nbr, the neighbor defined by the
current edge. This is achieved through updates as in line 22 of Algorithm 5. Thus, we can
use these counters to try and catch any updates that require knowledge of both neigh-
bors. Figures 5, 6 and 7 show all substructures, i.e., the subgraphs and their data struc-
tures, that capture all information for one-, two-, and three-edge subgraphs, respectively.

For all these data structures, there exist different versions for the various timings
of the edges; for one edge, we have pre- and post-versions; for two edges, we have
pre, post, and mid; and for three edges, we have pre, pre_mid, post_mid, and post.

u

v
mid nodes = [dir, l]

nbru

v nbr

or
nodes = [uorv, dir, l, nbr]

nodes all = [uorv, dir, l]

Fig. 5  One-edge subgraphs and data structures

nbru

v
or

u

v nbr

merge = [uorv1, dir1, l1, dir2, l2, nbr]

merge all = [uorv1, dir1, l1, dir2, l2]

nbru

v
or

u

v nbr

double = [uorv1, dir1, l1, dir2, l2, nbr]

double all = [uorv1, dir1, l1, dir2, l2]

nbr1u

v nbr2

or
nbr2u

v nbr1

split1 = [uorv1, dir1, l1, dir2, l2, nbr1]

split2 = [uorv1, dir1, l1, dir2, l2, nbr2]

nbr1u

v nbr2

or
nbr2u

v nbr1

sum1 = [uorv1, dir1, l1, dir2, l2, nbr1]

sum2 = [uorv1, dir1, l1, dir2, l2, nbr2]

sum all = [uorv1, dir1, l1, dir2, l2]

nbru

v
or

u

v nbr

path = [uorv1, dir1, l1, dir2, l2, nbr]

path all = [uorv1, dir1, l1, dir2, l2]

nbru

v
or

u

v nbr

rpath = [uorv2, dir1, l1, dir2, l2, nbr]

rpath all = [uorv2, dir1, l1, dir2, l2]

1

2 2

1

2
1

2
1

1

2 2

1

1

2

2

1

1

2

1

2

2

1

2

1

Fig. 6  Two-edge subgraphs and data structures

Page 17 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

However, not all variations of each data structure are required to count the set of
4-node, 4-edge δ-temporal, �-layer motifs. Figure 8 shows the three-edge timings for
pre_mid and post_mid displayed on a timeline.

u

v
or

u

v
and

u

v
or

u

v
merge tt = [uorv1, uorv3, dir1, l1, dir2, l2, dir3, l3]

u

v
or

u

v
double hp = [uorv1, dir1, l1, dir2, l2, dir3, l3]

u

v
or

u

v
double star = [uorv1, dir1, l1, dir2, l2, dir3, l3]

u

v
or

u

v
split tt1 = [uorv1, dir1, l1, dir2, l2, dir3, l3]

u

v
or

u

v
split tt2 = [uorv1, dir1, l1, dir2, l2, dir3, l3]

u

v
or

u

v
split star1 = [uorv1, dir1, l1, dir2, l2, dir3, l3]

u

v
or

u

v
split star2 = [uorv1, dir1, l1, dir2, l2, dir3, l3]

u

v
or

u

v
and

u

v
or

u

v
sum hp = [uorv1, uorv3, dir1, l1, dir2, l2, dir3, l3]

u

v
or

u

v
and

u

v
or

u

v
sum tt = [uorv1, uorv3, dir1, l1, dir2, l2, dir3, l3]

u

v
or

u

v
path mp = [uorv1, dir1, l1, dir2, l2, dir3, l3]

u

v
or

u

v
rpath mp = [uorv2, dir1, l1, dir2, l2, dir3, l3]

u

v
or

u

v
sum mp = [uorv1, dir1, l1, dir2, l2, dir3, l3]

1

2

3 1

2

3

1

2

3

1

2

3

2
1

3 2
1

3

2
1

3

2
1
3

1

2

3

1

2

3

1

2

3 1

2

3

2
3
1

2

3
1

1
3
2

1

3
2

1

2

3

1

2

3

1

2
3 1

2
3

1

2

3

1

2

3

1

2

3

1

2

3

1

3

2

3

1

2

2

3

1

3

2

1

1

2

3

2

1

3

Fig. 7  Three-edge subgraphs and data structures

a b
Fig. 8  Timings with updates at tj. a Pre_mid edges in the delta-time window, b post_mid edges in the
delta-time window

Page 18 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

Despite all the various data structures and their timings, the number of counters is only in
the order of O(�2|nbrs|) . However, note that adding only a single node and edge has drasti-
cally increased the number and complexity of the substructures at play. This makes both the
implementation of these algorithms and a check of their correctness far more difficult.

Because we are considering the same approach as employed for 3-node, 3-edge motifs,
we again use the algorithmic framework defined in Algorithm 2. It follows that the gen-
eral logic of how data structures are updated also remains unchanged. Thus, describing
the exact update logic for each of the counters would be cumbersome, so we only pro-
vide the snippets that are vital to the runtime complexity in Algorithm 5.

Page 19 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

From these snippets, we can see that some data structures require a loop over all
neighbors when updating. Such neighbor loops add a factor |nbrs| , worst case k, to the
algorithm’s time complexity. In the "Neighbor loops" section, we discuss why for many
4-node, 4-edge motifs, we require these substructures, and why neighbor loops are actu-
ally the most efficient solution.

Star motifs

Counting star motifs, of any size, can be approached in two ways. First, we have the
approach used for the 3-node, 3-edge star motifs in the "Star motif counting" section.
This approach considers one center node u and its neighbors and counts all motifs
with u as its center node. The second approach uses the same concept as used for
Tailed-Triangle, Mid-Path, and Head-Path motifs described above. Considering a
node pair u, v, with u the center node of the motifs, we consider all other neighbors of
u and count all star motifs with u as a center node that include at least an edge (u, v).

Since n is generally much smaller than m, it is clear that the first approach should
be more efficient than the second. However, the second approach is able to utilize
substructures already constructed for counting the Tailed-Triangle, Mid-Path, and
Head-Path motifs. In fact, we require so few additional data structures and updates
that, if we would be counting Tailed-Triangle, Mid-Path, and Head-Path motifs, also
counting Star motifs should have little to no impact on the performance. Therefore,
counting Star motifs alongside Tailed-Triangle, Mid-Path, and Head-Path motifs
would be more efficient using the node pair approach than the node-center approach
of Star motifs from the "Star motif counting" section.

Square motifs

The approach for Square motifs is perhaps the most different from those for 3-node,
3-edge motifs. Neither an approach from a single node nor a node pair will allow us
to gather the edges (x, y). Therefore, for Square motifs, we must extend from a node
pair to a node triple u, v, x and assign each static Square motif to such a triple.

In general, if we did not assign each static Square to a triple, we would undoubt-
edly end up with an inefficient algorithm. This is due to the fact that, in the
worst case, the number of paths of length two, i.e., triples u, v, x, is of complexity
O(m(2k − 2)) → O(mk) . Therefore, even without considering the actual complexity
of the counting procedure itself, the complexity would be at least a factor m worse
than the O(k

√
τ) of counting triangle motifs. Note that this is likely not avoidable for

even larger motifs. Therefore, it should be clear that increasing the motif size will
inevitably lead to at least quadratic complexity.

We can use triples for Square motifs more efficiently, because we can assign each
static Square motif to a single node triple in such a manner that we optimize the
number of Square motifs covered by each considered node triple. We achieve this by
choosing the node triple that contains the largest number of edges between them, so
not just the largest number of edges between u, v and u, x, but also v, x. Although not
all three connections occur in a single Square motif, we can combine more Square
motifs if we consider not just the neighbors of v and x, but also those of u. This is
visualized in Fig. 9.

Page 20 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

Because we require such a different approach for Square motifs, further discus-
sion about the counting of Square motifs is outside the scope of this paper. However,
in the "Complexity of algorithms and counting approach viability for larger motifs"
section, we theorize about the potential efficiency or inefficiency of counting motifs
using node triples. Table 1 at the end of this section summarizes the different types
of motifs discussed above. Note that motif counts sum to 624, which corresponds to
the 24 directed variants of the in total 39 undirected motifs in Fig. 4a–e.

Neighbor loops

As discussed in the "Tailed-Triangle, Mid-Path and Head-Path motifs" section, neigh-
bor loops are the constraining factor hindering us from creating truly efficient motif
counting algorithms for all 4-node, 4-edge motifs. To show that neighbor loops are the
most efficient solution, we must show that the data structures in question are required,
given an approach from a node pair u, v, and that neighbor loops are the most efficient
update method for these data structures. The former is evident from Fig. 10 where we
use motif Mtt,3,3 as our example. Because we approach the problem from a node pair u, v
and all edges must be accessible from this node pair, we can only choose edges 3 or 4 as
our “final edge”. Both resulting three-edge data structures require a “sum” data struc-
ture with knowledge of the neighbor defined by edge 1 ( nbr1 ) for its updates. If we were
to ignore any knowledge of the involved neighbors for the “sum” data structures, then
during updates of the three-edge data structures, we would not be able to distinguish
between the three scenario’s depicted in Fig. 11. One of the scenario’s consists of five
nodes, which we should not expect to be able to count more efficiently than four--node
motifs. Therefore, it is not viable to ignore the fact that we cannot distinguish between
the scenarios and subtract their counts. Thus, at minimum, we must have knowledge of
nbr1 . Because we require knowledge of nbr1 , we get |nbrs| different counters for sum1.

u, v, xu, v, x

u, v, x
y y

y

Fig. 9  Node triple Square motif coverage

Table 1  Overview of the five types of 4-node 4-edge temporal motifs, the number of such
motifs (in directed networks), and the time and space complexity of efficiently counting
such motifs

Type Motifs Counting algorithm Overall

Square 48 – –

Tailed-Triangle 192 O(k2) O(mk
2)

Star 96 O(k2) O(nk2)

Mid-Path 96 O(k2) O(mk
2)

Head-Path 192 O(k2) O(mk
2)

Page 21 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

This in turn leads to neighbor loops in the Push() function as can be seen in Algorithm 5.
After all, Push() updates data structures given a newly added edge, i.e., the second edge
is added for the “sum” data structures, and this new edge has no knowledge of nbr1 .
Therefore, we must update all sum1 counters. As such, it is not the update logic, but
the number of counters that requires neighbor loops, and we cannot reduce the number
of counters. Thus, using the approach from a node pair u, v forces us to use neighbor
loops which in the worst case ( |nbrs| = k ) results in a time complexity of O(k2) for the
counting algorithm and O(mk2) overall. Since k2 > m in most cases, O(mk2) > O(m2) .
As such, we consider the algorithm inefficient for all motifs that require neighbor loops
for its updates.

Another possible solution to neighbor loops would be to use a larger base instead of
a node pair. The smallest step in complexity here would be to use node triples u, v, w.
Using node triples allows us to avoid “sum” and “split” substructures, because we would
only have one neighbor. However, inherent to node triples is a minimum of two edges
connecting the node triple. Because only one of those edges can serve as the “final edge”,
we always require “path” like substructures. Like “sum” data structures, “path” data
structures also require neighbor loops (see Algorithm 5). Therefore, if we were to use
node triples, neighbor loops would be unavoidable resulting in, at least, a complexity
of O(k2) for the counting algorithm. The overall complexity would depend on the num-
ber of node triples used, which we presume would always be more than the amount of
node pairs. We theorize more about this in the "Complexity of algorithms and counting
approach viability for larger motifs" section.

Mtt,3,3

pre split2

pre sum1

pre sum1

mid merge

1

3 4

2

1

3

2

1

4

2

3

2

1

2

1

2

1

4

−

+

−

+

Fig. 10  Possible substructures of motif Mtt ,3,3

1

2

3

1

2

3

1

2
3

Fig. 11  Three potential scenarios for edge 3, with the first as the intended scenario

Page 22 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

Complexity of algorithms and counting approach viability for larger motifs

Table 1 summarizes the different types of motifs discussed in this section. Recall that
the original temporal motif counting algorithm runs in O(m), and that any adjusted
approach is viable if its time complexity is lower than O(m2) . Previously, we already
determined that, given a node pair as base, the approach is not viable for all 4-node,
4-edge (multilayer) temporal motifs. In fact, it can be shown that all 3-edge data struc-
tures defined in Figure 7 require a 2-edge data structure, which requires a neighbor
loop in at least one of its updates (sum, split, path, and rpath). Therefore, it is reason-
able to assume that all motifs larger than four nodes and four edges would be at least as
complex.

Given this assumption, we are only left with discussing motifs with three nodes and
more than three edges, or vice versa. The second case only has a small number of pos-
sible motifs. After all, with three edges, we can at most create a connected graph with
four nodes. The two possible variations are depicted in Fig. 12. Although both variants
will require “sum” and “split” substructures, we do not require neighbor loops, because
we do not require knowledge of neighbor nodes for updating any larger substructures.
As such, we only need the “all” data structures, which do not require neighbor loops to
update. Thus, the approach is viable for all 4-node, 3-edge motifs. When we have three
nodes and four (or more) edges, we can split the possible motifs into the four categories
depicted in Fig. 13. The first category has one edge between u and v, and the remain-
der of the edges are from the center node u to some neighbor nbr. When we consider
(u, v) as our final edge, all the remaining edges are between u and nbr. As such, we can
perform all counter updates in O(1). The second category consists of motifs with two
(or more) edges between center node u and both neighbors. Whether we choose to
approach this as a center node with two neighbors or a node pair u, v with one neigh-
bor, we require a “path” like 2-edge data structure which requires a neighbor loop in
its updates. If we approach it as a node pair, we get O(mk2) , which is not viable. If we
approach it with a center node, we get O(nk2) which is likely to be smaller than O(m2)
and is thus viable. We should note that the “path” data structure would then require
direct knowledge of both neighbors, because the “final edge” has a common neighbor
with one of the edges from the “path”. This would lead to far more neighbor loops and
the counting algorithm would practically be slower than that for the node-pair approach
despite having the same complexity ( O(k2) ) for the counting algorithm.

The third category are triangle motifs with only one edge between node pair u, v.
These motifs require only “double” and “merge” like substructures and should,

Fig. 12  The two variations of 4-node, 3-edge motifs

v

u(1)

v

u(2)

v

u(3)

v

u(4)

Fig. 13  The four categories of 3-node, > 3-edge motifs

Page 23 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

therefore, allow for O(1) updates. The final category is triangle motifs where all node
pairs are connected by at least two edges. These motifs run into the same problem
as the second category. Because these motifs require node pairs as base, it cannot be
counted within O(m2) and is thus not viable. We have determined that, using a node
pair as base, all 4-node, 4-edge motifs cannot be counted within O(m2) . However, for
some 4-node, > 3-edge Star motifs we can approach it with a center node. Specifi-
cally, we can count them efficiently as long as, for one of the neighbors, there is only
one connected edge. This edge would then serve as the “final edge” and the update
complexity would not differ from category 2 in Fig. 13. For 4-node, > 5-edge motifs,
e.g., in Star motifs, it can occur that all neighbors are connected by at least two edges.
In those cases, “path” like data structures would be needed that have knowledge of
all three neighbors. As a result, the complexity of the neighbor loops would go up
to O(k2) , of the counting algorithm to O(k3) and overall O(nk3) , which is bigger than
O(m2) for all but the most dense networks.

In summary, counting motifs using a node pair or a center node as a base is viable
for: all 3-node, 3-edge motifs; all 4-node, 3-edge motifs; all 3-node, > 3-edge motifs of
categories 1, 2, and 3 as depicted in Fig. 13; and all 4-node, > 3-edge Star motifs with
at least one neighbor connected by exactly one edge.

The question remains whether node triples can be used to efficiently count any
motifs for which node pairs were not viable. In the "Neighbor loops" section, we deter-
mined that given four (or more) nodes, using node triples as a base would require
neighbor loops and would result in, at least, a complexity of O(k2) for the counting
algorithm. Thus, for node triples to be a viable option, we require the number of node
triples used to be less than m. Because there are O(m(2k − 2)) possible node triples,
we need to assign static motifs to node triples as we suggested for Square motifs. To
do so, we need to first enumerate the static motifs. As a result, we distinguish motifs
by their underlying static motif. For each set of motifs with the same underlying static
motif, its own specialized algorithm is formed. For such an algorithm to be efficient,
i.e., viable, it must allow for faster enumeration of the static motifs than O(m2) and
the number of node triples to which the enumerated static motifs are assigned should
be less than m. If both those conditions hold, then using node triples to count that
type of motifs could be considered viable, i.e., efficient.

Datasets
In this section, we discuss the various datasets on which our experiments will be run.
Descriptive statistics on the six datasets are shown in Table 2, listing the number of
nodes, edges, and layers for each network dataset. Column “Max. deg.” contains the
largest degree values over all nodes and “Static edges” contains the number of edges in
the underlying static graph. Note that self-edges are removed during preprocessing and
already excluded from these statistics. Details on each of the datasets are given below.

Email-EU-Core. This dataset represents a network of email communication from a
large European research institution [34]. For each user, a department is known and we
consider (u, v, t, 0) to represent an email sent by user u at time t to user v, with u and v in
the same department ( l = 0 ). When l = 1 , a link (u, v, t, 1) represents inter-department

Page 24 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

email, i.e., an email with sender and receiver in different departments. We make no dis-
tinction between the 42 different departments. Furthermore, note that a link between
two users is only included once upon the first e-mail being sent. To test the algorithm
in untimed networks, but also as a result of data-quality issues in this network dataset’s
timing information, the temporal aspect of these data was ignored; it is considered to be
untimed.

Math-Overflow, Facebook, Ask-Ubuntu, Super-User, Stack-Overflow.
These network datasets capture communication within the respective expert knowl-
edge exchange websites. On these online platforms, users can pose questions, which
other users then answer or discuss about, resulting in three layers of interaction
between the users. Topics vary, but in this paper, we study such platforms in the
fields of technology in general (Stack Exchange), mathematics, system management,
and a particular Linux operating system. On these websites, topic-specific questions
are answered and commented on by other users. On one of these websites, an edge
(u, v, t, l) describes how at time t, for l = 0 , user u answers a question by user v; for
l = 1 , it indicates that u comments on a question posed by v (e.g., requesting clarifi-
cation); and finally for l = 2 , indicates that user u comments on an answer given by
user v (e.g., participates in a discussion of the answer). One-layer temporal versions of
these datasets were previously studied in [15].

Facebook. Also known as the WOSN 2009 datasets [35]. This multilayer network
dataset captures the evolving user-to-user link structure of a sample of the Facebook net-
work, as well as communication between users via the wall feature. The data concern the
Facebook New Orleans region. An edge (u, v, t, l) describes that user v appears in user u’s
friendlist ( l = 0 ) or that user u posts on the wall of user v at time t ( l = 1 ). Timestamps are
not known for all edges in layer 0 and we thus consider this layer network to be partially
timed. In addition, the friendship links are undirected, whereas wall posts are modeled by
directed links.

Experiments
First, the overall experimental setup is described in the "Experimental setup" section.
Then, results related to the performance of the multilayer algorithm are presented in
the "Results—performance" section, followed by an analysis of the discovered multilayer
temporal motifs in the "Results—discovered motifs" section.

Table 2  Network dataset statistics

Dataset Nodes Edges Static edges Layers Max. deg.

Email-EU-Core 985 24,929 24,929 2 345

Math-Overflow 24,759 390,441 228,215 3 2,172

Facebook 63,792 2,401,228 1,592,562 2 1,100

Ask-Ubuntu 157,222 726,661 544,774 3 5,401

Super-User 192,409 1,108,739 854,377 3 14,294

Stack-Overflow 2,584,164 47,903,266 34,901,115 3 44,065

Page 25 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

Experimental setup

The goal of the experiments is twofold. First, we want to assess the performance of the
implementation of the multilayer algorithms presented in the "General motif counting"
section. Second, we want to evaluate the discovered multilayer motifs, and what insights
these results give in the context of different types of online communication. We will ana-
lyze online expert communities, social networks, and communication networks, i.e., the
large-scale network datasets described in the "Datasets" section.

The multilayer algorithms were implemented as a component of the Stanford Network
Analysis Project (SNAP, see [36] for details). Our implementation can be found at [37].
To assess the correctness (i.e., are the right counts reported) of the implementation, we
perform a number of checks. First, we confirmed that the counts of our multilayer algo-
rithm are identical to that of the original algorithm, as well as that when all layers are
considered equal, the original algorithm counts are equal to the sum of the motifs over
all layer configurations. We furthermore assess the influence on performance of both of
these situations in the "Results—performance" section. Second, we investigated whether
configurations that are not possible due to the nature of the data (e.g., due to partial tim-
ing or certain prohibitive layer combinations), indeed, result in correct (zero) counts.
This is done throughout the "Results—discovered motifs" section.

All experiments were run on a single machine with 16 Intel Xeon E5-2630v3 CPUs at
2.40 GHz (32 threads) with 512GB RAM (although RAM usage is not a relevant con-
straining factor in the experiments). We run the experiments for 1, 2, 4, 8, 16, and 32
threads. Whenever we report execution runtimes, then these runtimes do not include
the time required for reading the graph from disk into memory. All runtimes were aver-
aged over 10 runs. We found that the standard deviation over these runs was always
below 5% of the average runtime. Time window δ was set to a percentage (1%, 5%, 10%,
20%, 50%, and 100%) of the full timespan covered by the temporal network dataset in
question.

Results—performance

Here, we perform three different experiments to assess the performance of the pro-
posed multilayer algorithms. The first aim is to understand the performance overhead
of our multilayer adjustments when only one layer is considered. Second, we want
to assess the performance of our multilayer algorithm, comparing equal size single-
layer and multilayer datasets. Third, we wish to understand the effect of time-window
parameter δ on the performance.

Figure 14a, b first compares the runtimes of the original and multilayer algorithms,
given one layer. With eight threads, the runtime percentage difference for all fully
timed datasets is at most 3.06%. This teaches us that without loss of significant perfor-
mance, we can also use the multilayer algorithm for a one-layer dataset. Furthermore,
Figure 14a shows that for both the original and our multilayer algorithm, the best per-
formance is achieved at either four or eight threads. The performance improvement at
a larger number of threads is most evident for the large network (Stack-Overflow),
which we believe is related to the maximum degree (see Table 2). A higher value for
this metric means that the benefit of running different nodes and/or node pairs on

Page 26 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

different threads becomes clearer. This may be due to a relatively longer time being
spent investigating one single node or node pair.

Figure 15a displays the difference in execution times as a percentage difference,
comparing single- and multilayer data using the multilayer algorithm. The single-
layer data were constructed from the multilayer data by considering all layers to be
identical, so that the same size dataset is used in comparisons. As expected, the low-
est runtime differences are for the two-layer datasets (Email-EU-Core and Face-
book). We also see that the four expert exchange websites follow the same trend with
the minimum percentage difference at 16 threads. However, Fig. 15b shows that this
minimum is aided by the fact that at 16 threads, the algorithm encounters a perfor-
mance drop, whilst the actual numerical runtime difference is similar to four threaded
execution. This leads to a lower percentage difference. Therefore, the more relevant
minimum is at four threads, which coincides with a minimum in runtime. From the
results presented here, we also note that for partially timed datasets (which, in our
case, are the two-layer datasets), no difference in performance is observed.

Finally, we note that theoretically, the value of the time-window size δ should not affect
performance. The reason is that each edge is processed at most three times per con-
nected node. Figure 16 empirically confirms this; there is virtually no difference in runt-
ime between δ values of 1%, 5%, 10%, 20%, 50% and 100% of the dataset’s timespan.

a b
Fig. 14  One-layer performance of the original algorithm and multilayer algorithm. a Absolute execution
times of both the original and multilayer (extended) algorithm, on one layer. b Relative execution time
differences between original and multilayer (extended) algorithm, on one layer

a b
Fig. 15  Multilayer performance of the multilayer algorithm. a Execution time differences of multilayer
(extended) algorithm, comparing single vs. multilayer. b Execution times of single and multilayer runs using
the multilayer (extended) algorithm

Page 27 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

All in all, these performance experiments confirm our theoretical argumentation in
the "Complexity of multilayer triangle and star algorithms" section. The multilayer
aspect as well as the incorporation of partial timing adds only a constant factor related
to the number of layers � , which in practical settings only increases runtimes by 10 to
40%. Even for the Stack-Overflow network with over 2.5 million nodes and 47 mil-
lion edges, runtimes remain in the order of a handful to tens of minutes. This makes the
overall approach suitable for handling large-scale multilayer networks.

Results—discovered motifs

One run of the multilayer temporal motif counting algorithm on a multilayer network
dataset results in the counts of each of the 2, 3-node, 3-edge, δ-temporal, �-layer motifs,
as shown in Fig. 1a. We refer to such a large set of results of all motifs as the motif foot-
print of a network. In total, there are 36 temporal �-layer static motifs, which we number
from 1 to 36 in natural reading order (left to right; top to bottom). Depending on the
number of layers of the considered network dataset, we obtain each of these counts for
each of the �3 layer permutations of a motif. The three-layer networks Ask-Ubuntu,
Math-Overflow, Super-User, and Stack-Overflow have a total of 33 = 27 of such
combinations, as shown in Fig. 1b. For the two-layer datasets Email-EU-Core and
Facebook, we have 23 = 8 layer permutations. Indicating the first layer by 0 and the
second by 1, these 8 permutations correspond to layer permutations 000, 100, 010, 110,
001, 101, 011, and 111, respectively. In the remainder of this section, we fix δ to 1% of the
total timespan covered by the considered network dataset.

Results for 2‑layer networks

For the two-layer networks, a total of 8× 36 = 288 different motifs were counted, as
shown in Fig. 17. On top of each column is the total number of temporal motifs over all
layer permutations. Each cell is colored per column, indicating the percentage of motifs
with the layer permutation of that row. This allows us to see which layer combination is
dominant for each of the motifs.

Email-EU-Core. Recall from the "Datasets" section that this dataset is untimed.
Results are shown in Fig. 17a. We note how only 10 out of the 36 motifs (columns) are
actually observed. The 26 unobserved motifs involve repeated communication between
two users, which is simply not included in this dataset as described in the "Datasets"

Fig. 16  Execution times for different δ values for one-layer and multilayer execution

Page 28 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

section. We note that row 3 is virtually empty. This layer permutation corresponds to
the permutation M1,3,4 in Fig. 1b. This would involve a pattern where the first and third
edges are e-mails within a department, and the second edge is an intra-department
e-mail. However, for each of the 10 motifs that are found, this would mean that a cer-
tain node pair in the motif would suddenly swap from being in a different department
to being in the same department. This is of course not possible. The particular way of
constructing this dataset prohibits the occurrence of certain motifs and hence is a good
empirical check on the correctness of the algorithm. In general, we note that the major-
ity of communication patterns (motifs) occur either solely between departments (row
8), or completely within the same department (row 1). This suggests that for a large part,
communication between departments is done by other people than those who commu-
nicate a lot within a department.

Facebook. Recall from the "Datasets" section that this dataset has partial timing;
the friendship relations in the first layer are partially timed and undirected and the
wall-posting activities in the second layer are timed. Results are shown in Fig. 17b. As
expected, various motifs with repeated edges between the same two nodes do not occur
in layer permutation 1 (three friendship links, row 1). Also as expected, row 2 is empty,
as this layer permutation (permutation 2 in Fig. 1b) would indicate a wall post before a
friendship is established. Apparently, a friendship between two users always has a lower
timestamp (or no timestamp, as this layer is partially timed) than all wall posts between
these two users. Layer permutation 5, indicating two friendships followed by a wall post,
is rather common, demonstrating clearly the benefit of a multilayer perspective: these
motifs show how a wall post often follows a friendship formation. Interestingly, layer
permutation 7, indicating a friendship followed by two wall posts, is dominantly present.
However, in this case, it is not as informative, as it mostly occurs for cases where the first
friendship is independent of the second two posting activities, which are either repeated

a

b
Fig. 17  Counts of the 8× 36 multilayer temporal motifs for the 2-layer datasets. For each distinct motif
(column), colour intensity indicates what fraction of the motifs has the particular layer configuration indicated
by that row. a Email-EU-Core, b Facebook 

Page 29 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

posts in the same direction or mutual communication. Finally in row 8, we see in the
bottom-right various motifs, e.g., 25, 26, 31, and 32, indicating back and forth commu-
nication between two nodes, hinting at the use of the Facebook wall as a public form of
direct communication between two users.

Results for 3‑layer networks

For the 3-layer networks, a total of 27× 36 = 972 different motifs were found, as shown
in Fig. 18. Recall that again each column is one of the 36 motifs in Fig. 1a and each row
denotes one of the 27 layer permutations of Fig. 1b. Whereas the two layer experiments
were mostly a validation of the correctness of the algorithms in undirected, partially
timed and untimed networks, the true interplay of layers becomes visible for the three-
layer datasets.

Math-Overflow, Ask-Ubuntu, Super-User, Stack-Overflow . Recall from the
"Datasets" section that in these knowledge exchange networks, the first layer denotes
answering a question, the second layer represents a clarification request (commenting
on a question), and the third layer indicates that discussion is going on (commenting
on an answer). We again observe various empty rows. Contrary to the two-layer data-
sets described above, for these four knowledge exchange website networks, there are no
restrictions in terms of which layer should follow which other layer, or which layers can-
not co-exist due to the way which the data were constructed. In theory, every user can
pose and answer questions and place comments on questions and answers. However,

a b

c d
Fig. 18  Counts for the 27× 36 multilayer temporal motifs for the three-layer datasets. For each distinct motif
(column), colors indicate what fraction of the motifs has the particular layer configuration indicated by that
row. a AAsk-Ubuntu, b Math-Overflow, c Super-User, d Stack-Overflow 

Page 30 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

we note that in all four datasets for which the motif footprint is shown in Fig. 18, motifs
involving three (row 1) question–answer activities are very rare. Similarly, two edges of
this type (e.g., layer permutations 2, 3, 4, 10, and 11) are still rather sparsely occupied.
In particular, motifs with reciprocated links (see Fig. 1a) rarely occur when the recipro-
cated link is of the type question–answer. This may indicate that even though the web-
sites are intended as a platform where communities of experts are built, there is a clear
distinction between experts who answer the questions and more novice users that pose
these questions.

Insights can also be obtained from the counts of certain individual motifs. The bot-
tom row of each of the footprints in Fig. 18 shows that, for 2-node 3-edge motifs, com-
munication dominantly involves the (third) discussion layer. Interestingly, in Fig. 18a,
two of such 2-node temporal motifs, namely 25 and 26 ( M5,1 and M5,2 in Fig. 1a), both
indicate reciprocated communication between users. The total count of these two motifs
(213, 938 and 383, 770) is in the same order of magnitude. However, the multilayer per-
spective shows us that M5,1 concerns mostly comments to questions (row 27 of Fig. 18a),
whereas M5,2 indicates that a question is answered, after which the person who asked
the question comments on the user who answered the question, likely seeking additional
help or clarification. Here, the multilayer perspective helps to unravel different types of
communication between users that in a layer-agnostic perspective would have remained
aggregated.

Furthermore, from Fig. 18, we can immediately see that the majority of activity takes
place in row (layer permutation) 27, representing various motifs of discussion activity on
a given answer. This appears to be the case for Ask-Ubuntu, Super-User, and Stack-
Overflow, but not as much for Math-Overflow. In fact, the first three platforms
have extremely similar motif footprints (see Fig. 18a, c, and d). This is interesting, as
apparently the first three websites have very similar communication between their users,
even though they differ substantially in network size (see Table 2). Communication on
Math-Overflow appears to be much more dominantly taking place involving multiple
different layers.

Comparing motif footprints

To investigate the aforementioned observed differences in motif footprints, we compute
between each pair of expert exchange websites the difference in distribution of motifs
over layer permutations. This comes down to assessing the difference between the nor-
malized frequencies per column of the motif footprints in Fig. 18. Figure 19 visualizes
these pairwise differences between the motif footprints of the three most different pairs
of expert exchange websites. This difference is computing by taking the average differ-
ence of the column-normalized counts of each of the 27× 36 distinct motifs, and is
shown between parentheses in the captions of Fig. 19. In the figure, color is proportional
to the difference between the relative counts of the layer permutation of that particular
motif.

From Fig. 19, we conclude that whereas in the other three networks, most commu-
nication is in the comment-on-answer layer, in the Math-Overflow network, there
is much more question–answer and question–commenting activity going on. It may be
the case that on the three more computer science oriented platforms, one question to an

Page 31 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

answer is quickly indicated as the best one, which is then fine-tuned based on user com-
ments. In mathematics, one or more answers to a certain question are more intensively
discussed, resulting in additional answers being formulated. Formulating the above in a
more extreme sense, one could say that Math-Overflow has more elaborate discus-
sions, whereas the technical platforms Ask-Ubuntu, Super-User, and Stack-Over-
flow fulfill slightly more of a “helpdesk” kind of role.

Figure 20 visualizes the differences between the motif footprints of Stack-Overflow
and the other knowledge exchange websites. Where we had already seen that recipro-
cal links of the type question–answer were rare for all knowledge exchange networks,
Fig. 20 shows that motifs with reciprocal links (see Fig. 1a and b) of the types ques-
tion–answer and question–comment (or a combination of the two) are heavily under-
represented in Stack-Overflow compared to the others. This may indicate that for
Stack-Overflow, we can distinguish between expert and novice users further, i.e.,
novice users are less likely to comment on questions on Stack-Overflow and their
activity, is therefore, limited to asking questions and commenting on answers. Therefore,
answering questions and commenting on questions seem to be the domain of the expert
users on Stack-Overflow.

Insights in the differences between the expert exchange platforms may have implica-
tions for the way in which these platforms operate. For example, whereas these websites
typically work with a system where the user who asked the question can mark the one
right answer, our finding suggest that this may not be the case for all of the platforms. In

a b c
Fig. 19  Differences between the motif footprints of the three most distinct expert knowledge exchanges.
a–c each denotes a pair (Math-Overflow vs. DatasetX). For a multilayer motif (cell), color is proportional to the
difference, where blue denotes that the motif is more dominant in Math-Overflow, and analogously orange
in DatasetX. Color gradient is proportional to the log2 difference. Values between parentheses denote the
average difference between all 27× 36 column-normalized counts. a Math-Overflowvs. Stack-Overflow (0.50), b
Math-Overflow vs. Super-User (0.43), (c) Math-Overflow vs. Ask-Ubuntu (0.39)

a b c
Fig. 20  Differences between the motif footprints of Stack-Overflow and the other knowledge exchange
networks (see Fig. 19 caption for details). a Stack-Overflowvs. Math-Overflow (− 0.50), b Stack-Overflow vs.
Ask-Ubuntu (− 0.25), c Stack-Overflow vs. Super-User (− 0.25)

Page 32 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

addition, the differences between platforms may say something about the users involved
in for example Math-Overflow vs. for example Ask-Ubuntu, whereas, on the other
hand, they may unveil interesting details about the disciplines represented by these plat-
forms and their users.

In conclusion of this experimental section, we see that several multilayer motifs are
never observed, either due to the way the data were constructed, or as a result of the
users that are causing the behavior represented by the motifs. Other motifs only occur
for particular combinations of layers, sometimes resulting in interesting insights into the
behavior of users. In general, there is substantial heterogeneity when it comes to involve-
ment of different types of interaction (layers) in motifs, warranting, whenever such data
are available, a multilayer approach to understanding motifs in networks.

Conclusion and future work
In this paper, we have successfully demonstrated our multilayer temporal motif counting
approach for understanding complex patterns in evolving large-scale networks. Motifs,
being the little network building blocks consisting of a small number of s edges, come in
precisely �s flavors in multilayer networks with � layers of interaction. Using experiments
on several real-world datasets of online communication between users, we investigated
the performance as well as the insights obtained using the proposed approach for count-
ing these multilayer motifs.

Theoretically, the multilayer aspect adds a factor of �2 to the original temporal motif
counting algorithm (which runs in O(m), where m is the number of links). For networks
with one layer, the proposed multilayer algorithm is around 3% slower than the origi-
nal algorithm, meaning that there is little implementation overhead. In actual multilayer
networks, where the number of layers is typically small, we found, experimentally, that
the observed difference in runtime for three-layer networks was only 10–40% longer
compared to single-layer networks. Therefore, much lower than the theoretical increase
of �2 in computational complexity, which we believe is due to the fact that in real-world
networks, layers are typically sparsely populated. The already limited memory usage
increased by only a factor � , which is again acceptable and merely a constant factor in
networks with few layers.

Using the so-called motif footprints, we analyzed the obtained motifs, and found that
the multilayer perspective on temporal motifs provides substantial insights that cannot
be obtained if the layer aspect is ignored. Certain types of motifs or layer combinations
that do not occur at all may provide insight in how the network data were gathered or
constructed, but more importantly, teach us something about complex patterns in the
underlying data. Comparing various expert exchange websites, we found that, although
the motif footprints of many of such websites were similar, one website stood out. On
this website, dealing with expert knowledge exchange on mathematical topics, based on
the motif footprint, users appeared to be more discussion-oriented, more actively dis-
cussing and exploring multiple answers to the posed questions.

Furthermore, we conducted a theoretical analysis of the applicability of motif counting
algorithms to understanding larger and thus more complex network patterns. Using a
newly proposed categorization of 4-node temporal motifs, we showed precisely which

Page 33 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

motifs can and cannot be counted efficiently using the aforementioned motif counting
algorithms. It showed that because of the so-called neighbor loops, although efficient
for smaller motifs, there are theoretical limitations to motif counting algorithms. These
limitations will ultimately result in motif counting becoming as slow as motif enumera-
tion. However, for quite a number of interesting patterns of size 4, we can still efficiently
utilize motif counting algorithms.

In future work, we want to investigate the obtained motif footprints for different set-
tings of the time-window parameter. This may provide insights in how quickly patterns
of interaction appear in certain networks, and how this differs between different net-
works. Thus far, we have applied the multilayer motif counting algorithm only to online
communication between users on different platforms. However, the approach can be
utilized in any timed multilayer network, such as scientific collaboration and citation
networks, mobile phone networks, and economic networks. Ultimately, this may allow
us to understand which types of temporal network motifs are characteristic for which
type of network, in an attempt to discover the “prevalent motif footprints” of various
types of real-world networks.
Acknowledgements
We are grateful for the feedback and suggestions made by the anonymous reviewers.

Authors’ contributions
HDB was lead author of the paper, devized the algorithms, and executed the experiments. HDB and FWT contributed
equally to the research design and analysis of the results. All authors contributed to the materialization of the manu-
script. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The dataset(s) supporting the conclusions of this article (see Table 2) are available online at http://snap.stanf​ord.edu/data
and https​://toreo​psahl​.com/datas​ets/#onlin​e_socia​l_netwo​rk. The multilayer algorithms can be found at https​://bitbu​
cket.org/Fract​als-/count​_mult_temp_motif​s.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science (LIACS), Leiden University, Leiden, The Netherlands. 2 CORPNET, University of Amster-
dam, Amsterdam, The Netherlands.

Received: 15 March 2019 Accepted: 28 August 2019

References
	1.	 Barabási AL. Network science. Cambridge: Cambridge University Press; 2016.
	2.	 Scott J. Social network analysis. Thousand Oaks: Sage publications; 2012.
	3.	 Braha D, Bar-Yam Y. Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interac-

tions. In: Adaptive networks. Berlin: Springer; p. 39–50. 2009.
	4.	 van Engelen JE, Boekhout HD, Takes FW. Explainable and efficient link prediction in real-world network data. In: Proceed-

ings of the international symposium on intelligent data analysis (IDA). Berlin: Springer; p. 295–307. 2016.
	5.	 Dickison ME, Magnani M, Rossi L. Multilayer social networks. Cambridge: Cambridge University Press; 2016.
	6.	 Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. Multilayer networks. J Complex Netw.

2014;2(3):203–71.
	7.	 Benson AR, Gleich DF, Leskovec J. Higher-order organization of complex networks. Science. 2016;353(6295):163–6.
	8.	 Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex

networks. Science. 2002;298(5594):824–7.
	9.	 Kamaliha E, Riahi F, Qazvinian V, Adibi J. Characterizing network motifs to identify spam comments. In: Proceedings of

the 8th IEEE international conference on data mining workshops. New York: IEEE; p. 919–928. 2008.
	10.	 Shellman ER, Burant CF, Schnell S. Network motifs provide signatures that characterize metabolism. Mol BioSyst.

2013;9(3):352–60.

http://snap.stanford.edu/data
https://toreopsahl.com/datasets/#online_social_network
https://bitbucket.org/Fractals-/count_mult_temp_motifs
https://bitbucket.org/Fractals-/count_mult_temp_motifs

Page 34 of 34Boekhout et al. Comput Soc Netw (2019) 6:8

	11.	 Takes FW, Kosters WA, Witte B, Heemskerk EM. Multiplex network motifs as building blocks of corporate networks. Appl
Netw Sci. 2018;3(1):39.

	12.	 Yeger-Lotem E, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H. Network motifs in integrated cellular networks
of transcription-regulation and protein-protein interaction. Proc Nat Acad Sci. 2004;101(16):5934–9.

	13.	 Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Nat Acad Sci.
2003;100(21):11980–5.

	14.	 Takes FW, Kosters WA, Witte B. Detecting motifs in multiplex corporate networks. In: Proceedings of the 6th international
conference on complex networks and their applications. p. 502–515. Berlin: Springer; 2017.

	15.	 Paranjape A, Benson AR, Leskovec J. Motifs in temporal networks. In: Proceedings of the 10th ACM international confer-
ence on web search and data mining. p. 601–610. 2017.

	16.	 Kuramochi M, Karypis G. Frequent subgraph discovery. In: Proceedings of the IEEE international conference on data
mining (ICDM). p. 313–320. 2001.

	17.	 Battiston F, Nicosia V, Chavez M, Latora V. Multilayer motif analysis of brain networks. Chaos Interdiscip J Nonlinear Sci.
2017;27(4):047404.

	18.	 Kashtan N, Itzkovitz S, Milo R, Alon U. Efficient sampling algorithm for estimating subgraph concentrations and detect-
ing network motifs. Bioinformatics. 2004;20(11):1746–58.

	19.	 Wernicke S, Rasche F. FANMOD: a tool for fast network motif detection. Bioinformatics. 2006;22(9):1152–3.
	20.	 Omidi S, Schreiber F, Masoudi-Nejad A. Moda: an efficient algorithm for network motif discovery in biological networks.

Genes Genet Syst. 2009;84(5):385–95.
	21.	 Boekhout HD, Kosters WA, Takes FW. Counting multilayer temporal motifs in complex networks. In: Proceedings of the

international conference on complex networks and their applications. Berlin: Springer. 2018; p. 565–577.
	22.	 Wernicke S. A faster algorithm for detecting network motifs. In: Proceedings of the 5th international workshop on

algorithms in bioinformatics. p. 165–177. Berlin: Springer; 2005.
	23.	 Wernicke S. Efficient detection of network motifs. IEEE/ACM Trans Comput Biol Bioinf. 2006;3(4):347–59.
	24.	 Shahrivari S, Jalili S. Fast parallel all-subgraph enumeration using multicore machines. Sci Programm. 2015;2015:6.
	25.	 Grochow JA, Kellis M. Network motif discovery using subgraph enumeration and symmetry-breaking. In: Proceedings

of the 11th annual international conference on research in computational molecular biology. Berlin: Springer; p. 92–106.
2007.

	26.	 Ribeiro P, Silva F. G-tries: An efficient data structure for discovering network motifs. In: Proceedings of the 2010 ACM
symposium on applied computing. p. 1559–1566. 2010.

	27.	 Marcus D, Shavitt Y. Efficient counting of network motifs. In: Proceedings of the 30th IEEE international conference on
distributed computing systems workshops. p. 92–98. 2010.

	28.	 Gonen M, Shavitt Y. Approximating the number of network motifs. Internet Math. 2009;6(3):349–72.
	29.	 Kivelä M, Porter MA. Isomorphisms in multilayer networks. IEEE Trans Netw Sci Eng. 2018;5(3):198–211.
	30.	 Enright J, Meeks K. Counting small subgraphs in multi-layer networks. arXiv preprint arXiv​:1710.08758​ 2017.
	31.	 Bender EA, Canfield ER. The asymptotic number of labeled graphs with given degree sequences. J Comb Theory Ser A.

1978;24(3):296–307.
	32.	 Zhao Q, Tian Y, He Q, Oliver N, Jin R, Lee WC. Communication motifs: a tool to characterize social communications. In:

Proceedings of the 19th ACM international conference on information and knowledge management. p. 1645–1648.
2010.

	33.	 Kovanen L, Karsai M, Kaski K, Kertész J, Saramäki J. Temporal motifs in time-dependent networks. J Stat Mech Theory Exp.
2011;2011(11):P11005.

	34.	 Leskovec J, Kleinberg J, Faloutsos C. Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov
Data (TKDD). 2007;1(1):2.

	35.	 Viswanath B, Mislove A, Cha M, Gummadi KP. On the evolution of user interaction in Facebook. In: Proceedings of the
2nd ACM workshop on social networks. p. 37–42. 2009.

	36.	 Leskovec J, Sosič R. SNAP: a general-purpose network analysis and graph-mining library. ACM Trans Intell Syst Technol.
2016;8(1):1.

	37.	 Boekhout HD, Kosters WA, Takes FW. Counting multilayer temporal motifs. https​://bitbu​cket.org/Fract​als-/count​
_mult_temp_motif​s. Accessed Mar 1 2019.

http://arxiv.org/abs/1710.08758
https://bitbucket.org/Fractals-/count_mult_temp_motifs
https://bitbucket.org/Fractals-/count_mult_temp_motifs

	Efficiently counting complex multilayer temporal motifs in large-scale networks
	Abstract
	Introduction
	Related work
	Multilayer temporal motifs
	Multilayer counting algorithms
	General motif counting
	Star motif counting
	Triangle motif counting
	Complexity of multilayer triangle and star algorithms

	Counting larger motifs
	Categorization of 4-node, 4-edge motifs
	Tailed-Triangle, Mid-Path, and Head-Path motifs
	Star motifs
	Square motifs

	Neighbor loops
	Complexity of algorithms and counting approach viability for larger motifs

	Datasets
	Experiments
	Experimental setup
	Results—performance
	Results—discovered motifs
	Results for 2-layer networks
	Results for 3-layer networks
	Comparing motif footprints

	Conclusion and future work
	Acknowledgements
	References

