
Efficiently counting complex multilayer 
temporal motifs in large‑scale networks
Hanjo D. Boekhout1, Walter A. Kosters1 and Frank W. Takes1,2*

Introduction
The field of network science [1], also referred to as (social) network analysis [2], aims to 
understand complex systems by studying the interactions between entities within such 
a system as a network. Examples include (online) social networks, communication net-
works, collaboration networks, and economic networks.

Over the past years, at least four developments have affected the field. First, there is an 
ever increasing desire to understand and learn from network dynamics, i.e., the tempo-
ral evolution of networks [3, 4]. Second, different types of interactions may be observed 
between nodes in the network, forming the so-called multilayer networks  [5] (some-
times referred to as multiplex networks, see [6] for a discussion on terminology). It has 
repeatedly been shown that taking multiple types of interaction into account can result 
in novel insights that would not be discovered when layers were aggregated or analyzed 
individually. Third, with the wide availability of data from the Internet, social media 
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websites, and online platforms, there is more and more need to analyze large-scale net-
works with millions of nodes and links, requiring highly efficient algorithms. Fourth, 
many studies in network science limit themselves to attempting to explain macro-level 
properties of the network as a whole (e.g., degree distributions), using microlevel prop-
erties of the nodes (e.g., node degrees). However, in recent years, it has been shown that 
there are also noteworthy patterns at the meso-level of a network. One example of such 
a meso-level pattern is a network motif: a small configuration of a few nodes and edges 
that occurs throughout the network at a high rate [7, 8]. These motifs can reconfirm the 
existing hypotheses about certain interaction patterns, but they can also provide new 
insight into previously unknown meso-level patterns and underlying behavior in the net-
work [9–12]. In this paper, we propose an approach for counting these network motifs. 
Crucially, we do so in networks that (a) have temporal information, (b) consist of multi-
ple layers, and (c) potentially contain millions of nodes and links.

Network motifs provide insights that go beyond studying either individual nodes or 
the network as a whole, allowing the role of groups of nodes in particular configura-
tions to be studied. In biological networks, the regulating function of feed-forward loop 
motifs has frequently been identified  [13]. In economic networks, motifs of corporate 
interlinkage were able to highlight particular corporate structures such as crosshold-
ings [11], as well as unveil the influence of the financial sector in creating complex cor-
porate structures  [14]. And in user communication networks, specific network motifs 
revealed, for example, blocking behavior in online conversations [15]. Given the impor-
tance of motifs in understanding the structure of networked systems, identifying motifs 
and understanding their implications are of crucial importance to network science.

Research on methods and algorithms for the detection of motifs dates back to early 
work on the problem of mining frequent subgraphs  [16]. We will henceforth refer to 
the task performed by these subgraph enumeration methods as motif enumeration. The 
advantage of algorithms for motif enumeration is that they iterate over all possible sub-
graphs of a given size, allowing the actual subgraphs themselves to be identified in the 
network, and their composition to be inspected afterwards. The clear drawback of motif 
enumeration is the large amount of memory required to store the obtained motifs, as 
well as the running time, which is typically dependent on the size of the network and 
grows exponentially with the size of the subgraph. Although multilayer motif enumera-
tion algorithms have been explored [11, 17], even for patterns of a few nodes and edges, 
these algorithms quickly become too computationally intensive. This limits the applica-
bility of these approaches for finding larger patterns, or for analyzing larger networks.

As an alternative to enumeration, motif sampling techniques have been intro-
duced  [18, 19]. They are extremely useful if the goal is to unveil only the most fre-
quently occurring motifs. However, sampling methods suffer from an inherent 
uncertainty in their estimation. Although work on motif sampling when the structure 
of the network is scale-free and thus nonrandom has been done [20], the simultane-
ous presence of a multilayer structure makes it difficult if not impossible to derive 
sufficiently reliable analytical bounds on the errors of motif sampling algorithms. 
Practically, this means that in the multilayer setting, it is nontrivial to derive a good 
sampling rate, such that all motifs are discovered. Especially, if the motif counts are 
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skewed, infrequent motifs may be overlooked. This disqualifies the use of sampling 
for our particular research goal: exactly counting how often all possible multilayer 
motifs occur in a given network.

Thus, to counter the limitations of motif enumeration and sampling, this paper builds 
upon recent algorithmic developments made in motif counting  [7, 15, 21]. The advan-
tage of motif counting over motif enumeration is that motif counting algorithms do not 
require the enormous amount of memory needed by motif enumeration to store all iso-
morphic subgraphs. In addition, it was shown that for motifs of size 2 and 3, time-effi-
cient algorithms that can count motifs in networks with millions of nodes and edges in a 
matter of minutes can be utilized [7]. An obvious downside of motif counting is that it is 
no longer possible to track precisely where in the network, the motifs occur, or to deter-
mine precisely which nodes are involved in these motifs. However, it should be noted 
that if one is interested in only a few frequent motifs, and not all motifs, one could, after 
counting, simply only enumerate these few motifs, which is still far more efficient than 
enumerating all motifs.

Thus far, we have defined motifs (sometimes also called graphlets) as little subgraphs 
that frequently occur in the network. In other texts, motifs are specifically defined as 
subgraphs that occur more frequently than a certain threshold frequency, possibly deter-
mined based on motif frequencies in a null model. This final step, in which what is called 
motif significance is determined, is beyond the scope of this paper, as our focus is on 
counting algorithms. However, it should be noted that the trivial post-processing step for 
determining motif significance can easily be added, for example as described in  [11, 19].

In this work, we consider the task of counting multilayer temporal network motifs in 
six different temporal networks that all model communication between human users. 
For each link between users, we know the timestamp at which the communication took 
place. Examples include user communication on a social network and a network of e-mail 
communication between employees of a large organization. We also analyze four data-
sets from the so-called online expert knowledge exchange websites, where users can com-
municate and discuss about questions from a particular domain. The considered datasets 
each contain elements that one encounters when studying real-world multilayer network 
datasets: some of the layers of the multilayer network may be undirected rather than 
directed, and some layers may be partially timed or have no temporal information at all. 
We set out to investigate what patterns of communication, i.e., which temporal motifs, 
occur in these datasets, and how these motifs differ between the various networks.

Three challenges arise as a result of the research agenda set out above. First of all, 
existing temporal motif counting algorithms work on one-layer networks rather than 
multilayer networks. Second, existing efficient implementations of algorithms for motif 
counting do not yet incorporate partial timing, which is frequently encountered in real-
world network data. Third and last, it is unclear to what extent motifs consisting of more 
than 3 nodes and edges can efficiently be counted using the motif counting algorithms 
proposed in [15]. In general, it is unknown what the possibilities and limitations of these 
approaches are in understanding more complex and larger patterns of interaction in 
temporal networks.

The main contribution of this paper is twofold. We start by introducing a solution to 
the first two problems above, proposing a multilayer temporal motif counting algorithm 
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that is able to efficiently deal with partial timing. Here, we build on previous work by 
Paranjape et  al.  [15], extending the approach presented in [21]. Using experiments on 
various large-scale datasets, we analyze the performance of this multilayer algorithm 
in relation to the existing layer-agnostic motif counting algorithm. Then, using the so-
called motif footprints, we analyze the obtained motifs, allowing us to understand the 
differences in communication patterns between users in the various online platforms 
represented by the data. An open source implementation of our algorithm is made avail-
able, ensuring that the approach can easily be reused in future studies.

The second contribution is theoretical and entails an in-depth analysis of larger motifs, 
in particular those of size 4. We introduce a categorization of size motifs, and outline 
precisely for which categories of larger motifs which we can still employ motif counting 
algorithms efficiently. As such, we explore and delineate what one could call the “compu-
tational frontier” of efficient motif counting algorithms in large-scale complex networks.

The remainder of the paper is organized as follows. First, relevant related and previous 
work is presented in the "Related work" section. Then, the "Multilayer temporal motifs" sec-
tion provides the necessary background and definitions related to our object of study: mul-
tilayer temporal motifs. Next, the proposed algorithms to count these motifs are outlined in 
the "Multilayer counting algorithms" section. Then, in the "Counting larger motifs" section, 
the analysis of how these types of algorithms may scale to larger motifs is presented. The 
"Datasets" section describes the real-world network datasets used in the "Experiments" sec-
tion to perform experiments. Finally, the "Conclusion and future work" section summarizes 
our results and contributions and provides suggestions for future work.

Related work
In this section, we discuss work related to the various subproblems of counting multi-
layer temporal motifs, in particular distinguishing between methods for motif enumera-
tion, motif counting, multilayer networks, and temporal networks.

One subproblem is counting or enumerating of static motifs, ignoring the network 
dynamics. Three categories of static motif enumeration exist: all-motif enumeration, sin-
gle-motif enumeration, and motif-set enumeration. The first category, all-motif enumer-
ation, comes closest to pure counting, as it enumerates all motifs of size k in the network. 
A well-known algorithm to perform all-motif enumeration is ESU, aka FANMOD [19, 
22, 23]. It starts from each node and enumerates all motifs of size k that contain only 
that node and higher labeled vertices. This algorithm allows parallel execution from 
each node. Due to the skewed degree distribution in real-world networks, i.e., few nodes 
have a relatively high degree, some nodes will be involved in a relatively high number of 
motifs which leads to unbalanced parallel tasks. Shahrivari and Jalili [24] introduced an 
improvement on ESU named PSE. Instead of starting the enumeration from each node, 
PSE starts from each edge. In addition, the authors introduced the Subenum algorithm 
which includes two-phase subgraph isomorphism detection and ordered labellling. 
Experimentally, Subenum was shown to reach near-linear speed-up when adding addi-
tional threads of execution and clearly outperformed previous all-motif enumeration 
algorithms.

Single-motif and motif-set enumeration are, for example, useful for enumerat-
ing motifs that are found to be interesting based on pure counting results. Grochow 
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et al. [25] introduced a single-motif counting algorithm. This algorithm was one of the 
first to map the motif onto the network instead of enumerating all subgraphs and testing 
for subgraph isomorphism. Furthermore, it takes advantage of subgraph symmetries to 
avoid spending time finding a motif more than once, and introduces subgraph hashing 
which significantly reduces isomorphism tests needed. The motif-set enumeration algo-
rithm g-tries, introduced by Ribeiro and Silva [26], utilizes the fact that motifs can share 
a common subgraph to create the so-called g-tries: trees where each level adds a node to 
the motifs which it represents. These g-tries are used to map motifs onto the network. 
Like the single-motif algorithm by Grochow et al. [25], it also uses symmetry breaking. 
Experimentally, the authors showed that g-tries outperforms the algorithm by Grochow 
et al. when querying the same set of motifs.

For static motif counting, it is often most efficient to consider the structure of the 
motifs that you wish to count. For example, Marcus and Shavitt [27] presented efficient 
counting algorithms for several 4-node motifs. The authors did so by providing a sepa-
rate algorithm for several types of 4-node motifs: the tailed triangles, four-nodal cliques, 
four-nodal cycles, and four-nodal paths and claws. As expected from pure counting algo-
rithms, the authors proved experimentally that their counting algorithms outperformed 
the all-motif enumeration algorithm FANMOD (ESU).

Gonen and Shavitt [28] introduced local motif counting algorithms to count the num-
ber of motifs which a single node is involved in, as well as an approximation algorithm 
for the number of motifs for the entire network. They introduced algorithms for count-
ing k-length cycles (with a chord), ( k − 1)-length paths, tailed triangles, and 4-cliques.

For multilayer motifs, we need to look at more recent work. In February 2017, Kivela 
and Porter [29] extended the graph isomorphisms to multilayer networks. Furthermore, 
they extended it to temporal networks by representing them as multilayer networks. 
This can be done by considering temporal networks as time sequence graphs. These 
extensions provided a foundation for further research of multilayer networks, such as 
motif analysis. In March 2017, Battison et al. [17] examined how many subgraphs exist 
for motifs with a small number of nodes and applied multilayer motif analysis on a brain 
network. However, they did not describe how they actually counted/discovered the mul-
tilayer motifs. In October 2017, Enright and Meeks [30] investigated the parameterized 
complexity of counting small subgraphs in multilayer networks. The authors found that 
if all but one of the layers are drawn from classes of bounded vertex cover number or 
all of the layers have almost bounded degree, then the problem is FPT (fixed-parameter 
tractable); otherwise, it is W[1]-hard. In November 2017, Takes et  al.  [11] performed 
multiplex motif enumeration on a corporate network. The authors proposed a multiplex 
adaptation of Subenum, where a multiplex graph is converted into a directed labeled 
graph. An edge label then encodes which edge types are and are not present between 
the two nodes that it connects. Furthermore, the authors build on the stub-matching 
model [31] for the null model to preserve interlayer assortativity [5].

The temporal motif problem has developed over the years to more accurately cap-
ture the timing information. In 2009, Braha and Bar-Yam  [3] took snapshots of the 
network, where each snapshot covered a single day. However, the snapshots them-
selves lose the information regarding the order of events. In 2010, Zhao et  al.  [32] 
considered two events (edges) linked if they share a node and succeed one another 
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within a time limit ∆t . However, this enforces only local time adjacency. Kovanen 
et al. [33], in 2011, called such events ∆t-adjacent and considered two events ∆t-con-
nected if there is a sequence of ∆t-adjacent events joining them. A temporal motif is 
then defined as a set of events that are all ∆t-connected. Finally, in February 2017, 
Paranjape et al. [15] count temporal motifs where every pair of edges is at most δ time 
apart, thus fully utilizing the timing information. We build upon these techniques, 
which we henceforth refer to as the delta-time-window approach, adding both partial 
timing and functionality to handle multiple network layers.

Multilayer temporal motifs
In this section, we provide necessary definitions and introduce notation for the algo-
rithms described in the remainder of this paper. We follow the notation and defini-
tions introduced in [15] and build upon the definitions in [21].

We consider the basic building block of a network structure to be an edge: a (directed) 
link between an ordered pair of nodes. It can be defined as a tuple (u, v) with u denot-
ing the source node and v the target node. Given a node set V of size n = |V | , a static 
graph G = (V ,E) is defined by a set E containing edges (ui, vi) , for i = 1, 2, . . . ,m , with 
ui, vi ∈ V  . For temporal edges, we add a timestamp t, and for layered edges we add a 
layer number l. Thus, in a multilayer temporal graph H, an edge is defined as (ui, vi, ti, li) , 
where ti ∈ {−1} ∪ R

+ and li ∈ {1, . . . ,Λ} , with Λ the number of layers. A timestamp of 
−1 indicates that there is no known timestamp for that edge (in case of partial timing). 
Note that this introduces simultaneous edges, i.e., edges with the same timestamp. The 
underlying static graph of a multilayer temporal graph is the graph formed by ignoring 
all timestamps, layers, and duplicate edges. For the algorithms in this paper, we assume 
edges to always be directed. However, results for undirected edges can be obtained 
through post-processing. This leads us to the following definition.

Definition  A r-node, s-edge, δ-temporal, �-layer motif is a sequence of s edges, 
M = ((u1, v1, t1, l1), (u2, v2, t2, l2), . . . , (us, vs, ts, ls)) that are time-ordered within a δ 
duration, i.e., t1 < t2 < · · · < ts and ts − t1 ≤ δ , and range over at most � different layers, 
such that the underlying static graph is connected and has r nodes.

Note that multiple edges between the same pair of nodes are possible and individu-
ally counted and that timestamps induce an ordering on the edges. Furthermore, this 
definition allows � different layers in the motif M, but also allows fewer layers. For exam-
ple, Fig. 1b (e.g., M1,3,3 ) shows a 3-node, 3-edge, δ-temporal, 3-layer motif including just 
2 layers, given a suitable δ . We say that a motif M = ((u1, v1, t1, l1), . . . , (us, vs, ts, ls)) 
occurs in a multilayer temporal graph H when there is a time-ordered sequence 
S = ((w1, x1, t

′
1, l

′
1), . . . , (ws, xs, t

′
s, l

′
s)) of s unique edges in H, such that

1.	 there exists a bijection f, such that f (wi) = ui and f (xi) = vi (i = 1, . . . , s),
2.	 the edges all occur within δ time, i.e., t ′s − t ′1 ≤ δ , and
3.	 there exists a bijection g on the layers, such that g(l′i) = li (i = 1, . . . , s) , which holds 

for all motifs within a single search.
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Each such sequence of edges is called an instance of the motif M, and the goal of this 
paper is to count the number of such instances. The main problem, for which algo-
rithms are proposed in the "Multilayer counting algorithms" section, is as follows:

Given set values for r, s, δ and � and a multilayer temporal graph H, compute the 
number of occurrences of each motif.

The fast algorithms presented in [15] focus on 2,3-node (i.e., 2 or 3 nodes), 3-edge δ- 
temporal motifs, providing the overview of all such motifs in Fig. 1a. In the "Count-
ing larger motifs" section, we investigate whether these methods can be extended to 
count 4-node, 4-edge motifs. Returning to the multilayer aspect, crucially, we note 
that altering an edge’s layer does not affect the temporal order or edge configuration. 
Therefore, every δ-temporal �-layer motif can be associated with a single δ-tempo-
ral motif. Figure 1b shows all 3-node, 3-edge, δ-temporal, 3-layer motifs, given a sin-
gle δ-temporal motif M1,3 from Fig. 1a. The number of associated δ-temporal �-layer 
motifs for a single δ-temporal motif depends on the number of possible layer permu-
tations. Therefore, for each s-edge, δ-temporal motif, there exist �s δ-temporal, �-layer 
motifs. Thus, there are 33 × 36 = 972 2,3-node, 3-edge, δ-temporal, 3-layer motifs.

To reference one δ-temporal �-layer motif, we add a layer-specific index into the pos-
sible permutations of Fig. 1a. For 3-layer networks, the 33 = 27 layer permutations are 
shown in Fig. 1b. Note that in this figure, motifs 1, 2, 4, 5, 10, 11, 13, and 14 are in total 
23 = 8 permutations of 2-layer motifs.

a

M1,3,1 M1,3,2 M1,3,3

M1,3,4 M1,3,5 M1,3,6

M1,3,7 M1,3,8 M1,3,9

M1,3,10 M1,3,11 M1,3,12

M1,3,13 M1,3,14 M1,3,15

M1,3,16 M1,3,17 M1,3,18

M1,3,19 M1,3,20 M1,3,21

M1,3,22 M1,3,23 M1,3,24

M1,3,25 M1,3,26 M1,3,27
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Fig. 1  Overview of different motif types. a All 2,3-node, 3-edge δ-temporal motifs (Figure from [15]. The edge 
numbers indicate their temporal order. b All 3-layer variants of M1,3
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Multilayer counting algorithms
In this section, we will first present the multilayer algorithms, which are extended ver-
sions of the algorithms proposed as part of the delta-time-window approach discussed 
in [15], now incorporating both the multilayer aspect as well as partial timing. The mul-
tilayer general algorithm is discussed in the "General motif counting" section, and multi-
layer 3-node star and triangle motif counting algorithms are presented in the "Star motif 
counting" section and the "Triangle motif counting" section.

General motif counting

The general algorithm for counting the number of instances of (multilayer) temporal 
motifs consists of a 3-step procedure. First, all instances U ′ of the static motif U, under-
lying M, in the static graph G, underlying the multilayer temporal graph H, are iden-
tified. This can be accomplished with known algorithms for enumerating static motifs. 
Second, for each motif instance U ′ , all temporal edges between pairs of nodes forming 
an edge in U ′ are gathered into an ordered sequence S′ . We extend this step, by filtering 
these temporal edges, such that the layers from the edges match those in U. We denote 
the resulting sequence of edges by S′′ , which then consists of only those edges required 
to count the instances of our multilayer temporal motif U. Finally, the number of subse-
quences of edges in S′′ occurring within δ time units that correspond to instances of M 
are counted. Algorithm 1 describes the algorithm used to identify and count these sub-
sequences. Note that the second and third steps of this algorithm can be done in parallel 
for each static motif U ′ found in the first step.

When simultaneous edges occur, the order of the edges is determined not by their 
timestamp but their order in the sequence S′′ . In the case of partial timing with a 
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layer consisting of only untimed edges, the resulting motif counts can easily be post-
processed to obtain the same result for every ordering. However, if a layer itself is 
partially timed, the order of simultaneous edges has an impact on the resulting motif 
counts. Therefore, on an implementation level, to ensure consistent output, we have 
enforced this to be the order in which the edges appear in the input file.

Partial timing  With respect to the original algorithm in [15], the highlighted code 
in Algorithm 1 denotes the changes for partial timing. In lines 2–3, we loop over all 
untimed edges and increase the relevant counters and subsequently never decre-
ment any counters given these edges. In other words, untimed edges are never for-
gotten, acknowledging that they could have formed at any given time and should be 
considered part of every delta-timeframe. However, this approach does mean that the 
untimed edges are always considered to be the first in the order of events. To ensure 
that we can decrement the counters correctly in the main for loop (lines 4–7), we keep 
track of these untimed edges in separate counters “pcounts[.]”. The additional updates, 
incrementing and decrementing, of the counters, based on these “pcounts” counters, 
are done in lines 17 and 14, respectively. These updates take into account that untimed 
edges counted in “pcounts” are always first, which is why a prefix is used for decre-
menting instead of a suffix. On an implementation level, the additional for loop in 
lines 13–14 can easily be merged with the preceding for loop. Thus, we only add a 
small number of operations per edge which should not significantly impact the algo-
rithm’s time complexity. Furthermore, any untimed edges will now only require a call 
to IncrementCounts, reducing the average number of operations per edge the more 
untimed edges there are.

Multilayer aspect  The addition of multiple layers is realized by adding a parameter l 
to each edge-related parameter. For example, in line 10, we only need to change the 
variable e to include the associated layer (e,  l). These changes only really impact the 
number of possible keys for the array “counts[.]”.

As the overall approach of our multilayer algorithm does not differ from that of the 
original one-layer algorithm, the same arguments for efficiency still apply. This means 
that it will perform with linear complexity for 2-node motifs, but its use for 3-node 
and larger motifs would be inefficient. Therefore, we also extended the faster 3-node 
algorithms to the multilayer perspective described below.

Star motif counting

Star motifs are motifs that consist of a center node u and edges to r − 1 neighbors, 
with no edges connecting these neighbors. Example star motifs are M1,1 , M1,5 , and 
M5,5 in Fig.  1a. We define each edge in a star motif by its neighbor node (nbr), its 
direction towards or away from u (dir), its timestamp (t), and its layer (l). For the mul-
tilayer triangle and star algorithms, we will look specifically at 3-node 3-edge �-layer 
star motifs. The static motifs underlying these star motifs can be divided into three 
classes: pre, post, and mid, as depicted in Fig. 2. While processing the time-ordered 
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sequence of edges, we consider the current edge being processed as the singular edge 
in the motifs, i.e., edge 3 for pre. Algorithm  2 provides the algorithmic framework 
for the triangle and star counting algorithms, with full multilayer implementations of 
Push(), Pop(), and ProcessCurrent() in Algorithm 3.

Fig. 2  The pre, post, and mid classes of temporal star motifs (figure from [15])
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Partial timing  The highlighted code indicates the changes required for handling partially 
timed networks. Just like for the general algorithm, we first require the untimed edges to 
be preprocessed (lines 4–9). For each counter, we add a p-preceded counter to count the 
untimed edges. Furthermore, the procedures are updated with a type parameter which deter-
mines which operations are and are not performed. When they are called with type set as 
indicated in Algorithm 2, we count considering partially timed motifs. However, if they were 
all set to 0, the algorithm would function no different than the original one-layer algorithm.

During the preprocessing in lines 4–9, the fully untimed motifs are counted. For par-
tially timed pre motifs, we account for untimed edges in lines 21, 27, and 31, in the same 
manner as we did for the general algorithm earlier. To count partially timed mid motifs, 
we must distinguish between two cases. First, we must consider the single edge, edge 2, 
to be timed. In this case, we require an additional type of mid motif counter ( ppre_mid ), 
which is used to count the number of combinations of edges 1 and 3 of the mid type 
motif found. We require this additional counter, because unlike all other cases this coun-
ter counts both an untimed and a timed edge. It is updated in lines 22 and 30 and used 
to update the motif counter in line 33. The second case considers the single edge to be 
untimed. In this case, only the third edge would be a timed edge and all these edges are 
added to the ppost_nodes counter in lines 4–5. Subsequently lines 8, 33, and 34 ensure 
these partially timed mid motifs which are counted during the preprocessing stage. Sim-
ilarly, all partially timed post motifs are counted by lines 4–5, 8, and 32.

Multilayer aspect  We can see that adding layers does not change the main method of 
operation, but only requires us to add a layer index for every direction index to each 
counter. Therefore, we update the original counter definitions to the following:

•	 pre_nodes[dir, vi , l] counts the number of times node vi has appeared in an edge 
alongside u with direction dir and layer l in the timeframe [ tj − δ, tj)

•	 pre_sum[dir1 , l1 , dir2 , l2 ] counts the number of sequentially ordered pairs of edges 
in [ tj − δ, tj ) with the first edge having direction dir1 in layer l1 and the second 
edge direction dir2 in layer l2

•	 count_pre[dir1 , l1 , dir2 , l2 , dir3 , l3 ] counts the full motifs found within δ time, with 
dir1 , dir2 , and dir3 indicating the directions and l1 , l2 , and l3 indicating the layers of 
the three edges, respectively

•	 post_nodes[dir, vi , l], post_sum[dir1 , l1 , dir2 , l2 ], and count_post[dir1 , l1 , dir2 , l2 , 
dir3 , l3 ] analogous to the pre counters but for the timeframe ( tj,tj + δ].

•	 mid_sum[dir1 , l1 , dir2 , l2 ] counts the number of pairs of edges where the first edge 
is in direction dir1 , with layer l1 , and occurred at time t < tj and the second edge is 
in direction dir2 , with layer l2 , and occurred at time t ′ > tj , such that t ′ − t ≤ δ

•	 count_mid[dir1 , l1 , dir2 , l2 , dir3 , l3 ] analogous to the pre and post counters.

In the "Complexity of multilayer triangle and star algorithms" section, we will discuss 
how including layers does impact the space and time complexities of the algorithm.

Note that, like the original algorithm [15], our multilayer algorithm also includes 
instances of 2-node motifs, which we subtract from the count using the multilayer 
general algorithm (as this algorithm is still optimal for size 2). The full process of 
counting multilayer temporal star motifs is then:
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1.	 for each node u in the multilayer temporal graph H, consider u as the center node 
and get a time-ordered list of all edges containing u;

2.	 use Algorithms 2 and 3 to count star motifs;
3.	 for each neighbor v of u, subtract the 2-node motif counts using Algorithm 1.

This procedure can be done in parallel for each node u.

Triangle motif counting

Triangle motifs are motifs where the edges form a triangle (see Fig.  1b). We define 
each triangle by nodes u and v and a common neighbor. Each edge in a triangle motif 
is defined by a neighbor node, an indicator whether it is connected to u or v (uorv), 
a direction, a timestamp, and a layer. The algorithmic framework, defined in Algo-
rithm 2, used to count star motifs, can also be utilized for triangle motifs. The new 
implementations of Push(), Pop(), and ProcessCurrent() are described in Algorithm 4. 
Note that, where the process for star motifs could be parallelized for the center node, 
it can now for each connected node pair u,  v. After all, if we consider a connected 
node pair u,  v to be the center node, then the triangle motif has two edges to one 
neighbor, just like a star motif, and a self edge, which we can view as the edge to the 
second neighbor of a star motif.

Therefore, unlike for counting star motifs, when we count triangle motifs we do not 
have a single-center node and two neighbors, but two center nodes and one neighbor. 
This means that we must distinguish between behaviour for updating using an edge 
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connected to u or v. Therefore, all counters are updated with an additional field (uorv) 
which determines if the first edge was either connected to u or v. The edge between 
u and v is used as the final edge to complete the triangle. To this end, these edges are 
only processed in ProcessCurrent() in lines 36–43. Again, the highlighted code indi-
cates the updates for counting partially timed motifs. We can see that these changes 
are very similar to those for star motifs, so we will not discuss them in detail. Analo-
gously to the one-layer algorithm, we assign each triangle to the pair of nodes with 
the largest edge count, so that as many triangles as possible are processed at once.

Complexity of multilayer triangle and star algorithms

Our multilayer algorithm has time complexity O(|S′′|) , i.e., is linear in the size of the 
filtered sequence of edges. This is due to the fact that the mode of operation is essen-
tially the same as the original one-layer algorithms [15] and that only the relevant lay-
ers remain in S′′ . This is different for Algorithms 2 and 3. Our multilayer star algorithm 
performs O(�) operations for both Push and Pop functions and O(�2) for ProcessCur-
rent, adding O(�2) operations for each edge. This also holds for partially timed networks. 
However, for small � , �2 is negligible with respect to time complexity, i.e., O(�2) would in 
practice add only a constant, and the multilayer algorithm remains linear in the size of 
the input sequence. Note that for a one-layer network, O(�2) = O(1) . Similarly, for our 
multilayer triangle algorithm, we go from an original complexity of O(1) to O(�2).

Compared to the original algorithm, the sizes of the “sum” and “count” counters 
increase, respectively, by a factor of �2 and �3 . With small � and the largest of these data 
structures being of size 8�3 , the space requirements for these counters are negligible. 
However, the “nodes” counters require a far greater amount of space. In our multilayer 
algorithm, we increase the size of the “nodes” counters by a factor � . Thus, each “nodes” 
counter consists of 4�k integers, where k is the number of neighbors. In the worst case, 
all other nodes are neighbors and k equals n− 1 . Therefore, the much smaller factor � is 
negligible in space complexity.

Counting larger motifs
In this section, we explore motifs with more than 3 nodes and edges. Specifically, we deter-
mine which motifs can still be counted faster than O(m2) . Larger motifs are of interest, 
because only a small set of meaningful interaction patterns can be captured with 3 nodes. 
For example, in [11], several meaningful 4- and 5-node multiplex motifs were extracted 
from corporate networks. In biological networks, it is not uncommon for motifs to consist 
of a much larger number of nodes and edges. For example, in [25], in protein–protein inter-
action networks, meaningful motifs consisting of up to 20 nodes and 27 edges were found.

The first step in extending the algorithms introduced in [15] (and explained in a mul-
tilayer context in the "Multilayer counting algorithms" section) is to add a single node 
and edge. Therefore, we focus specifically on 4-node, 4-edge, δ-temporal, �-layer motifs 
in the "Categorization of 4-node, 4-edge motifs" section. We categorize these motifs 
into various types and investigate whether each of these types could be counted using a 
similar approach as used for 3-node, 3-edge motifs. We find that there is one particular 
constraining phenomenon, namely that of neighbor loops, that in some cases hinders us 
from handling such larger motifs efficiently, as explained in the "Neighbor loops" section. 
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In the "Complexity of algorithms and counting approach viability for larger motifs" sec-
tion, we discuss the viability of counting other size motifs using the delta-timewindow 
approach within O(m2) time.

Categorization of 4‑node, 4‑edge motifs

In this section, we take a particular interest in 4-node, 4-edge motifs. Much like for 
3-node, 3-edge motifs, every 4-node, 4-edge multilayer temporal motif is directly associ-
ated with a 4-node, 4-edge temporal motif. In the previous section, we also discovered 
that the approach to counting temporal motifs does not change when we allow multi-
ple layers. Since we wish to investigate if the same type of approach also works for the 
larger motifs, outside of data structure and algorithm descriptions, we omit layer-related 
aspects.

We define each 4-node, 4-edge motif to consist of two connected nodes u and v and 
two neighbor nodes x and y. In all following 4-node, 4-edge motif figures, the top left 
node is considered to be u and the bottom left node v. The 3-node, 3-edge motifs could 
be split into two types of motifs: star and triangle motifs. Similarly 4-node, 4-edge motifs 
can be split into five types of motifs:

•	 Square or circle motifs (sq) are motifs that form a square. Such a motif consists of the 
edges (u, v), (u, x), (v, y), (x, y) regardless of the direction of the edges. An example 
Square motif is shown in Fig. 3a.

•	 Tailed-Triangle motifs (tt) are motifs that form a triangle and have an additional “tail”. 
Such a motif consists of the edges (u, v), (u, x), (v, x), (v, y) regardless of the direction 
of the edges, where (v, y) is of course the tail. An example Tailed-Triangle motif is 
shown in Fig. 3b.

•	 Star motifs (st) are motifs with all edges connecting to a single node. Such a motif 
consists of the edges (u, v), (u, x), (u, x), (u, y) regardless of the direction of the edges. 
An example Star motif is shown in Fig. 3c.

•	 Mid-Path motifs (mp) are motifs that form a path of length three with a double edge 
at its center. Such a motif consists of the edges (u, v), (u, x), (u, v), (v, y) regardless of 
the direction of the edges. An example Mid-Path motif is shown in Fig. 3d.

•	 Head-Path motifs (hp) are motifs that form a path of length three with a double edge 
at the head of the path. Such a motif consists of the edges (u, v), (u, x), (u, x), (v, y) 
regardless of the direction of the edges. An example Head-Path motif is shown in 
Fig. 3e.

We denote each of these motifs using the index shown in parentheses (e.g., tt). Each of 
these types has a number of different variations, given temporal edges. Figure 4a–e pro-
vides overviews of these different variations for each respective type. For readability, the 
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figures only show undirected variants of these motifs; the 24 directed variations can triv-
ially be derived. All other 4-node, 4-edge temporal motifs are isomorphic to one of these 
variations. For every type, we discuss how the concepts of the fast algorithms from the 
previous section can be applied. The Tailed-Triangle, Mid-Path, and Head-Path motifs 
will be discussed in the "Tailed-Triangle, Mid-Path, and Head-Path motifs" section, Star 
motifs in the "Star motifs" section, and Square motifs in the "Square motifs" section.

Tailed‑Triangle, Mid‑Path, and Head‑Path motifs

For Tailed-Triangle, Mid-Path, and Head-Path motifs, we can approach the problem in a 
similar way as in the "Triangle motif counting" section for triangle motifs. Each of these 
motifs can be defined from the perspective of a single-node pair u, v. For Tailed-Triangle 
motifs, we take edge u, v to be part of the triangle, with the tail connected to v. Because 
we require the tail to connect to the node pair u, v, we cannot assign a triangle to an arbi-
trary edge. After all, the edge that is not directly connected to the tail cannot be used to 
define u, v. Thus, we must invoke the counting algorithm for every node pair connected 
by an edge. This means that we would go, at least, from a complexity of O(k

√
τ) to worst 

case O(km), with O(τ ) being the complexity of the fastest available out-of-the-box triangle 
counting algorithm, and k = maxv∈V deg(v) . However, every node pair can be processed 
in parallel and only the worst case node pairs are processed in O(k) time, provided that 
we maintain a time complexity for the counting algorithms linear in the size of the input 
edge sequence. For highly parallel execution, we would then still consider this approach 
efficient.

For Mid-Path and Head-Path motifs, we approach the problem from the node 
pair u, v that defines the middle edge of the path, because every edge in the path is 
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connected to this node pair. Analogous to Tailed-Triangle motifs, this means that we 
get, at least, a worst case complexity of O(km).

By approaching these motif types in this manner, we can count motifs analogously to 
triangle motifs. To be able to count 4-node, 4-edge temporal motifs, we need substruc-
tures that keep count for one, two, and three edges. Because the use of a delta-time-
window requires us to update counters given a single edge, all of those substructures 
need to be updated using the knowledge of only one edge. Herein lies the biggest obsta-
cle in counting 4-node motifs based on a node pair u, v. After all, a single edge will only 
contain information for (at most) one neighbor, whilst some substructures have to be 
updated as if we have knowledge of both neighbors. To mitigate this problem, we avoid 
substructures that require direct knowledge of both neighbors. Instead, we define “all” 
counters, which record the sum of the counts for all neighbors, so that we can obtain 
the sum of the count for all neighbors that are not the nbr, the neighbor defined by the 
current edge. This is achieved through updates as in line 22 of Algorithm 5. Thus, we can 
use these counters to try and catch any updates that require knowledge of both neigh-
bors. Figures 5, 6 and 7 show all substructures, i.e., the subgraphs and their data struc-
tures, that capture all information for one-, two-, and three-edge subgraphs, respectively.

For all these data structures, there exist different versions for the various timings 
of the edges; for one edge, we have pre- and post-versions; for two edges, we have 
pre, post, and mid; and for three edges, we have pre, pre_mid, post_mid, and post. 

u

v
mid nodes = [dir, l]

nbru

v nbr

or
nodes = [uorv, dir, l, nbr]

nodes all = [uorv, dir, l]

Fig. 5  One-edge subgraphs and data structures
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However, not all variations of each data structure are required to count the set of 
4-node, 4-edge δ-temporal, �-layer motifs. Figure 8 shows the three-edge timings for 
pre_mid and post_mid displayed on a timeline.
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a    b    
Fig. 8  Timings with updates at tj. a Pre_mid edges in the delta-time window, b post_mid edges in the 
delta-time window
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Despite all the various data structures and their timings, the number of counters is only in 
the order of O(�2|nbrs|) . However, note that adding only a single node and edge has drasti-
cally increased the number and complexity of the substructures at play. This makes both the 
implementation of these algorithms and a check of their correctness far more difficult.

Because we are considering the same approach as employed for 3-node, 3-edge motifs, 
we again use the algorithmic framework defined in Algorithm 2. It follows that the gen-
eral logic of how data structures are updated also remains unchanged. Thus, describing 
the exact update logic for each of the counters would be cumbersome, so we only pro-
vide the snippets that are vital to the runtime complexity in Algorithm 5.



Page 19 of 34Boekhout et al. Comput Soc Netw             (2019) 6:8 

From these snippets, we can see that some data structures require a loop over all 
neighbors when updating. Such neighbor loops add a factor |nbrs| , worst case k, to the 
algorithm’s time complexity. In the "Neighbor loops" section, we discuss why for many 
4-node, 4-edge motifs, we require these substructures, and why neighbor loops are actu-
ally the most efficient solution.

Star motifs

Counting star motifs, of any size, can be approached in two ways. First, we have the 
approach used for the 3-node, 3-edge star motifs in the "Star motif counting" section. 
This approach considers one center node u and its neighbors and counts all motifs 
with u as its center node. The second approach uses the same concept as used for 
Tailed-Triangle, Mid-Path, and Head-Path motifs described above. Considering a 
node pair u, v, with u the center node of the motifs, we consider all other neighbors of 
u and count all star motifs with u as a center node that include at least an edge (u, v).

Since n is generally much smaller than m, it is clear that the first approach should 
be more efficient than the second. However, the second approach is able to utilize 
substructures already constructed for counting the Tailed-Triangle, Mid-Path, and 
Head-Path motifs. In fact, we require so few additional data structures and updates 
that, if we would be counting Tailed-Triangle, Mid-Path, and Head-Path motifs, also 
counting Star motifs should have little to no impact on the performance. Therefore, 
counting Star motifs alongside Tailed-Triangle, Mid-Path, and Head-Path motifs 
would be more efficient using the node pair approach than the node-center approach 
of Star motifs from the "Star motif counting" section.

Square motifs

The approach for Square motifs is perhaps the most different from those for 3-node, 
3-edge motifs. Neither an approach from a single node nor a node pair will allow us 
to gather the edges (x, y). Therefore, for Square motifs, we must extend from a node 
pair to a node triple u, v, x and assign each static Square motif to such a triple.

In general, if we did not assign each static Square to a triple, we would undoubt-
edly end up with an inefficient algorithm. This is due to the fact that, in the 
worst case, the number of paths of length two, i.e., triples u,  v,  x, is of complexity 
O(m(2k − 2)) → O(mk) . Therefore, even without considering the actual complexity 
of the counting procedure itself, the complexity would be at least a factor m worse 
than the O(k

√
τ) of counting triangle motifs. Note that this is likely not avoidable for 

even larger motifs. Therefore, it should be clear that increasing the motif size will 
inevitably lead to at least quadratic complexity.

We can use triples for Square motifs more efficiently, because we can assign each 
static Square motif to a single node triple in such a manner that we optimize the 
number of Square motifs covered by each considered node triple. We achieve this by 
choosing the node triple that contains the largest number of edges between them, so 
not just the largest number of edges between u, v and u, x, but also v, x. Although not 
all three connections occur in a single Square motif, we can combine more Square 
motifs if we consider not just the neighbors of v and x, but also those of u. This is 
visualized in Fig. 9.
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Because we require such a different approach for Square motifs, further discus-
sion about the counting of Square motifs is outside the scope of this paper. However, 
in the "Complexity of algorithms and counting approach viability for larger motifs" 
section, we theorize about the potential efficiency or inefficiency of counting motifs 
using node triples. Table 1 at the end of this section summarizes the different types 
of motifs discussed above. Note that motif counts sum to 624, which corresponds to 
the 24 directed variants of the in total 39 undirected motifs in Fig. 4a–e.

Neighbor loops

As discussed in the "Tailed-Triangle, Mid-Path and Head-Path motifs" section, neigh-
bor loops are the constraining factor hindering us from creating truly efficient motif 
counting algorithms for all 4-node, 4-edge motifs. To show that neighbor loops are the 
most efficient solution, we must show that the data structures in question are required, 
given an approach from a node pair u, v, and that neighbor loops are the most efficient 
update method for these data structures. The former is evident from Fig. 10 where we 
use motif Mtt,3,3 as our example. Because we approach the problem from a node pair u, v 
and all edges must be accessible from this node pair, we can only choose edges 3 or 4 as 
our “final edge”. Both resulting three-edge data structures require a “sum” data struc-
ture with knowledge of the neighbor defined by edge 1 ( nbr1 ) for its updates. If we were 
to ignore any knowledge of the involved neighbors for the “sum” data structures, then 
during updates of the three-edge data structures, we would not be able to distinguish 
between the three scenario’s depicted in Fig.  11. One of the scenario’s consists of five 
nodes, which we should not expect to be able to count more efficiently than four--node 
motifs. Therefore, it is not viable to ignore the fact that we cannot distinguish between 
the scenarios and subtract their counts. Thus, at minimum, we must have knowledge of 
nbr1 . Because we require knowledge of nbr1 , we get |nbrs| different counters for sum1. 

u, v, xu, v, x

u, v, x
y y

y

Fig. 9  Node triple Square motif coverage

Table 1  Overview of the five types of 4-node 4-edge temporal motifs, the number of such 
motifs (in directed networks), and  the  time and  space complexity of  efficiently counting 
such motifs

Type Motifs Counting algorithm Overall

Square 48 – –

Tailed-Triangle 192 O(k2) O(mk
2)

Star 96 O(k2) O(nk2)

Mid-Path 96 O(k2) O(mk
2)

Head-Path 192 O(k2) O(mk
2)
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This in turn leads to neighbor loops in the Push() function as can be seen in Algorithm 5. 
After all, Push() updates data structures given a newly added edge, i.e., the second edge 
is added for the “sum” data structures, and this new edge has no knowledge of nbr1 . 
Therefore, we must update all sum1 counters. As such, it is not the update logic, but 
the number of counters that requires neighbor loops, and we cannot reduce the number 
of counters. Thus, using the approach from a node pair u, v forces us to use neighbor 
loops which in the worst case ( |nbrs| = k ) results in a time complexity of O(k2) for the 
counting algorithm and O(mk2) overall. Since k2 > m in most cases, O(mk2) > O(m2) . 
As such, we consider the algorithm inefficient for all motifs that require neighbor loops 
for its updates.

Another possible solution to neighbor loops would be to use a larger base instead of 
a node pair. The smallest step in complexity here would be to use node triples u, v, w. 
Using node triples allows us to avoid “sum” and “split” substructures, because we would 
only have one neighbor. However, inherent to node triples is a minimum of two edges 
connecting the node triple. Because only one of those edges can serve as the “final edge”, 
we always require “path” like substructures. Like “sum” data structures, “path” data 
structures also require neighbor loops (see Algorithm 5). Therefore, if we were to use 
node triples, neighbor loops would be unavoidable resulting in, at least, a complexity 
of O(k2) for the counting algorithm. The overall complexity would depend on the num-
ber of node triples used, which we presume would always be more than the amount of 
node pairs. We theorize more about this in the "Complexity of algorithms and counting 
approach viability for larger motifs" section.

Mtt,3,3

pre split2

pre sum1

pre sum1

mid merge

1

3 4

2

1

3

2

1

4

2

3

2

1

2

1

2

1

4

−

+

−

+

Fig. 10  Possible substructures of motif Mtt ,3,3
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Complexity of algorithms and counting approach viability for larger motifs

Table  1 summarizes the different types of motifs discussed in this section. Recall that 
the original temporal motif counting algorithm runs in O(m), and that any adjusted 
approach is viable if its time complexity is lower than O(m2) . Previously, we already 
determined that, given a node pair as base, the approach is not viable for all 4-node, 
4-edge (multilayer) temporal motifs. In fact, it can be shown that all 3-edge data struc-
tures defined in Figure  7 require a 2-edge data structure, which requires a neighbor 
loop in at least one of its updates (sum, split, path, and rpath). Therefore, it is reason-
able to assume that all motifs larger than four nodes and four edges would be at least as 
complex.

Given this assumption, we are only left with discussing motifs with three nodes and 
more than three edges, or vice versa. The second case only has a small number of pos-
sible motifs. After all, with three edges, we can at most create a connected graph with 
four nodes. The two possible variations are depicted in Fig. 12. Although both variants 
will require “sum” and “split” substructures, we do not require neighbor loops, because 
we do not require knowledge of neighbor nodes for updating any larger substructures. 
As such, we only need the “all” data structures, which do not require neighbor loops to 
update. Thus, the approach is viable for all 4-node, 3-edge motifs. When we have three 
nodes and four (or more) edges, we can split the possible motifs into the four categories 
depicted in Fig. 13. The first category has one edge between u and v, and the remain-
der of the edges are from the center node u to some neighbor nbr. When we consider 
(u, v) as our final edge, all the remaining edges are between u and nbr. As such, we can 
perform all counter updates in O(1). The second category consists of motifs with two 
(or more) edges between center node u and both neighbors. Whether we choose to 
approach this as a center node with two neighbors or a node pair u, v with one neigh-
bor, we require a “path” like 2-edge data structure which requires a neighbor loop in 
its updates. If we approach it as a node pair, we get O(mk2) , which is not viable. If we 
approach it with a center node, we get O(nk2) which is likely to be smaller than O(m2) 
and is thus viable. We should note that the “path” data structure would then require 
direct knowledge of both neighbors, because the “final edge” has a common neighbor 
with one of the edges from the “path”. This would lead to far more neighbor loops and 
the counting algorithm would practically be slower than that for the node-pair approach 
despite having the same complexity ( O(k2) ) for the counting algorithm.

The third category are triangle motifs with only one edge between node pair u, v. 
These motifs require only “double” and “merge” like substructures and should, 

Fig. 12  The two variations of 4-node, 3-edge motifs

v

u(1)

v

u(2)

v

u(3)

v

u(4)

Fig. 13  The four categories of 3-node, > 3-edge motifs
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therefore, allow for O(1) updates. The final category is triangle motifs where all node 
pairs are connected by at least two edges. These motifs run into the same problem 
as the second category. Because these motifs require node pairs as base, it cannot be 
counted within O(m2) and is thus not viable. We have determined that, using a node 
pair as base, all 4-node, 4-edge motifs cannot be counted within O(m2) . However, for 
some 4-node, > 3-edge Star motifs we can approach it with a center node. Specifi-
cally, we can count them efficiently as long as, for one of the neighbors, there is only 
one connected edge. This edge would then serve as the “final edge” and the update 
complexity would not differ from category 2 in Fig. 13. For 4-node, > 5-edge motifs, 
e.g., in Star motifs, it can occur that all neighbors are connected by at least two edges. 
In those cases, “path” like data structures would be needed that have knowledge of 
all three neighbors. As a result, the complexity of the neighbor loops would go up 
to O(k2) , of the counting algorithm to O(k3) and overall O(nk3) , which is bigger than 
O(m2) for all but the most dense networks.

In summary, counting motifs using a node pair or a center node as a base is viable 
for: all 3-node, 3-edge motifs; all 4-node, 3-edge motifs; all 3-node, > 3-edge motifs of 
categories 1, 2, and 3 as depicted in Fig. 13; and all 4-node, > 3-edge Star motifs with 
at least one neighbor connected by exactly one edge.

The question remains whether node triples can be used to efficiently count any 
motifs for which node pairs were not viable. In the "Neighbor loops" section, we deter-
mined that given four (or more) nodes, using node triples as a base would require 
neighbor loops and would result in, at least, a complexity of O(k2) for the counting 
algorithm. Thus, for node triples to be a viable option, we require the number of node 
triples used to be less than m. Because there are O(m(2k − 2)) possible node triples, 
we need to assign static motifs to node triples as we suggested for Square motifs. To 
do so, we need to first enumerate the static motifs. As a result, we distinguish motifs 
by their underlying static motif. For each set of motifs with the same underlying static 
motif, its own specialized algorithm is formed. For such an algorithm to be efficient, 
i.e., viable, it must allow for faster enumeration of the static motifs than O(m2) and 
the number of node triples to which the enumerated static motifs are assigned should 
be less than m. If both those conditions hold, then using node triples to count that 
type of motifs could be considered viable, i.e., efficient.

Datasets
In this section, we discuss the various datasets on which our experiments will be run. 
Descriptive statistics on the six datasets are shown in Table  2, listing the number of 
nodes, edges, and layers for each network dataset. Column “Max. deg.” contains the 
largest degree values over all nodes and “Static edges” contains the number of edges in 
the underlying static graph. Note that self-edges are removed during preprocessing and 
already excluded from these statistics. Details on each of the datasets are given below.

Email-EU-Core. This dataset represents a network of email communication from a 
large European research institution [34]. For each user, a department is known and we 
consider (u, v, t, 0) to represent an email sent by user u at time t to user v, with u and v in 
the same department ( l = 0 ). When l = 1 , a link (u, v, t, 1) represents inter-department 
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email, i.e., an email with sender and receiver in different departments. We make no dis-
tinction between the 42 different departments. Furthermore, note that a link between 
two users is only included once upon the first e-mail being sent. To test the algorithm 
in untimed networks, but also as a result of data-quality issues in this network dataset’s 
timing information, the temporal aspect of these data was ignored; it is considered to be 
untimed.

Math-Overflow, Facebook, Ask-Ubuntu, Super-User, Stack-Overflow. 
These network datasets capture communication within the respective expert knowl-
edge exchange websites. On these online platforms, users can pose questions, which 
other users then answer or discuss about, resulting in three layers of interaction 
between the users. Topics vary, but in this paper, we study such platforms in the 
fields of technology in general (Stack Exchange), mathematics, system management, 
and a particular Linux operating system. On these websites, topic-specific questions 
are answered and commented on by other users. On one of these websites, an edge 
(u, v, t, l) describes how at time t, for l = 0 , user u answers a question by user v; for 
l = 1 , it indicates that u comments on a question posed by v (e.g., requesting clarifi-
cation); and finally for l = 2 , indicates that user u comments on an answer given by 
user v (e.g., participates in a discussion of the answer). One-layer temporal versions of 
these datasets were previously studied in [15].

Facebook. Also known as the WOSN 2009 datasets  [35]. This multilayer network 
dataset captures the evolving user-to-user link structure of a sample of the Facebook net-
work, as well as communication between users via the wall feature. The data concern the 
Facebook New Orleans region. An edge (u, v, t, l) describes that user v appears in user u’s 
friendlist ( l = 0 ) or that user u posts on the wall of user v at time t ( l = 1 ). Timestamps are 
not known for all edges in layer 0 and we thus consider this layer network to be partially 
timed. In addition, the friendship links are undirected, whereas wall posts are modeled by 
directed links.

Experiments
First, the overall experimental setup is described in the "Experimental setup" section. 
Then, results related to the performance of the multilayer algorithm are presented in 
the "Results—performance" section, followed by an analysis of the discovered multilayer 
temporal motifs in the "Results—discovered motifs" section.

Table 2  Network dataset statistics

Dataset Nodes Edges Static edges Layers Max. deg.

Email-EU-Core 985 24,929 24,929 2 345

Math-Overflow 24,759 390,441 228,215 3 2,172

Facebook 63,792 2,401,228 1,592,562 2 1,100

Ask-Ubuntu 157,222 726,661 544,774 3 5,401

Super-User 192,409 1,108,739 854,377 3 14,294

Stack-Overflow 2,584,164 47,903,266 34,901,115 3 44,065
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Experimental setup

The goal of the experiments is twofold. First, we want to assess the performance of the 
implementation of the multilayer algorithms presented in the "General motif counting" 
section. Second, we want to evaluate the discovered multilayer motifs, and what insights 
these results give in the context of different types of online communication. We will ana-
lyze online expert communities, social networks, and communication networks, i.e., the 
large-scale network datasets described in the "Datasets" section.

The multilayer algorithms were implemented as a component of the Stanford Network 
Analysis Project (SNAP, see [36] for details). Our implementation can be found at [37]. 
To assess the correctness (i.e., are the right counts reported) of the implementation, we 
perform a number of checks. First, we confirmed that the counts of our multilayer algo-
rithm are identical to that of the original algorithm, as well as that when all layers are 
considered equal, the original algorithm counts are equal to the sum of the motifs over 
all layer configurations. We furthermore assess the influence on performance of both of 
these situations in the "Results—performance" section. Second, we investigated whether 
configurations that are not possible due to the nature of the data (e.g., due to partial tim-
ing or certain prohibitive layer combinations), indeed, result in correct (zero) counts. 
This is done throughout the "Results—discovered motifs" section.

All experiments were run on a single machine with 16 Intel Xeon E5-2630v3 CPUs at 
2.40 GHz (32 threads) with 512GB RAM (although RAM usage is not a relevant con-
straining factor in the experiments). We run the experiments for 1, 2, 4, 8, 16, and 32 
threads. Whenever we report execution runtimes, then these runtimes do not include 
the time required for reading the graph from disk into memory. All runtimes were aver-
aged over 10 runs. We found that the standard deviation over these runs was always 
below 5% of the average runtime. Time window δ was set to a percentage (1%, 5%, 10%, 
20%, 50%, and 100%) of the full timespan covered by the temporal network dataset in 
question.

Results—performance

Here, we perform three different experiments to assess the performance of the pro-
posed multilayer algorithms. The first aim is to understand the performance overhead 
of our multilayer adjustments when only one layer is considered. Second, we want 
to assess the performance of our multilayer algorithm, comparing equal size single-
layer and multilayer datasets. Third, we wish to understand the effect of time-window 
parameter δ on the performance.

Figure 14a, b first compares the runtimes of the original and multilayer algorithms, 
given one layer. With eight threads, the runtime percentage difference for all fully 
timed datasets is at most 3.06%. This teaches us that without loss of significant perfor-
mance, we can also use the multilayer algorithm for a one-layer dataset. Furthermore, 
Figure 14a shows that for both the original and our multilayer algorithm, the best per-
formance is achieved at either four or eight threads. The performance improvement at 
a larger number of threads is most evident for the large network (Stack-Overflow), 
which we believe is related to the maximum degree (see Table 2). A higher value for 
this metric means that the benefit of running different nodes and/or node pairs on 
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different threads becomes clearer. This may be due to a relatively longer time being 
spent investigating one single node or node pair.

Figure  15a displays the difference in execution times as a percentage difference, 
comparing single- and multilayer data using the multilayer algorithm. The single-
layer data were constructed from the multilayer data by considering all layers to be 
identical, so that the same size dataset is used in comparisons. As expected, the low-
est runtime differences are for the two-layer datasets (Email-EU-Core and Face-
book). We also see that the four expert exchange websites follow the same trend with 
the minimum percentage difference at 16 threads. However, Fig. 15b shows that this 
minimum is aided by the fact that at 16 threads, the algorithm encounters a perfor-
mance drop, whilst the actual numerical runtime difference is similar to four threaded 
execution. This leads to a lower percentage difference. Therefore, the more relevant 
minimum is at four threads, which coincides with a minimum in runtime. From the 
results presented here, we also note that for partially timed datasets (which, in our 
case, are the two-layer datasets), no difference in performance is observed.

Finally, we note that theoretically, the value of the time-window size δ should not affect 
performance. The reason is that each edge is processed at most three times per con-
nected node. Figure 16 empirically confirms this; there is virtually no difference in runt-
ime between δ values of 1%, 5%, 10%, 20%, 50% and 100% of the dataset’s timespan.

a b
Fig. 14  One-layer performance of the original algorithm and multilayer algorithm. a Absolute execution 
times of both the original and multilayer (extended) algorithm, on one layer. b Relative execution time 
differences between original and multilayer (extended) algorithm, on one layer

a b
Fig. 15  Multilayer performance of the multilayer algorithm. a Execution time differences of multilayer 
(extended) algorithm, comparing single vs. multilayer. b Execution times of single and multilayer runs using 
the multilayer (extended) algorithm
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All in all, these performance experiments confirm our theoretical argumentation in 
the "Complexity of multilayer triangle and star algorithms" section. The multilayer 
aspect as well as the incorporation of partial timing adds only a constant factor related 
to the number of layers � , which in practical settings only increases runtimes by 10 to 
40%. Even for the Stack-Overflow network with over 2.5 million nodes and 47 mil-
lion edges, runtimes remain in the order of a handful to tens of minutes. This makes the 
overall approach suitable for handling large-scale multilayer networks.

Results—discovered motifs

One run of the multilayer temporal motif counting algorithm on a multilayer network 
dataset results in the counts of each of the 2, 3-node, 3-edge, δ-temporal, �-layer motifs, 
as shown in Fig. 1a. We refer to such a large set of results of all motifs as the motif foot-
print of a network. In total, there are 36 temporal �-layer static motifs, which we number 
from 1 to 36 in natural reading order (left to right; top to bottom). Depending on the 
number of layers of the considered network dataset, we obtain each of these counts for 
each of the �3 layer permutations of a motif. The three-layer networks Ask-Ubuntu, 
Math-Overflow, Super-User, and Stack-Overflow have a total of 33 = 27 of such 
combinations, as shown in Fig.  1b. For the two-layer datasets Email-EU-Core and 
Facebook, we have 23 = 8 layer permutations. Indicating the first layer by 0 and the 
second by 1, these 8 permutations correspond to layer permutations 000, 100, 010, 110, 
001, 101, 011, and 111, respectively. In the remainder of this section, we fix δ to 1% of the 
total timespan covered by the considered network dataset.

Results for 2‑layer networks

For the two-layer networks, a total of 8× 36 = 288 different motifs were counted, as 
shown in Fig. 17. On top of each column is the total number of temporal motifs over all 
layer permutations. Each cell is colored per column, indicating the percentage of motifs 
with the layer permutation of that row. This allows us to see which layer combination is 
dominant for each of the motifs.

Email-EU-Core. Recall from the "Datasets" section that this dataset is untimed. 
Results are shown in Fig. 17a. We note how only 10 out of the 36 motifs (columns) are 
actually observed. The 26 unobserved motifs involve repeated communication between 
two users, which is simply not included in this dataset as described in the "Datasets" 

Fig. 16  Execution times for different δ values for one-layer and multilayer execution
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section. We note that row 3 is virtually empty. This layer permutation corresponds to 
the permutation M1,3,4 in Fig. 1b. This would involve a pattern where the first and third 
edges are e-mails within a department, and the second edge is an intra-department 
e-mail. However, for each of the 10 motifs that are found, this would mean that a cer-
tain node pair in the motif would suddenly swap from being in a different department 
to being in the same department. This is of course not possible. The particular way of 
constructing this dataset prohibits the occurrence of certain motifs and hence is a good 
empirical check on the correctness of the algorithm. In general, we note that the major-
ity of communication patterns (motifs) occur either solely between departments (row 
8), or completely within the same department (row 1). This suggests that for a large part, 
communication between departments is done by other people than those who commu-
nicate a lot within a department.

Facebook. Recall from the "Datasets" section that this dataset has partial timing; 
the friendship relations in the first layer are partially timed and undirected and the 
wall-posting activities in the second layer are timed. Results are shown in Fig. 17b. As 
expected, various motifs with repeated edges between the same two nodes do not occur 
in layer permutation 1 (three friendship links, row 1). Also as expected, row 2 is empty, 
as this layer permutation (permutation 2 in Fig. 1b) would indicate a wall post before a 
friendship is established. Apparently, a friendship between two users always has a lower 
timestamp (or no timestamp, as this layer is partially timed) than all wall posts between 
these two users. Layer permutation 5, indicating two friendships followed by a wall post, 
is rather common, demonstrating clearly the benefit of a multilayer perspective: these 
motifs show how a wall post often follows a friendship formation. Interestingly, layer 
permutation 7, indicating a friendship followed by two wall posts, is dominantly present. 
However, in this case, it is not as informative, as it mostly occurs for cases where the first 
friendship is independent of the second two posting activities, which are either repeated 

a

b
Fig. 17  Counts of the 8× 36 multilayer temporal motifs for the 2-layer datasets. For each distinct motif 
(column), colour intensity indicates what fraction of the motifs has the particular layer configuration indicated 
by that row. a Email-EU-Core, b Facebook 
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posts in the same direction or mutual communication. Finally in row 8, we see in the 
bottom-right various motifs, e.g., 25, 26, 31, and 32, indicating back and forth commu-
nication between two nodes, hinting at the use of the Facebook wall as a public form of 
direct communication between two users.

Results for 3‑layer networks

For the 3-layer networks, a total of 27× 36 = 972 different motifs were found, as shown 
in Fig. 18. Recall that again each column is one of the 36 motifs in Fig. 1a and each row 
denotes one of the 27 layer permutations of Fig. 1b. Whereas the two layer experiments 
were mostly a validation of the correctness of the algorithms in undirected, partially 
timed and untimed networks, the true interplay of layers becomes visible for the three-
layer datasets.

Math-Overflow, Ask-Ubuntu, Super-User, Stack-Overflow . Recall from the 
"Datasets" section that in these knowledge exchange networks, the first layer denotes 
answering a question, the second layer represents a clarification request (commenting 
on a question), and the third layer indicates that discussion is going on (commenting 
on an answer). We again observe various empty rows. Contrary to the two-layer data-
sets described above, for these four knowledge exchange website networks, there are no 
restrictions in terms of which layer should follow which other layer, or which layers can-
not co-exist due to the way which the data were constructed. In theory, every user can 
pose and answer questions and place comments on questions and answers. However, 

a b

c d
Fig. 18  Counts for the 27× 36 multilayer temporal motifs for the three-layer datasets. For each distinct motif 
(column), colors indicate what fraction of the motifs has the particular layer configuration indicated by that 
row. a AAsk-Ubuntu, b Math-Overflow, c Super-User, d Stack-Overflow 
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we note that in all four datasets for which the motif footprint is shown in Fig. 18, motifs 
involving three (row 1) question–answer activities are very rare. Similarly, two edges of 
this type (e.g., layer permutations 2, 3, 4, 10, and 11) are still rather sparsely occupied. 
In particular, motifs with reciprocated links (see Fig. 1a) rarely occur when the recipro-
cated link is of the type question–answer. This may indicate that even though the web-
sites are intended as a platform where communities of experts are built, there is a clear 
distinction between experts who answer the questions and more novice users that pose 
these questions.

Insights can also be obtained from the counts of certain individual motifs. The bot-
tom row of each of the footprints in Fig. 18 shows that, for 2-node 3-edge motifs, com-
munication dominantly involves the (third) discussion layer. Interestingly, in Fig.  18a, 
two of such 2-node temporal motifs, namely 25 and 26 ( M5,1 and M5,2 in Fig. 1a), both 
indicate reciprocated communication between users. The total count of these two motifs 
(213, 938 and 383, 770) is in the same order of magnitude. However, the multilayer per-
spective shows us that M5,1 concerns mostly comments to questions (row 27 of Fig. 18a), 
whereas M5,2 indicates that a question is answered, after which the person who asked 
the question comments on the user who answered the question, likely seeking additional 
help or clarification. Here, the multilayer perspective helps to unravel different types of 
communication between users that in a layer-agnostic perspective would have remained 
aggregated.

Furthermore, from Fig. 18, we can immediately see that the majority of activity takes 
place in row (layer permutation) 27, representing various motifs of discussion activity on 
a given answer. This appears to be the case for Ask-Ubuntu, Super-User, and Stack-
Overflow, but not as much for Math-Overflow. In fact, the first three platforms 
have extremely similar motif footprints (see Fig.  18a, c, and d). This is interesting, as 
apparently the first three websites have very similar communication between their users, 
even though they differ substantially in network size (see Table 2). Communication on 
Math-Overflow appears to be much more dominantly taking place involving multiple 
different layers.

Comparing motif footprints

To investigate the aforementioned observed differences in motif footprints, we compute 
between each pair of expert exchange websites the difference in distribution of motifs 
over layer permutations. This comes down to assessing the difference between the nor-
malized frequencies per column of the motif footprints in Fig. 18. Figure 19 visualizes 
these pairwise differences between the motif footprints of the three most different pairs 
of expert exchange websites. This difference is computing by taking the average differ-
ence of the column-normalized counts of each of the 27× 36 distinct motifs, and is 
shown between parentheses in the captions of Fig. 19. In the figure, color is proportional 
to the difference between the relative counts of the layer permutation of that particular 
motif.

From Fig.  19, we conclude that whereas in the other three networks, most commu-
nication is in the comment-on-answer layer, in the Math-Overflow network, there 
is much more question–answer and question–commenting activity going on. It may be 
the case that on the three more computer science oriented platforms, one question to an 



Page 31 of 34Boekhout et al. Comput Soc Netw             (2019) 6:8 

answer is quickly indicated as the best one, which is then fine-tuned based on user com-
ments. In mathematics, one or more answers to a certain question are more intensively 
discussed, resulting in additional answers being formulated. Formulating the above in a 
more extreme sense, one could say that Math-Overflow has more elaborate discus-
sions, whereas the technical platforms Ask-Ubuntu, Super-User, and Stack-Over-
flow fulfill slightly more of a “helpdesk” kind of role.

Figure 20 visualizes the differences between the motif footprints of Stack-Overflow 
and the other knowledge exchange websites. Where we had already seen that recipro-
cal links of the type question–answer were rare for all knowledge exchange networks, 
Fig.  20 shows that motifs with reciprocal links (see Fig.  1a and b) of the types ques-
tion–answer and question–comment (or a combination of the two) are heavily under-
represented in Stack-Overflow compared to the others. This may indicate that for 
Stack-Overflow, we can distinguish between expert and novice users further, i.e., 
novice users are less likely to comment on questions on Stack-Overflow and their 
activity, is therefore, limited to asking questions and commenting on answers. Therefore, 
answering questions and commenting on questions seem to be the domain of the expert 
users on Stack-Overflow.

Insights in the differences between the expert exchange platforms may have implica-
tions for the way in which these platforms operate. For example, whereas these websites 
typically work with a system where the user who asked the question can mark the one 
right answer, our finding suggest that this may not be the case for all of the platforms. In 

a b c
Fig. 19  Differences between the motif footprints of the three most distinct expert knowledge exchanges. 
a–c each denotes a pair (Math-Overflow vs. DatasetX). For a multilayer motif (cell), color is proportional to the 
difference, where blue denotes that the motif is more dominant in Math-Overflow, and analogously orange 
in DatasetX. Color gradient is proportional to the log2 difference. Values between parentheses denote the 
average difference between all 27× 36 column-normalized counts. a Math-Overflowvs. Stack-Overflow (0.50), b 
Math-Overflow vs. Super-User  (0.43), (c) Math-Overflow vs. Ask-Ubuntu (0.39)

a b c
Fig. 20  Differences between the motif footprints of Stack-Overflow and the other knowledge exchange 
networks (see Fig. 19 caption for details).  a Stack-Overflowvs. Math-Overflow (− 0.50), b Stack-Overflow vs. 
Ask-Ubuntu (− 0.25), c Stack-Overflow vs. Super-User (− 0.25)
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addition, the differences between platforms may say something about the users involved 
in for example Math-Overflow vs. for example Ask-Ubuntu, whereas, on the other 
hand, they may unveil interesting details about the disciplines represented by these plat-
forms and their users.

In conclusion of this experimental section, we see that several multilayer motifs are 
never observed, either due to the way the data were constructed, or as a result of the 
users that are causing the behavior represented by the motifs. Other motifs only occur 
for particular combinations of layers, sometimes resulting in interesting insights into the 
behavior of users. In general, there is substantial heterogeneity when it comes to involve-
ment of different types of interaction (layers) in motifs, warranting, whenever such data 
are available, a multilayer approach to understanding motifs in networks.

Conclusion and future work
In this paper, we have successfully demonstrated our multilayer temporal motif counting 
approach for understanding complex patterns in evolving large-scale networks. Motifs, 
being the little network building blocks consisting of a small number of s edges, come in 
precisely �s flavors in multilayer networks with � layers of interaction. Using experiments 
on several real-world datasets of online communication between users, we investigated 
the performance as well as the insights obtained using the proposed approach for count-
ing these multilayer motifs.

Theoretically, the multilayer aspect adds a factor of �2 to the original temporal motif 
counting algorithm (which runs in O(m), where m is the number of links). For networks 
with one layer, the proposed multilayer algorithm is around 3% slower than the origi-
nal algorithm, meaning that there is little implementation overhead. In actual multilayer 
networks, where the number of layers is typically small, we found, experimentally, that 
the observed difference in runtime for three-layer networks was only 10–40% longer 
compared to single-layer networks. Therefore, much lower than the theoretical increase 
of �2 in computational complexity, which we believe is due to the fact that in real-world 
networks, layers are typically sparsely populated. The already limited memory usage 
increased by only a factor � , which is again acceptable and merely a constant factor in 
networks with few layers.

Using the so-called motif footprints, we analyzed the obtained motifs, and found that 
the multilayer perspective on temporal motifs provides substantial insights that cannot 
be obtained if the layer aspect is ignored. Certain types of motifs or layer combinations 
that do not occur at all may provide insight in how the network data were gathered or 
constructed, but more importantly, teach us something about complex patterns in the 
underlying data. Comparing various expert exchange websites, we found that, although 
the motif footprints of many of such websites were similar, one website stood out. On 
this website, dealing with expert knowledge exchange on mathematical topics, based on 
the motif footprint, users appeared to be more discussion-oriented, more actively dis-
cussing and exploring multiple answers to the posed questions.

Furthermore, we conducted a theoretical analysis of the applicability of motif counting 
algorithms to understanding larger and thus more complex network patterns. Using a 
newly proposed categorization of 4-node temporal motifs, we showed precisely which 
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motifs can and cannot be counted efficiently using the aforementioned motif counting 
algorithms. It showed that because of the so-called neighbor loops, although efficient 
for smaller motifs, there are theoretical limitations to motif counting algorithms. These 
limitations will ultimately result in motif counting becoming as slow as motif enumera-
tion. However, for quite a number of interesting patterns of size 4, we can still efficiently 
utilize motif counting algorithms.

In future work, we want to investigate the obtained motif footprints for different set-
tings of the time-window parameter. This may provide insights in how quickly patterns 
of interaction appear in certain networks, and how this differs between different net-
works. Thus far, we have applied the multilayer motif counting algorithm only to online 
communication between users on different platforms. However, the approach can be 
utilized in any timed multilayer network, such as scientific collaboration and citation 
networks, mobile phone networks, and economic networks. Ultimately, this may allow 
us to understand which types of temporal network motifs are characteristic for which 
type of network, in an attempt to discover the “prevalent motif footprints” of various 
types of real-world networks.
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