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Background
Social influence measures have been developed by using for example local structural 
characteristics [1, 2] geodesic distances [3] and random walks [4]. Most of these meas-
ures don’t have exact quantitative interpretations for general network structures and 
variable sizes of networks. Structural measures take into account local degrees of nodes 
in the neighbourhood of a source node. Geodesic based measures use distances from 
a source node. Random walks consider different paths from a source node to a target 
node but the method still is unsuccessful in combining the contributions from alterna-
tive paths to generate an exact quantitative measure.

Models for the process by which influence or ideas propagate through a social net-
work have been studied in a number of research articles for example in [5–9]. In a recent 
article [10] a review of theories for influencer identification in complex networks has 
been published. Many aspects should be considered when constructing measures for 
describing and comparing social networks. Several studies propose influence measures 
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for identifying the most influential spreaders or mediators. Obviously when spreading 
processes are analysed the concept of time should have some kind of role in the model. 
Some models presented in the literature are static and don’t investigate processes evolv-
ing dynamically or don’t provide justification for how the models describe a steady state 
or limiting states of a network. Usually network structures are not calculated exactly 
random walk in a network is an example. One requirement for the theory is a quantita-
tive model with natural interpretations of the variables. This guarantees that the numeri-
cal values obtained for all kinds of network topologies and different temporal spreading 
distributions can be compared with each other. A valid theory and an applicable model 
are needed to combine the spreading process evolving as a function of time and the 
structure of a network.

Computational difficulties must be solved in keeping track of various paths and their 
possible interdependencies. In large networks computing time may set practical con-
straints for calculations. One requirement for research of large social biological and 
technical networks is a scalable computing algorithm [11]. Good approximations can 
be achieved with limited path lengths as the rule of six degrees [12] is valid for many 
kinds of social networks. Limited path lengths can provide good results in community 
detection algorithms. In the literature many community detection algorithms take into 
account only local interactions [13].

Introduction
The aim of this paper is to provide answers to the requirements presented in the pre-
vious section. Possible models for describing the temporal spreading process are pro-
posed. A method for modelling the topological structure of a network is presented. 
Probability theory is used for combining the spreading via all the possible paths from a 
source node to a target node. Possible dependencies between different paths are taken 
into account. With these building blocks various problems in social network analysis, 
and in many other fields of network science, can be solved [14–16].

We present specifications for the most important measures needed to investigate 
social networks. These are node level ego centric centrality and betweenness measures. 
Closeness centrality describes node’s power to spread influence to other nodes in the 
network. Betweenness is a measure of the influence of nodes in a network relative to the 
flow of information between others. Betweenness centrality tends to pick out nodes that 
play the role of brokers between communities. In addition, an overall network meas-
ure, expressed as a function of time that combines different properties of the network, 
is presented. After all, different measures for different purposes can be constructed. For 
example, the concept of betweenness can be understood in many ways which makes it 
impossible to define one absolute betweenness measure.

We demonstrate the method with a real social network documented in the literature 
and compare the results with the corresponding study published recently. The same net-
work has been investigated in [3] where a comprehensive model suitable for local and 
global aspects of a social network has been presented. In [3], a model with an adjustable 
parameter for weighting neighbouring and distant nodes in the network has been used 
to determine measures for centrality and betweenness.
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In many networks a community structure exists, in which network nodes are con-
nected together in groups, between which there are less connections. A number of 
methods and algorithms have been proposed for detecting communities in social net-
works, for example published in [17–23]. The research has often been focused on devel-
oping different or more efficient algorithms and different implicit or explicit definitions 
of community [24, 25]. As different definitions of community exist, different algorithms 
are needed for discovering various kinds of communities.

Some of the algorithms for detecting communities in a network structure are mini-
mum-cut method, hierarchical clustering, Girvan–Newman algorithm, modularity 
maximization, statistical inference [26], and clique-based methods. Descriptions of the 
methods can be found for example in [13, 24, 25, 27]. Many classical algorithms for par-
titioning network nodes into groups are based on matrix and linear algebra methods. 
Examples are analogues of the Kernighan–Lin algorithm [28] for maximizing modular-
ity and an analogue of the spectral graph partitioning [29, 30] algorithms for community 
detection. A definition for modularity is the fraction of the edges that fall within the 
given group minus the expected fraction if edges were distributed at random. The Ker-
nighan–Lin algorithm is based on repeatedly moving, starting from some initial division, 
the vertices that most increase or least decrease the modularity.

The Louvain method for community detection is a greedy modularity optimization 
method to extract communities from large networks [31]. For investigation of large-
scale biological and social community structures an information theoretic approach has 
been presented in [32]. Probability flow of random walks on a network is used as a proxy 
for information flows. There are a number of other greedy or SDP-based (semi-definite 
programming) approaches for finding communities in large networks [33, 34].

A classification for community discovery methods in complex networks has been 
presented in [24]. Eight different community discovery methods have been described 
in the review: feature distance, internal density, bridge detection, diffusion, closeness, 
structure, link clustering and meta-clustering. Altogether 39 algorithms classified in 
these eight categories have been described in [24]. One of the methods is more rele-
vant from our perspective: a diffusion community in a complex network is a set of nodes 
that are grouped together by the propagation of the same property, action or informa-
tion in the network. In [24] a meta-procedure for detecting a diffusion community has 
been defined: Perform a diffusion or percolation procedure on the network following 
a particular set of transmission rules and then group together any nodes that end up 
in the same state. In this respect, a community can be defined as a set of target nodes 
influenced by a fixed set of source nodes. In the financial networks literature, a decaying 
influence model describing propagation of shocks on banking networks has been stud-
ied in [35].

Outline
The focus of this paper is to present a new influence spreading model and its applica-
tions with examples. Accordingly, the main content of this study is presented in “Theory 
of social influence measures”, “Applications of social influence measures” and “Numer-
ical results and discussion” sections. In addition, the next section introduces classical 
definitions of closeness centrality and betweenness centrality as well a recent extension 
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of the measures to consider both local and global network structure. Lastly, conclusions 
provide a short summary of the paper.

The theory is presented in several phases. First, information and influence propagation 
models are discussed. Next, the influence spreading measure between two nodes of a 
network is presented with the help of an example network of Dutch students’ social net-
work [3, 36]. Then follow definitions of quantities and the general method of combining 
paths between two nodes of a network. Temporal Spreading of Influence is a sub-model 
describing time dependence of the spreading process. After this, a high-level algorithm 
is presented for computing the influence spreading matrix describing the spreading 
between all nodes of a network.

Applications of the theory of Social Influence Measures are based on the Social Influ-
ence Matrix. In this part of the study, definitions of closeness centrality, betweenness 
centrality and community detection measures are presented.

The model is demonstrated by presenting results for closeness centrality, betweenness 
centrality and analysis of community structures. Closeness centrality and betweenness 
centrality measures are illustrated with the Dutch students’ social network [3, 36]. Four 
different networks are used as examples for detecting communities and investigating 
network structures. As an introduction, an artificial network of the Game of Risk [37] 
is analysed. Then the 32 Dutch students’ social network [36] is investigated introducing 
more complex structures. Next, an animal social network of dolphins [38] is analysed 
along with some comments on similarities and differences with respect to human social 
networks. The scalable version of the algorithm [11] is used for computing the influ-
ence spreading matrix for a Facebook social network of 4039 users. The matrix is used as 
input information for the community detection algorithm.

Geodesic based centrality and betweenness measures
Several measures of centrality and betweenness have been proposed in the literature [1, 
39]. Recently, geodesic based centrality and betweenness measures, unifying the local 
and the global network structure, have been presented [3].

A normalized version of reciprocal closeness centrality [3, 16] is defined by

where the geodesic distance gij is the distance between ego i and all its others j . N is 
the total number of nodes in the network. In [3] a generalization of Eq.  (1) has been 
proposed that weights nodes at different distances depending on the value of a gradient 
parameter δ:

where δ ≥ 0.

Classical betweenness centrality measure focuses on the power resulting from 
being on the shortest path among others. A node with high betweenness centrality 

(1)CC(i) =

∑

j �=i

(

gij
)−1

N − 1
,

(2)Cδ
C(i) =

∑

j �=i

(

gij
)−δ

N − 1
,
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is a broker between others in the network. This involves three actors, with the focus 
on actor i being on the shortest path between actors j and k . Let tjk denote the total 
number of shortest paths connecting j to k and tjik be the number of shortest paths 
connecting j to k that pass through i then the betweenness of i [3] is defined by

Again, in [3] a generalization has been proposed depending on the value of a gradi-
ent parameter δ:

Theory of social influence measures
Information and influence propagation models

Different propagation models for influence spreading can be defined depending on 
the phenomena we are studying. In the context of this paper, two main issues are 
important. Firstly, a model has to be decided for the time distribution that describes 
spreading of influence from one node to another. Secondly, propagation can proceed 
independently of states of mediating nodes, or propagation depends on the states of 
the nodes along the paths between a source and a target node.

In this paper we use Poisson distribution as the time distribution for propagation 
between nodes. In the model, it is easy to use any statistical distribution or empirical 
data instead of Poisson distribution. We have made experiments with a model based 
on Uniform distribution. This describes, for example, propagation of information via 
e-mails when users process their e-mails at uniformly distributed time points during 
a day (or other time unit). This distribution gives comparable results, but not exactly 
the same, because more spreading occurs at low time values when propagation obeys 
Uniform instead of Poisson distribution.

The second issue, when the spreading process depends on the states of the inter-
mediate nodes, is more involved. Dependency on static node attributes is a minor 
addition to the model because the model takes into account nodes and links indi-
vidually. Dynamic dependency on time dependent states of nodes can be compute-
intensive because simulations or iterative algorithms probably are necessary to solve 
the problem. In this paper, only state independent propagation models are studied. 
Nodes mediate influence regardless of their own state and states of all the other nodes 
of the network.

A realistic model for information propagation may be a state dependent variant of 
the model where propagation events (attempts of influence) occur only for new infor-
mation (or probability for new information is higher). In other words, information 
is mediated to neighbouring nodes only in cases when the node is unaware of the 
information before the propagation event. Nodes are less willing to propagate known 
information than new information.

CB(i) =
∑

j<k

(

tjik

tjk

)

.

Cδ
B(i) =

∑

j<k

(

tjik

tjk

)

(

gjk − 1
)−δ

.
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Propaganda, or other form of influence, transforms its content during the spreading 
process. Therefore, recurrent propagation events are more realistic. However, decreasing 
in amount as a function of path length limits the process. In the model of this paper, this 
is accomplished with combined effects of time dependency and node (and link) weight-
ing factors. Weighting factors, that are less than one, are realistic when nodes are not 
fully actively propagating influence. In summary, state dependent and state independent 
alternatives are the following:

1.	 Probability of spreading influence depends on the states of nodes. Nodes along the 
paths between a source and a target typically are less eager to mediate information 
already known.

2.	 In the state independent model, propagation occurs independently of nodes’ states. 
The probability to receive and forward influence is determined by the time depend-
ent probability, node weighting factor and link weighting factor.

In our model nodes are assumed to be memoryless. Receiving an attempt to influence 
node’s state and propagating this event forward are assumed to have delays according to 
the temporal distribution, e.g. Poisson distribution.

1.	 In summary, the propagation model has the following characteristics: temporal dis-
tribution describes node’s delays between receiving an influence spreading event and 
forwarding the event to neighbouring nodes. Links between nodes have no delays.

2.	 Node weighting factor wN=i for node i describes node i ’s activity, that is, the prob-
ability of forwarding an event of influence to neighbouring nodes. Similarly, link 
weighting factors wL=i,j are additional factors needed in cases where the influence 
spreading between nodes i and j are not equal for all the directed links between 
nodes of the network.

3.	 The spreading process is assumed to start from one node in the network at time 
T = 0.

Influence spreading measure between two nodes
Example network

In this section, we illustrate mathematical methods of modelling influence spreading 
measures Cs,t(T ) between a source node s and a target node t in a small social network at 
time T  . Based on these results, new measures of centrality, betweenness and community 
detection are defined.

The method aims at solving the requirements explained in the “Background” section. 
As the recent study in [3] has similarities and many common objectives, we use the same 
social network of 32 Dutch students [36]. This gives us the possibility to compare the 
numerical results between the two models. The network is shown in Fig. 1.

Our method takes into account all the possible self-avoiding paths in the network. 
The generalization including paths allowing nodes to appear several times in a path 
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is possible and easy to compute [11]. However, then we must have a limit for path 
lengths or for the number of possible occurrences on the path. This method requires 
less computer memory because the list paths need not to be saved in computer mem-
ory. For large networks the number of different paths is high and saving memory is 
important. Self-avoiding paths are suitable for the purposes of presenting the method. 
Later in this paper, results for a larger social network of 4039 Facebook users will be 
provided where influence propagation via paths with loops is considered.

As an example, all the self-avoiding paths of the network of Fig. 1 from Node 1 to 
Node 4 are listed Table 1. As all the paths pass through Node 3, all the 14 paths have 
dependencies with each other. They have the common link 1–3 from Node 1 to Node 
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Fig. 1  Symmetrized friendship network among 32 Dutch students [36]

Table 1  The 14 paths from Node 1 to Node 4 of the network in Fig. 1

# Nodes in a path

1 1 3 15 6 27 4

2 1 3 15 6 27 20 4

3 1 3 15 6 27 20 30 4

4 1 3 15 6 27 20 30 13 4

5 1 3 15 6 27 30 4

6 1 3 15 6 27 30 13 4

7 1 3 15 6 27 30 20 4

8 1 3 27 4

9 1 3 27 20 4

10 1 3 27 20 30 4

11 1 3 27 20 30 13 4

12 1 3 27 30 4

13 1 3 27 30 13 4

14 1 3 27 30 20 4
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3. The same procedure of finding common paths at the beginning of different paths 
originating from a source node to a target node is used iteratively. Figure 2 shows the 
paths of Table 1 in another format.

To be precise, we present below in Eq. (4) all the steps of computing the probability of 
influence spreading from Node 1 to Node 4. We denote intermediate steps by subscripts 
in parentheses. For example, in the first step, P(1) is the combined result of paths 1-3-15-
6-27-20-30-4 and 1-3-15-6-27-20-30-13-4 with path lengths 7 and 8 and common path 
length 6. The steps of the computing algorithm are shown in parenthesis in Fig. 2. The 
last step in Eq. (4) denoted by G1,4,(1) gives the final result of the influence of Node 1 on 
Node 4.

In the following, we use the short hand notations C6 = 1-3-15-6-27-20-30, B1 = 30-4, 
and B2 = 30-13-4 and denote the conditional probabilities by P1(B1|C6) and P2(B2|C6) . 
Also, time variable T  is omitted. For example, P1(B1|C6) is the probability that the 
spreading goes through one link more (path B1 ) after the spreading has already propa-
gated through six links (path C6 ). The justification for the first equation P(1) follows from 
the following probabilistic formula:

Below, all the intermediate steps of computing the influence of Node 1 on Node 4 are 
shown. We present only one example of the algorithm as this makes it possible to write 

(3)

P(1) = P6(C6)[P1(B1|C6)+ P2(B2|C6)− P1(B1|C6)P2(B2|C6)]

= P6(C6)P1(B1|C6)+ P6(C6)P2(B2|C6)−
P6(C6)P1(B1|C6)P6(C6)P2(B2|C6)

P6(C6)
.

Fig. 2  The 14 paths from Node 1 to Node 4 presented as a hierarchical tree. Nodes of the paths are shown in 
the tree. The first line (#) indicates the running number of the paths and the second line (L) shows the path 
lengths. In the lower part of the figure the order of calculation is shown in parenthesis, after a number giving 
the length of common paths in combing the paths, indicated by the line segments
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the equations for all the connections between all the nodes in a network. We have devel-
oped a computer programme for finding all the possible paths and computing the prob-
abilities according to the theory. In the programme, maximum path lengths can be used 
to limit the computing time. For typical small social networks presented in the literature, 
there is no need to limit the path lengths. In larger networks the results converge rapidly 
and a reasonable limit (for example, path lengths between 6 and 10) can be used to get 
good approximations.

In the example of computing the influence of Node 1 on Node 4 all the paths go 
through Node 3 (link 1–3). If we consider the influence of Node 3 on Node 4, we observe 
from Fig. 1 that two independent possibilities occur, via links 3–27 and 3–15–6–27. In 
this particular case, these two contributions are denoted by G3,4,(1) and G3,4,(2) . In the fol-
lowing, we denote the number of possible independent contributions by I .

Combining paths between two nodes

Next, we present the general formulation of the theory. In Eq.  (5) 
Gn,j,(x)(w,T ), x = 1, . . . , I  describe independent contributions computed with the 
algorithm. Combining all the independent contributions of Node n on Node j we get:

where Gn,j,(x)(w,T ) is the probability of spreading from Node n to Node j via Link ( x ), 
where ( x ) denotes an index of the I  links originating form Node n (degree of Node n ) at 
time T  . In Eq. (5) node and link weighting factors along the path from Node n to Node 
j are denoted by vector w = (wN ,wL) (see Eq. 6), and N  is the number of nodes in the 
network.

Computing Gn,j,(x)(w,T ) requires searching all the different paths from Node n to 
Node j with path lengths less than an upper limit Lmax . Parameter Lmax is the maximum 

(4)

P(1) = P7 + P8 −
P7P8
P6

P(2) = P(1) + P6 −
P(1)P6
P5

P(3) = P(2) + P5 −
P(2)P5
P4

P(4) = P7 + P7 −
P7P7
P5

P(5) = P6 + P(4) −
P6P(4)
P5

P(6) = P(3) + P(5) −
P(3)P(5)

P4

P(7) = P5 + P6 −
P5P6
P4

P(8) = P4 + P(7) −
P4P(7)
P3

P(9) = P3 + P(8) −
P3P(8)
P2

P(10) = P(9) + P(12) −
P(9)P(12)

P2

P(11) = P5 + P5 −
P5P5
P3

P(12) = P4 + P(11) −
P4P(11)

P3

G1,4,(1) = P(13) = P(6) + P(10) −
P(6)P(10)

P1

(5)Cn,j(w,T ) = 1−

I
∏

x=1

(

1− Gn,j,(x)(w,T )
)

, n, j = 1, . . . ,N ,
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path length and it is used to restrict the number of paths and computing time in large 
networks. Searching the paths is a straightforward task by using the network topology 
information by following links between the source node and target nodes. The computa-
tion is conducted simultaneously from one source node to all the nodes in the network. 
The algorithm for computing Gn,j,(x)(w,T ) handles the paths in the descending order of 
the number of common links at their beginning among the set of paths from Node n to 
Node j . A simple method would be first to list all the paths and then compute the influ-
ence spreading matrix Cn,j(w,T ), n, j = 1, . . . ,N .

The most time consuming task, when computing self-avoiding paths, is keeping track 
of nodes and rejecting paths where a node appears more than once. This is the reason 
why the algorithm relaxing the condition of self-avoidance and allowing loops has sig-
nificantly lower computer running times, essential for large social networks [11].

Weighting factors describe probability of propagating information and opinions. We 
call this the activity of nodes (or links). Opinion changes in social networks are uncom-
mon when the new ideas are unfamiliar to members of a social network. (To be pre-
cise, we should make a difference between influence spreading and opinion spreading. 
These concepts are related but usually different parameters are needed. Even a different 
spreading model may be needed, if probability to change opinion is conditional on infor-
mation or influence spreading events). Technical and biological networks have similar 
commonalities. Spreading of a computer virus or a biological virus between nodes can 
have a low probability because of virus protection, vaccination or characteristics of the 
virus itself.

We illustrate the propagation rules with an example of combining two paths. Also, 
the effects of node and link weighting factors are shown explicitly. In the algorithm any 
number of paths can be combined iteratively by using the same method. Combining the 
effects of different paths between two nodes is computed in the descending order of 
common path lengths of paths starting from the initial node. Only these common links 
and nodes are taken into account. If the paths join later or cross each other, they are con-
sidered independent events. The probability of influence spreading from Node s to Node 
t via path of lengths L1 is

where

(6)Cs,t(T ) = wN=tWL1DL1(T ),

WL1 =

L1−1
∏

j=0

wN=I(j)wL=I(j),I(j+1),
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where wN are node weighting factors, wL are link weighting factors, and DL(T ) is the 
time dependence of influence spreading process (see DL(T ) in Eq.  (8) for Poisson dis-
tribution). Function I

(

j
)

, j = 0, . . . , L1 maps index j , describing the order of nodes 
on the path from Node s to Node t , to the unique indexing {1, . . . ,N } of all nodes in 
the network. For example, s = I(0) and t = I(L1) . In our calculations we will use for the 
first node the activity value of ws = 1 . The first node initiates the influence propagation 
process at time T = 0 . DL1(T ) is the probability of influence propagation via single path 
length L1 during time interval [0,T ] . Note that in Eq. (6) node and link weights are not 
included in DL1(T ).
DL1(T ) can be expressed as DL1(T ) = DL(T )DL1−L(T ) , where DL1−L(T ) is the con-

ditional probability of forwarding an influence spreading event via path length L1 − L , 
given that the event has passed via path length L before that during [0,T ] . Similarly, WL1 
can be expressed as WL1 = WLwmWL1−L , where wm is the node weighting factor of the 
last node m of the path of length L . Next we assume that influence events can propagate 
via two routes of lengths L1 and L2 with a common path of length L at their beginning. 
If the paths join later, we assume that they are independent attempts of influence. In the 
model, we get for the probability of influence spreading via the two routes:

where a shorter notation PLi(T ) is used for wtWLiDLi(T ) describing the probability of 
influence propagation over the path of length Li . In following sections, the algorithm is 
demonstrated with a more general example of a real-life social network.

At the beginning of this section, Eq.  (5) describes non-mutually exclusive events in 
basic probability theory. It serves as an introduction between commonly known meth-
ods of probability and the method of this study for combining probabilities of influence 
spreading via different paths in a network. In fact, Eq. (5) is the last step in the algorithm 
with L = 0 and PL(T ) = 1 in Eq. (7). As a consequence, we could have omitted Eq. (5) 
because it can be regarded as the last step of the general algorithm.

Temporal spreading distribution

Before we can compute numerically the contributions of different paths of a network, we 
must have a model for the probabilities DL(T ) of temporal spreading on a chain of nodes. 
The number of links from a source node to a target node (path length) is denoted by L . 
Assuming Poisson distribution the probability of at least L events occurring is:

(7)

Cs,t(T ) = wtwmWLDL(T )
(

WL1−LDL1−L(T )+WL2−LDL2−L(T )−WL1−LDL1−L(T )WL2−LDL2−L(T )
)

= PL1 (T )+ PL2 (T )−
PL1 (T )PL2 (T )

PL(T )
,

(8)DL(T ) = P(K (T ) ≥ L) = 1−

L−1
∑

z=0

e−�T (�T )

z!
, (D0 = 1).



Page 12 of 39Kuikka ﻿Comput Soc Netw            (2018) 5:12 

Here, the interpretation is that the spreading has advanced L or more links in the network 
at time T  . Equation  (8) takes into account nodes’ delays between receiving an influence 
spreading event and forwarding the event to neighbouring nodes. When time approaches 
infinity, nodes’ probability of spreading influence approaches one. In Eq. (8), the number of 
spreading events is denoted by stochastic variable K (T ) . The intensity parameter of Pois-
son distribution is denoted by �. The statistical distribution and its parameters determine 
the spreading rate in the network. The Poisson distribution is not the only possibility, for 
example, a model based on Uniform distribution may better describe some other temporal 
spreading behaviour.

Parameter � can be estimated from empirical influence propagation data. In most cases, 
this kind of time dependent information is not available. If empirical data are not available, 
the intensity parameter could be evaluated by comparing with analyses of other networks 
with comparable level of development. Values of � and time T  are related in Eq. (8), and also 
the quantity �T  can be estimated. It describes the maturity level of propagation on the net-
work. In practice, evaluating the model parameters is not simple because nodes may have 
individual characteristics. But if these kind of empirical data are available, the model can be 
used with different parameters for each node and link of the network. In addition, the sto-
chastic distribution of Eq. (8) can be replaced by an empirical distribution.

Algorithm for computing the influence spreading matrix

An algorithm for computing the values of bidirectional influence measures [11] between 
all the pairs of nodes in a network is presented. These values make up a N × N  dimen-
sional influence spreading matrix, were N  is the number of nodes in the network. The 
matrix is computed for discrete spreading time values of interest. Closeness central-
ity, betweenness centrality and community detection measure are defined with the help 
of the matrix elements. The algorithm for computing the influence spreading matrix 
Cs,t(T ), s, t = 1, . . . ,N  is described below. Comments in the algorithm below are 
denoted by ‘/* */’.
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Variables:
G = the nodes in the network
Lmax = Max path length
Cprev = Auxilary list that contains the influence spreading values from the previous itera�on of path 

length
Ccurr = Influence spreading values to a node in G with different values of T
model_values = List of values obtained by compu�ng P(L, T, λ)
Timesteps = List of �me values T
Cs,t = Influence spreading matrix

Algorithm:
for every node n in G {

Assign value 0 to every index used in Cprev

for (L := Lmax; L ≥ 0; L := L ­ 1) {
Assign value 0 to every index used in Ccurr

for every value in Timesteps as T {

( , , ) ∶= 1 − ∑ −1 ( )

!

−1
=0

Store value of P(L, T, λ) in model_values
Store value of P(L, T, λ) in Ccurr[n][T]

}

for every node f in G {
for every neighbour node t from f {

w := node & link weight value from f to t

/* Update the influence spreading value from node f to node t for each �me 
step */

for every model_values as v and Timesteps as T {

[ ][ ] ∶= [ ][ ] + ∗ [ ][ ] −
[ ][ ]∗ ∗ [ ][ ]

}
}

}
/* Copy values from Ccurr to Cprev */
Cprev := Ccurr

}
Add influence spreading values to Cs,t, obtained from Ccurr

}

The applicability of shortest-path-based centralities is limited by the high computational 
complexity of calculating the shortest paths between all pairs of nodes [10]. A generali-
zation of closeness centrality [40] considers all paths in the network and assigns a larger 
weight to shorter paths using a tuneable parameter. The method presented in this paper 
considers all the paths in a network with an additional feature of modelling common links 
of the paths at the beginning of their routes from a source node to target nodes.

Most of the results of this paper are for self-avoiding paths. A self-avoiding path is 
a sequence of moves on a path that does not visit the same node more than once. The 
networks of this paper are selected for illustrative purposes and therefore are small when 
compared with many modern applications and interests of research.
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With this in mind, a fast algorithm has been developed for analysing large social net-
works. In [11] large scale social networks of Facebook, Twitter and Google+ have been 
investigated. Computing times with a PC hardware (Core2 Duo E7503) of closeness cen-
tralities for all the nodes in the networks are shown in Table 2.

The algorithm, especially suitable for influence spreading modelling of social networks, 
allows returns to nodes during the spreading process. The design of the algorithm is based 
on this property. In fact, disallowing loops would make the algorithm in [11] slower. The 
value of maximum path length Lmax can be set to 20 because higher terms are negligible 
for typical temporal spreading distributions. Lower values are used if they describe the real-
world phenomenon by limiting the spreading process to shorter path lengths.

Applications of social influence measures
Definition of closeness centrality measures

In the following we use both normalized and un-normalized versions of centrality and 
betweenness measures. Normalized measures are divided by the number of nodes N  of the 
network. These measures have a natural interpretation, normalized measures are probabili-
ties and un-normalized measures are expressed in the units of number of nodes.

Equations (9), (10) and (11) are proposed measures for source centrality, target centrality 
and betweenness correspondingly. Usually, these measures are highly correlated, for exam-
ple, Eqs. (9) and (10) can be regarded as two different viewpoints of node’s centrality in the 
network. The measure in Eq. (9) has the summation over target nodes instead of the sum-
mation over source nodes in Eq. (10). The interpretation of Eq. (9) is a measure of influence 
of Node n on all other nodes in the network. The measure of Eq. (10) describes the influ-
ence of all the nodes of the network on Node m.

In Eqs. (9, 10) Ci,j is defined in Eq. (5) or equivalently in Eq. (7) and T  is time. In the 
next sections, the measure in Eq. (9) is regarded as the default viewpoint and we denote 
Cn,· by Cn as a short hand notation. From Eqs. (9, 10) a cohesion measure describing the 
two aspects of these equations can be defined:

(9)
Cn,·(w,T )

N
= cn,·(w,T ) =

1

N

N
∑

j=1

Cn,j(w,T )

(10)
C·,m(w,T )

N
= c·,m(w,T ) =

1

N

N
∑

i=1

Ci,m(w,T )

(11)
C(w,T )

N
= c(w,T ) =

1

N

N
∑

i=1

ci,·(w,T ) =
1

N

N
∑

j=1

c·,j(w,T )

Table 2  Computing times of the fast algorithm [11] for large social media networks

Social media Nodes Links Computing time

Facebook 4039 88,234 1 min

Twitter 81,306 1,768,149 5 h

Google+ 107,614 13,673,453 4 days
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Definition of betweenness centrality measures

The idea of defining betweenness measures is based on removing one node form the 
network. In Eq. (12) Node n is removed from the network and after that the betweenness 
measure for Node n is calculated in a consistent way with Eqs. (9, 10). We denote n /∈ V  
indicating that Node n is removed from the network. Note that any order of summa-
tions in Eq. (12) provides the same results. This is a desirable feature of a betweenness 
measure. In other words, source nodes and target nodes are in a symmetric position. 
The measure of Eq. (12) describes the betweenness of Node n in the network.

In the definition of Eqs.  (9–12) normalization is a question. We have decided to 
include source nodes with the value of 1.0 in the formulas and as a result of that N is 
used as a normalization factor. The source node is assumed to be the initiator of influ-
ence spreading with probability 1.0.

We can define another measure by dividing Eq.  (12) by Eq.  (11). This ratio gives the 
proportional quantity of Eq. (13):

Both Eqs. (12) and (13) preserve the same rankings of nodes in the network. The inter-
pretation is that the lowest curve has the highest betweenness. Further, we define a 
betweenness centrality measure with the help of Eq. (12) as

where C(w,T ) is the cohesion measure from Eq.  (11) for the whole network. Accord-
ing to Eq. (14) the highest curve has the highest betweenness. In this respect, Eq. (14) is 
more intuitive and the numerical values from Eq. (14) might be easier to compare with 
Eqs. (9, 10).

Definition and algorithm for computing a community detection measure

The algorithm for community detection uses the influence measures 
Cs,t , s, t = 1, . . . ,N  of Eq.  (5) [equivalently in Eq.  (7)]. The general method can be 
used also with other centrality measures presented in the literature. The idea in mod-
elling community detection is based on the concept of node’s role in the network as 
a source and a target of influence. Both of these aspects have a role in community 
formation. Two sub-communities in a social network are detected by searching local 
maxima of Eq. (15):

(12)
Bn(w,T )

N
=

1

N 2

N
∑

i = 1

n /∈ V

N
∑

j = 1

n /∈ V

(

1−

J
∏

x=1

(

1− Gi,j,(x)(w,T )
)

)

(13)Rn(w,T ) =
Bn(w,T )

C(w,T )

(14)bn = 1− Rn(w,T ) =
C(w,T )− Bn(w,T )

C(w,T )
,

(15)P
(

V , V̄
)

=
∑

i,t∈V

Cs,t +
∑

i,t∈V̄

Cs,t ,
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where V  and V̄  is the split into two factions of the network of N  nodes with 
N = NV + NV̄  . We assume that these roles have equal importance in community forma-
tion. The community detection algorithm used in this study searches local maxima of 
Eq. (15) moving nodes, one at a time, that most increase the measure used for optimiz-
ing the division, between these factions.

Similarly, the classical Kernighan–Lin algorithm [28] is based on moving nodes 
between two factions of a network. However, Kernighan–Lin algorithm searches 
a community of pre-determined size and provides no sub-structures. In addition, 
the model of this paper calculates influence between all the nodes of the network 
as a function of time. Instead, the Kernighan–Lin algorithm is based on modularity 
maximization of the community and local topology of the network when determin-
ing which nodes to exchange between the two factions. Other community detection 
methods have been reviewed in [13], where strengths and weaknesses of modern 
methods are pointed out, and directions given to their use.

Typically, social networks with weak interactions between nodes, or social networks 
in their early development phases, have several local maxima with different composi-
tions. These factions can overlap with each other. In many cases, unions and intersec-
tions of the divisions are also local maxima of Eq. (15) with some parameters of the 
model. If a union or intersection is not identified as a local maximum, these sets of 
nodes could still be considered as possible sub-groups of the network. In dynamic 
community building processes sets of nodes divided by different community bounda-
ries may be left as outsiders. This is more probable if the measure of Eq. (15) has a low 
value or several divisions have almost equal numerical values.

Computing the community detection measure of Eq.  (15) can be time consuming 
for large networks. This is a cost of considering influence spreading globally in the 
network. Several methods can be used to optimize the algorithm. First, limiting the 
computation to local nodes is an obvious alternative. Further, if a limited sub-set of 
the network is of interest, approximations can be computed by considering only the 
selected sub-set and some neighbouring nodes and structures around it.

The method for community detection consists of two independent main algorithms. 
The first algorithm is optimized for describing social influence spreading. The scalable 
version of the algorithm [11] allows loops in the process of influence spreading. The 
second algorithm uses results of the first algorithm. The input for the second algo-
rithm is N × N  matrix Cs,t at time T  , and control variables, if the analysis is limited 
to a specified portion of the network. This is relevant when very large social networks 
are investigated or a particular set of members of the social network are under inves-
tigation. Because the first algorithm is able to deal with large networks up to 100,000 
nodes, matrix Cs,t is usually computed for the entire network.

The default procedure is to compute Cs,t for all the nodes of the network 
(s, t = 1, . . . ,N ) and compute all the communities and sub-communities for the entire 
network (Step 1 below). From these results analysis and visualization can be focused 
on different sub-sets of the network (Step 2 below).

1.	 Compute the influence matrix Cs,t , s, t = 1, . . . ,N  . Closeness and betweenness cen-
trality measures are results of this step.
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2.	 Compute the list of communities and sub-communities. Communities and their 
nested and overlapping structures are analysed.

Next, we present a basic version of the second algorithm for community detection.

1.	 Randomize values of vector V  of N  elements. Vector N  has elements of zeros and 
ones.

2.	 Use V (n), n = 1, . . . ,N  as the initial state of the network. If V (n) is one, node n 
belongs to the first faction of the division, and if V (n) is zero n belongs to the comple-
ment of the faction.

3.	 Compute the community detection measure P of Eq.  (15). Denote the value of the 
initial state by P0.

4.	 Starting from Node 1 move nodes from one faction to the other. Denote the value of 
P by Pi for ith move.

5.	 If the value of Pi is higher than Pi−1 move the node to the other faction, in other 
cases don’t move the node.

6.	 After all the nodes of the network have been computed, start from Step 4 again.
7.	 Repeat Step 6 while the value of P is increasing else a local maximum has been found.
8.	 Repeat Steps 1–7 until a desired number of local maxima, or no new compositions, 

are found.
9.	 Analyse the list of detected communities. The list has the following information for 

every detected community: the value of P , sizes of the two communities, and the list 
of nodes for the detected communities. Nested and overlapping structures are dis-
covered from the list of nodes.

A method to optimize the algorithm is to compute the list of communities in two 
phases. After detecting a desired number of communities with the basic algorithm, 
nested community structures are considered. In the second phase, in Step 2, the algo-
rithm uses interceptions Ci − Cj of detected communities Ci and their detected sub-
communities Cj , where Cj ∈ Ci . The intersections are often sub-communities or they 
are close to a composition of a sub-community. This makes computing times shorter 
because Steps 6 and 7 are less iterated.

Secondary effects between the two factions are included when computing the indi-
vidual influence measure of Eq. (6). A variant of the model, would compute the two 
factions separately. This may better describe situations of the original social net-
work splitting into two independent networks. The model presented in this paper is 
proposed for studying existing sub-communities and structures of a social network 
where interactions between sub-communities are continuous.

Numerical results and discussion
Numerical results for the centrality measure of Eq.  (9) and the betweenness meas-
ures of Eqs.  (12–14) are compared with the results of [3]. The betweenness measures 
of Eqs.  (12–14) are defined with the help of removing one node from a network. This 
ensures that the closeness centrality and betweenness measures are consistent with 
each other. The method of community detection measure is also based on the same 
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formulation. Results of analysing community structures of four different networks are 
presented after the results for closeness centrality and betweenness centrality.

Closeness centrality

First, we investigate the centrality measures Cn of Eq. (9) and, later in the text, compare 
the results with Eq. (2) in [3]. Figure 3 shows the results of Eq. (9) as a function of time 
T  . In this paper, the convention of value 1.0 is used for the node itself (in [3]) the contri-
bution of the node itself is 0.0). This a matter of convention, the main results presented 
in this paper remain the same. It is a straight forward task to convert the numerical val-
ues between the two conventions. With full activity nodes ( wN = 1.0 ) all the centrality 
measures Cn start from the value of one and approach the number of nodes in the net-
work N = 32 with different rates depending on nodes’ positions in the network struc-
ture. Exceptions are the isolated nodes whose centrality value from Eq.  (9) is constant 
1.0.

Table  4 documents the values of centrality measure of Eq.  (9) when the weighting 
factor is wN = 1.0 and Table  5 documents the corresponding results when wN = 0.5 . 
In Table  4 centrality measures are listed when time T = 1, 3, 5 and in Table  5 when 
T = 1, 3, 10 . The results are shown in the order of node numbers to help comparison 
with the results in [3]. The right hand side of the tables shows the rankings of nodes. 
Tables 3 and 4 correspond to Figs. 3 and 4 in the sense that the results of the tables can 
be found in the figures at the time points T  given in the tables.

When wN = 1.0 and time T = 1 Nodes 3, 27 and 24 are the most central. Soon after, 
Node 24 is more central than Node 27. After time T = 3 Nodes {8, 17, 22, 31} are the 
most central nodes. These four nodes are in symmetrical positions in the network (indi-
cated by the curly brackets) and have equal centrality values. These examples show that 
the most central nodes may change during the influence spreading process. This is a 
consequence of the network structure. At an early phase of the process Node 27 is more 
central because the spreading has just started and direct connections from the source 
node are emphasized. Node 27 has a high degree value of 8. Later Node 24 is more 
important in a central position between far away parts of the network even if its degree 
is only 4. The ranking of Node 27 is falling rapidly. Node 10 has similar changes but later 
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Fig. 3  Centrality measures Cn(wN = 1.0) for the network of Fig. 1
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at time T = 5 it is rising again because of the highly connected group of four Nodes {8, 
17, 22, 31}.

We may be interested also about the least central nodes. Obviously, the isolate Nodes 
5, 12 and 18 are the least central. Nodes 26 and 2 follow in this order. Next Nodes {9, 11} 
and 21 at time T = 1 and Nodes 21 and {9, 11} at times T = 3, 5 follow. Again network 
topology has its implications: Nodes 9 and 11 get benefits from their better connectivity 

Table 3  Computing times  of  the community detection algorithm for  searching 100 
communities or sub-communities

Social media Nodes Links Computing time

Facebook 4039 88,234 1 min

Enron e-mail 36,692 183,831 6 h

Table 4  Results Cn(wN = 1.0, T) from Eq. (9)

n wN = 1.0

Cn, T = 1 Cn, T = 3 Cn, T = 5 Ranking, T = 1 Ranking, T = 3 Ranking, T = 5

1 0.173 0.677 0.872 3 3 8

2 0.075 0.378 0.756 27 8 17

3 0.317 0.810 0.896 24 17 22

4 0.238 0.744 0.888 10 22 31

5 0.031 0.031 0.031 7 31 24

6 0.204 0.700 0.880 4 24 23

7 0.244 0.759 0.895 30 23 10

8 0.214 0.807 0.906 20 7 3

9 0.089 0.473 0.800 15 10 7

10 0.264 0.751 0.896 8 4 4

11 0.089 0.473 0.800 17 30 30

12 0.031 0.031 0.031 22 27 20

13 0.168 0.678 0.869 31 20 15

14 0.140 0.590 0.868 28 15 27

15 0.215 0.736 0.886 23 28 28

16 0.132 0.576 0.861 6 6 6

17 0.214 0.807 0.906 19 19 19

18 0.031 0.031 0.031 29 29 29

19 0.191 0.678 0.877 1 13 1

20 0.230 0.737 0.888 13 1 13

21 0.095 0.402 0.769 14 14 14

22 0.214 0.807 0.906 16 16 16

23 0.208 0.782 0.896 25 25 25

24 0.287 0.804 0.897 32 32 32

25 0.103 0.548 0.835 21 9 9

26 0.065 0.249 0.586 9 11 11

27 0.315 0.744 0.886 11 21 21

28 0.211 0.707 0.884 2 2 2

29 0.191 0.678 0.877 26 26 26

30 0.238 0.744 0.888 5 5 5

31 0.214 0.807 0.906 12 12 12

32 0.103 0.548 0.835 18 18 18



Page 20 of 39Kuikka ﻿Comput Soc Netw            (2018) 5:12 

at later development phases of the influence spreading. Curly brackets indicate that 
Nodes 9 and 11 are at symmetrical positions in the network structure.

Next, we examine whether less active nodes in the network behave in a similar way. 
In Fig. 4 the values of the centrality measure of Eq. (9) with node activities wN = 0.5 are 
shown. The same results and rankings at times T = 1, 3, 10 are listed in Table 5. The role 
of the highly connected group of Nodes {8, 17, 22, 31} is even more emphasized at a later 
time T > 6 but their role is less important at the beginning of the influence spreading 
process. We make a conclusion that peripheral interconnected nodes’ centrality at high 
values of time (near equilibrium state) is relatively higher for low activity networks than 
for high activity networks.

Table 6 reiterates some results from Table 1 in [3] in the same format as in Tables 3 and 
4 of this paper. Columns show the results of Eq. (2) when δ = 5, 1, 0.5 . Nodes at a longer 
geodesic distance become less important for high values of δ [3]. This is the reason for 
presenting the results in this order to help comparing with the results of this paper when 
time T  increases. Note that the numerical values cannot be compared directly because of 
the different definitions of measures in Eqs. (2) and (9).

To compare the results we try to find corresponding columns from the tables. This is 
not exactly unambiguous because the functional relationship between δ in Eq.  (2) and 
T  in Eq. (9) is not known. Probably, no exact functional form exists because the struc-
ture of a network can produce complex effects on the functional form. We provide an 
example how the results can be compared. The results are remarkably similar when the 
rankings of the most central nodes are compared. However, there are some distinctive 
differences.

Because development phase of the social network is not known, it is not possible 
to determine the time value T  . We could examine all the possible time values T  and 
compare with the results from Eq. (2) with all the possible values of δ . On the other 
hand, Eq.  (2) is not describing dynamic development of the spreading process. The 
model of this paper is dynamic and the model of [3] is static. As a consequence, full 
analysis is not necessary. Instead we give an example that illuminates some similari-
ties and differences of the results. For comparison, we choose one value of δ . Then we 
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search from Tables 3 and 4 time values (columns) that provide roughly the same rank-
ings of the most central nodes and conclude that these time values correspond to the 
results from Eq. (2) with the value of δ.

The first line in Table 7 shows the ranking results from Eq. (2) [3] with the param-
eter value of δ = 0.5 . Results from Eq. (9) of this paper are shown on the second line 
with the parameter values of wN = 1.0 and T = 1 and on the third line with wN = 0.5 
and T = 3 . These two lines approximately correspond to the first line. It is notice-
able that in an active network with wN = 1.0 a shorter development time T  , compared 
with a less active network with wN = 0.5 , is required to achieve approximately the 
same rankings of central nodes in the network. The group of highly interconnected 

Table 5  Results Cn(wN  = 0.5,  T) from Eq. (9)

n wN = 0.5

Cn, T = 1 Cn, T = 3 Cn, T = 10 Ranking, T = 1 Ranking, T = 3 Ranking, 
T = 10

1 0.074 0.151 0.227 27 27 8

2 0.045 0.070 0.115 10 3 17

3 0.121 0.267 0.359 3 24 22

4 0.101 0.221 0.369 24 10 31

5 0.031 0.031 0.031 4 4 4

6 0.078 0.177 0.270 30 30 30

7 0.098 0.211 0.311 8 20 3

8 0.100 0.211 0.426 17 7 20

9 0.047 0.082 0.136 22 8 27

10 0.125 0.238 0.336 31 17 24

11 0.047 0.082 0.136 7 22 10

12 0.031 0.031 0.031 20 31 7

13 0.069 0.160 0.306 15 28 28

14 0.063 0.124 0.194 28 23 13

15 0.088 0.188 0.284 6 15 23

16 0.061 0.118 0.188 19 6 15

17 0.100 0.211 0.426 29 19 19

18 0.031 0.031 0.031 1 29 29

19 0.076 0.172 0.280 23 13 6

20 0.093 0.212 0.356 13 1 1

21 0.054 0.085 0.130 14 14 14

22 0.100 0.211 0.426 16 16 16

23 0.074 0.190 0.301 21 25 25

24 0.107 0.249 0.347 25 32 32

25 0.050 0.096 0.164 32 21 9

26 0.044 0.059 0.086 9 9 11

27 0.145 0.271 0.354 11 11 21

28 0.085 0.192 0.311 2 2 2

29 0.076 0.172 0.279 26 26 26

30 0.101 0.221 0.369 5 5 5

31 0.100 0.211 0.426 12 12 12

32 0.050 0.096 0.096 18 18 18
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Nodes {8, 17, 22, 31} is peripheral in the network structure. These nodes are underes-
timated in [3] when compared with results of Eq. (9) in Table 7.

Also the parameter value of δ and the time value T  are related: high values of δ cor-
respond low values of T  . This can be seen when comparing column T = 1 in Table 5 
with column δ = 5 in Table 6. Both have the same most influential Nodes {27, 10, 3, 
24}. The same comment as above concerning Nodes {8, 17, 22, 31} holds also for δ = 5.

Betweenness centrality

Betweenness measures node’s role as a broker between others. In Eq.  (12), we have 
presented a new betweenness measure with the help of removing one node from the 

Table 6  Results of generalized closeness centrality with different from Table 1 in [3]

n δ = 5 δ = 1 δ = 0.5 Ranking, δ = 5 Ranking, δ = 1 Ranking, 
δ = 0.5

1 0.103 0.354 0.548 27 27 3

2 0.034 0.227 0.439 10 3 27

3 0.175 0.469 0.635 3 24 24

4 0.135 0.355 0.539 24 10 10

5 0.000 0.000 0.000 7 7 7

6 0.074 0.339 0.534 4 15 15

7 0.138 0.396 0.578 15 23 23

8 0.132 0.327 0.516 30 4 1

9 0.035 0.257 0.469 8 30 4

10 0.199 0.415 0.586 17 1 30

11 0.035 0.257 0.469 22 20 6

12 0.000 0.000 0.000 31 6 20

13 0.067 0.267 0.469 20 28 28

14 0.07 0.305 0.506 1 8 8

15 0.135 0.376 0.561 28 17 17

16 0.069 0.297 0.500 6 22 22

17 0.132 0.327 0.516 19 31 31

18 0.000 0.000 0.000 23 19 19

19 0.072 0.317 0.516 29 29 29

20 0.104 0.339 0.530 14 14 14

21 0.066 0.253 0.456 16 16 16

22 0.132 0.327 0.516 13 13 25

23 0.072 0.359 0.558 21 25 32

24 0.140 0.430 0.609 25 32 13

25 0.036 0.265 0.476 32 9 9

26 0.034 0.199 0.408 9 11 11

27 0.264 0.470 0.623 11 21 21

28 0.103 0.334 0.526 2 2 2

29 0.072 0.317 0.516 26 26 26

30 0.135 0.355 0.539 5 5 5

31 0.132 0.327 0.516 12 12 12

32 0.036 0.265 0.476 18 18 18
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network. An alternative presentation in Eq. (14) is normalized by the value of Eq. (11) 
describing network structure where all the nodes are present.

Results of Eqs. (12) and (14) for the network of Fig. 1 are shown in Figs. 5 and 6. Net-
work activity is wN = 1.0 in both figures. Notice that the lowest (highest) curves in Fig. 5 
(Fig. 6) represent the highest betweenness of nodes. The rankings of betweenness values 
are the same in both approaches. As can be seen from Figs. 3 and 5 closeness centrality 
and betweenness centrality describe different characteristics of the network. The most 
central node is not always the best broker of influence in the network. But in many cases 
a node can have both of these characteristics at the same time.

Rankings of betweenness values are shown in Figs. 7 and 8 for the activity values of 
wN = 1.0 and wN = 0.5 correspondingly. Figures 5, 6 and 7 show the same information 
of betweenness with wN = 1.0 in different formats. From Fig. 1 we can see that Nodes 
3, 24 and 27 are nodes having a good location between others. Nodes 10 and 27 have 
more important roles as brokers at the beginning of the spreading process. They are in a 
good position as brokers between highly connected peripheral nodes and rest of the net-
work. Figures 7 and 8 highlight the complex behaviour influence spreading processes as 

1

3

7
10

1415

5,12,18

24

26

27

3

8

13

18

23

28

1 2 3 4 5 6 7

Time T

Betweenness, Bn(w=1)

Fig. 5  Betweenness measures Bn(wN = 1.0) of Eq. (12) for the network of Fig. 1

Fig. 6  Betweenness measures bn(wN = 1.0) of Eq. (14) for the network of Fig. 1
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a function of time. Betweenness rankings can move in turn up and down depending on 
the development phase of the process.

Results for community detection
Structure of the territory network of the game of risk

The game of Risk has also been used in the literature [37] as one of test networks 
for community discovery algorithms. The network is neither a human nor an animal 
social network that is why real life interpretation for model parameters may not be 
valid. This network is an example of analysing network structures of general net-
works, not just social networks and communities. On the other hand, this artificial 
network turns out to be the simplest of our four example networks. Investigating the 
social network of 32 Dutch students is analysed after presenting basic ideas with the 
help of the Game of Risk network structures.

Fig. 7  Rankings of nodes according to betweenness with wN = 1.0 for the network of Fig. 1

Fig. 8  Rankings of nodes according to betweenness with wN = 0.5 for the network of Fig. 1
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The board game is played on a political map consistently of six continents which 
further divide into 43 territories. The territories are connected by boundaries and 
waterways. The goal of the game is to conquer as much land as possible.

In the model, we presume some reasonable parameter values that provide a num-
ber of divisions of the territories network structure. The value of time is T = 1.0 and 
the parameter values are � = 0.5,wN = wL = 1.0, Lmax = 4 . This choice of parameters 
provides us 17 different divisions of the 42 territories listed in Table 8. The numbers 
of territories in the divisions are shown in the column indicated by ‘#’. The values of 
the measure of Eq. (15) give the rankings (first column) of the divisions. The results of 
Table 8 are interpreted in the order of the ranking values.

The first five lines in Table 8 show clearly continents Australia, South America and 
North America. On lines 1–7 Europe, Africa and Asia are joined together. Not until 
on line 12 Asia without territory 26, is identified as a division. In addition sub-com-
munities of five {17, 22, 23, 27, 28} and six {18, 19, 20, 21, 24, 25} territories are identi-
fied within Asia.

The algorithm, with the parameters used, does not discover Europe and Africa as 
individual divisions. Node 26 is incorrectly identified to the combined coalition of 
Europe and Africa. Classifications in the literature have been referenced in [41] where 
three out of five algorithms, FastQ, LPA and PPC, also misclassify Node 26. Also three 
algorithms LPA, Infohiermap and PPC extract the same sub-communities of five and 
six nodes in Asia. Two algorithms, Infohiermap and the active semi-supervised algo-
rithm of [41], identify Europe and Africa and their territories correctly.

When investigating the territory network we observe that Nodes 16 and 26 (see 
Fig.  9a, b) are critical territories between Europe and Africa. They produce strong 
interrelations between these continents. Using lower values of the node weight-
ing factors does not change the results as Europe and Africa still appear in the same 
group in different divisions.

We summarize the results of analysing the artificial Risk game network with the 
proposed model. Characteristics of human social networks are not assumed to be 
valid but we can compare the results with other algorithms in the literature. The 
results are similar, with an exception of two factions of the network identified as 

Fig. 9  a The network of 42 territories in Risk game where colours indicating the six continents (Wikipedia 
Commons). b The same network automatically generated by a library of Python software package together 
with the five divisions marked on the network as discovered by the algorithm of this paper. Europe and Africa 
are identified as one faction by the algorithm
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one group. Few other algorithms detect the correct nodes of the two communities 
although they detect the communities themselves [41]. Some of the algorithms in the 
literature use supervised or assisted methods which can lead to more accurate results.

In analysing Risk game network we use a tabular form of representing different 
community structures in the network. This is an illustrative and useful way of detect-
ing communities and sub-communities in a social network. The role of numerical val-
ues of the community detection measure of Eq. (15) is highlighted by examining lines 
of the table in the order of numerical values of the measure.

Community structures of the 32 Dutch students’ social network

As the second case for analysing community structures, we use the longitudinal friend-
ship network among 32 Dutch students on the fourth wave of the collected data [36]. 
Two students are considered to be friends if either or both of them named the other as a 
friend. A graphical representation of the friendship network is shown in Fig. 1.

The social network is analysed with two different model parameters wN = 0.5 and 
wN = 1.0 describing strength of the friendship relations. In both cases the parameter 
values � = 0.5,T = 1.0,wL = 1.0 and Lmax = 6 are used. These parameter values are 
used for all connections in the network.

Sub-communities detected among the 32 Dutch students’ social network are pre-
sented in Table 9 and in Fig. 10 for the two values of node weighting factors. The results 
for wN = 0.5 has 14 different divisions and wN = 1.0 has 6 divisions of the network. 
The first two columns show the number of nodes in the two factions, the third column 
shows the label of the division and the fourth column shows the numerical value of the 

Table 9  Different divisions into two factions of the social network of Fig. 1

Sub-communi�es detected among 32 Duch students' social network
wN =0.5
# # D M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
3 26 A 22.3 1 1 1

11 18 B 21.7 1 1 1 1 1 1 1 1 1 1 1
5 24 C 21.4 1 1 1 1 1
9 20 D 21.3 1 1 1 1 1 1 1 1 1

12 17 E 21.3 1 1 1 1 1 1 1 1 1 1 1 1
12 17 F 20.7 1 1 1 1 1 1 1 1 1 1 1 1

8 21 G 20.6 1 1 1 1 1 1 1 1
4 25 H 20.6 1 1 1 1

14 15 I 19.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 12 J 19.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 13 K 19.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 17 L 19.1 1 1 1 1 1 1 1 1 1 1 1 1

9 20 M 18.9 1 1 1 1 1 1 1 1 1
12 17 N 18.2 1 1 1 1 1 1 1 1 1 1 1 1

12 17 B 55.2 1 1 1 1 1 1 1 1 1 1 1 1
5 24 C 53.8 1 1 1 1 1

13 16 O 53.5 1 1 1 1 1 1 1 1 1 1 1 1 1
9 20 D 53.4 1 1 1 1 1 1 1 1 1

14 15 P 47.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 16 Q 47.0 1 1 1 1 1 1 1 1 1 1 1 1 1

wN =1.0

Model parameters are WN = 0.5 and WN = 1.0 with T = 1.0, λ = 0.5, WL = 1.0, Lmax = 6
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community detection measure of Eq. (15). The results are presented in descending order 
of these values. The nodes belonging to one of the two sub-divisions is indicated in the 
table, the rest of the nodes belong to the second sub-division. Actually only 29 nodes out 
of the 32 nodes are connected. Nodes 5, 12 and 18 have no connections and they are not 
included in the sizes of the sub-divisions in Table 9. 

For weaker connections of wN = 0.5 (or for low values of spreading time T  ) the high-
est value of the local maximum value is M = 22.3 for the two factions {1, 9, 11} and {2, 
3,…, 8, 10, 12,…32}. This division is not a local maximum for stronger connections of 
wN = 1.0 at the same time T = 1.0 . These kinds of weakly connected small sub-groups 
can exist at an early development phase of friendship relations.

A larger division B, on the left side of Fig. 1, into 11 and 18 nodes can be discovered for 
both weak wN = 0.5 and strong wN = 1.0 connections. This is also the case for the tightly 
connected sub-group {8, 10, 17, 22, 31} of division C. The value of the community detec-
tion measure for division D is almost as high as for C, even though division O with the 
four additional nodes (O = D ∪ {3, 15, 25, 32) has a slightly higher value for strongly con-
nected wN = 1.0 network. Almost similar to division O division E (E = D ∪ {15, 25, 32) 
can be found for weak connections but not for strong connections.

Node 3 is a gateway node with high betweenness values in Figs. 5, 6 and 8. Node 3 
is a member of sub-groups in exceptional sub-groups of divisions L and Q. The sub-
group of nodes {2, 3, 7, 14, 15, 16, 21, 23, 24, 25, 26, 32} in division L rules out three 
separate factions A, C, and D. Other examples of unconnected factions can be found 
in Table 9 in divisions F, G, I, J, K, M, N, and P. In these cases a strongly connected 
sub-group disconnects the second faction of the division. In this way more than two 
separate sub-groups can build up as a result of dynamic behaviour of social networks.

In a typical situation sub-groups are nested, for example, A ⊂ F ,G,N ,Q , 
C ⊂ G, I , J ,K ,M,N ,P and D ⊂ E, F , I , J ,O,P. Often, sub-groups are unions, for exam-
ple, F = A ∪ D , G = A ∪ C , and N = A ∪ C ∪H . In many cases, differences of com-
bined sub-groups are stand-alone sub-groups. However, for example, {15, 25, 32} and 
{2, 7, 14, 16, 21, 26} are not separate sub-groups in any divisions. This can be sensitive to 
model parameters.
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Fig. 10  Representative sub-communities detected among the 32 Dutch students’ social network



Page 31 of 39Kuikka ﻿Comput Soc Netw            (2018) 5:12 

Community structures of a social network of dolphins

The third dataset we have selected to test the proposed community structure algorithm 
is the data of dolphin association collected for a research programme [38] of a commu-
nity of 62 bottlenose dolphins over a period of 7 years. The network describing interac-
tions of dolphins represents one of the real-world networks for which the community 
structure is already known. The social network has been analysed in [42] with a method 
published in [43, 44]. Two communities and four sub-communities were detected in the 
dolphin network. A temporary disappearance of the dolphin denoted by SN100 led to 
the fission of the dolphin community into two factions.

The animal social network is found to be similar to a human social network in some 
respects but different in some others such as the level of assortative mixing by degree 
within the population. Assortative mixing by age but not by vertex is observed in the dol-
phin social network [42]. Assortative mixing is a bias in favour of connections between 
network nodes with similar characteristics in complex networks [45]. In the model of 
this paper this may favour a lower value of maximal path length for the dolphin social 
network than for human social networks.

In Table 10 factions of nodes producing six local maxima in the values of the measure 
of Eq.  (15) are listed. Boundaries of these divisions are shown in Fig.  11. The highest 
value is for division A which is the split observed in real life, with one exception of Node 
SN89, after dolphin SN100 temporarily disappeared from the original dolphin commu-
nity. Out of the five additional less optimal divisions almost as good division B separates 
a smaller group of more peripheral 15 nodes. This indicates a mediating role of the six 
dolphins Beescratch, DN63, Knit, Mus, Notch and Number1.

Table 10  Optimal divisions of the dolphin social network

Division Network A B C D E F

Factions 0 + 62 21 + 41 15 + 47 35 + 27 39 + 23 38 + 24 22 + 40

Eq. (15) 122.2 115.9 114.0 94.9 93.9 92.6 92.5

SN100

BeescratchDN63 SN89

T=1

PL

Oscar

Beak

TR77

SN96

Knit

Mus

Notch

Number1

AC
D

E

F

B

Bumper

Fish
Zap

SN9

Fig. 11  Communities discovered from the dolphins’ social network [42]. Time value  T = 1.0 and node 
weighting factors WN = 0.5 are used with model parameter values  λ = 0.5, Lmax = 4
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Division C is an analogous division on the other side of the main spit boundary of dol-
phin SN100 and a group of 12 closely interconnected dolphins on the right lower part 
of Fig. 11. These 12 nodes are exactly the nodes identified by [42] as a sub-community 
in the network. There are also three additional more divisions D, E, and F indicated in 
Fig. 11.

We have computed also the results with Node SN100 removed from the original net-
work. The results are almost similar. The divisions A and B are the same as in Fig. 11. 
Division C has one Node Zap moved side. The fourth division of 16 nodes is in the lower 
left corner of Fig. 11 with dolphin SN9. The fifth and sixth divisions are exactly divisions 
D and E in Fig. 11.

Betweenness of nodes in the dolphin social network have been studied in [46]. Val-
ues of Eq.  (12) have been calculated for two different parameter values describing low 
and high cohesion of the network. The results are very different for these two cases. At 
early phases of influence spreading different nodes have the highest betweenness, when 
compared with later phases of the process, because later more nodes have already been 
affected. At early phases local characteristics and neighbouring nodes are controlling the 
spreading processes. Node degree is describing centrality in these situations.

In fact, the highest node degrees of the dolphin social network are for dolphins Grin, 
SN4 and Topless with 12, 11 and 11 node degree values correspondingly. In the low 
cohesion network, the nine nodes with the highest values of betweenness measure are 
{Grin, SN4, Topless, Scrabs, SN9, Kringel, Patchpac, Trigger, TR99}.

In the high cohesion network, the eleven nodes with the highest values of betweenness 
measure are {SN100, Beescratch, SN9, Trigger, SN9, Trigger, SN4, Jet, Scrabs, Stripes, 
Kringel}. These results are in agreement with the results in [42] identified using the 
betweenness-based algorithm of [43].

Low cohesion exists at an early phase of influence spreading or when nodes’ activi-
ties are low, i.e. low node weighting factors. A result of this is that corresponding pairs 
of time and weighting factor values can be found such that they provide comparable 
results. In [46] this has been demonstrated in cases of low values of time with high val-
ues of weighting factors, and high values of time with low values of weighting factors. 
Almost identical results are obtained for T = 1.0,wN = 1.0 and T = 4.5,wN = 0.5.

According to the research article [42] the dolphin community has existed quite a long 
time. On the other hand, the positive assortative mixing by degree was not observed 
in the study, which is often observed in human social networks. However, a clear sta-
tistically significant assortative mixing by sex among the dolphin population has been 
observed, although the mixing is not as strong as some types of mixing in human socie-
ties [42, 45].

We conclude from the results of [42], because of the lack of positive assortative mix-
ing by degree, that relatively low value of T = 1.0 is appropriate. The value of wN = 0.5 
for node weighting factors are used in Fig. 11. We have made experiments with higher 
values of weighting factors and higher values of time. In latter development phases of 
influence spreading local maxima of community detection in Eq.  (15) are levelled and 
fewer sub-communities are discovered. At time T = 1.0 with wN = 1.0 only one division 
is detected which is exactly the same Division A in Fig. 11. Using the method for low and 
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high cohesion circumstances can be regarded as a method to examine a network with 
diverse resolutions.

We summarize the results of analysing the dolphin social network. The split of the dol-
phin population into two factions after a temporal disappearance of dolphin SN100 is 
predicted by the model with the exception of one dolphin SN89. In the literature, sub-
communities have been identified using the betweenness-based algorithm in [43]. The 
proposed model of this study does not predict the same sub-communities but they can 
be identified by the help of investigating boundaries of different divisions predicted by 
the model.

There is a question whether the same model parameters are appropriate for dolphin 
and human social networks. We conclude from the research published in [42] that low 
values of time T  or node weighting factors wN might be more appropriate for dolphin 
social networks. The same reasoning applies to maximum path length L used in the 
model. In the proposed model, the consistent procedure is to use the same parameters 
for the community detection algorithm and for closeness and betweenness centrality 
measures.

Community structures of a Facebook social network

In this section we show results for a social network of Facebook. This dataset consists of 
‘circles’ (or lists of friends). The network data have 4039 nodes and 88,234 links between 
nodes. The data also have nested and overlapping communities. Here, our main focus is 
on presenting the features of our model and methods for larger social networks. Because 
of the detailed modelling, where all the nodes are considered, when influence between 
nodes are calculated, complex phenomena appear which may not be present in very 
small social networks. We also provide strategies on how to optimize the community 
detection calculations to minimize computer running times. The Facebook social net-
work is the same as used in [11].

The analysis is conducted with the entire social network data, with loops allowed 
(except self-loops), maximum path lengths Lmax = 6 , node weighting factors wN = 0.1 , 
and link weighting factors wL = 1.0 . The community detection measure of Eq.  (15) is 
computed along the paths determined by the 88,234 links between nodes. As a result 
of the influence spreading process, all the nodes inside the maximum path length Lmax 
in a connected graph are influenced by a node and the corresponding elements of the 
N × N  matrix Cs,t have positive values. The full analysis of the network considers all 
these elements.

All the information for detecting communities and their relations in a network con-
sisting of N  nodes is included in one N × N  matrix, which has influence measures of 
Eq. (6) from N  nodes to all the other nodes in the network. Because diagonal elements 
of the matrix have no effect on the community structure, we set the diagonal elements 
to zero. We show selected results of detailed structures of the network while the cal-
culations have been conducted using the whole network data. Therefore, the method is 
global, not local, in this respect. This means that all the interactions have influenced the 
results, centrality and betweenness measures and community structures.

We have detected 551 sub-structures in the network. Most of these are nested struc-
tures inside communities. In large networks, many levels of nested sub-communities 
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can exist. The algorithm provides list of nodes included in the 551 communities and 
the corresponding values of the community detection measure of Eq. (15). We order 
the communities by the values of the measure and use the ranking of a community as 
a unique identifier (in this section only smaller factions of divisions are studied). The 
analysis should start from important communities, their internal structures and rela-
tionships with other communities.

The smaller faction of the division with the highest value of the community detec-
tion measure of Eq.  (15) consists of the 59 last nodes {3981–4039} of the network 
data. The value of the un-normalized measure of Eq. (15) is 442,159. This community 
has also complex sub-structures. Figures 12 and 13 show the overlapping and nested 
structures among the 59 nodes. Community C1 and its sub-communities C2, . . . ,C6 
have a significant influence on community structures outside C1 , and in many cases, 
one or more of C1, . . . ,C6 are included as sub-sets in these communities.

Nested sub-communities are indicated in Fig.  13 as C5 ∈ C6 ∈ C1 and 
C4 ∈ C3 ∈ C2 ∈ C1 . Two different divisions of the 59 nodes are shown with dotted 
lines in Fig.  13 as C1 = C4 + C6 and C1 = C3 + C5 . As can be seen in Fig.  12, three 
genuine overlapping cases exist: C6 − C5 = S2 , C2 − C3 = S8 , and C5 − C2 = S32 . We 
denote these intersecting sets of nodes by S2 , S8 , and S32 because they have not been 
detected as sub-communities [local maxima of Eq. (15)] and have no community iden-
tifier in Fig. 12. However, together the three sets form sub-community C6 , denoted by 
C6 = S2 + S8 + S32 . Again, these sets of nodes may appear as sub-communities with 
lower parameter values. In fact, intersections of detected communities are candidates 
for new sub-communities.

Figure  14 shows a sample of the analysis of the Facebook social network around 
the 59 nodes. Sub-communities are marked by their sizes and identifiers [rankings 
calculated from Eq. (15)]. In the calculations all the 4039 nodes have been considered. 
This means that the sub-communities and their compositions are probably different if 
only the nodes in sub-communities shown in Fig. 14 are considered. Figure 14 shows 
the nested structures of the sub-communities as in Fig. 13. Compositions of the sub-
communities (dotted lines in Fig. 13) are not shown in Fig. 14.

Fig. 12  The five sub-communities  C2,…, C6 detected in community C1. Numbers of nodes and community 
identifiers (ID) are shown. The sets of 2, 8 and 32 nodes are not detected as sub-communities with the used 
model parameters. These sets of nodes are intersections of the detected sub-communities
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In many cases a community has nested structures composed of sub-communities 
lower in hierarchy like the two examples in Fig. 13. This is a consequence of the fact 
that influence spreading is considered globally or at least inside the path length Lmax , 
if it is not set to infinity. Also, when a nested sub-community is detected inside a 
community, the other faction S may not be detected as a sub-community. An example 
is shown in Fig. 12 where C3 = S2 + C4 . This does not exclude the possibility that S is 
a constituent of a sub-community on higher levels. An example in Fig. 14 is the sub-
community C8 of 264 nodes composed of sub-community C9 and a set of 32 nodes S32 
(C8 = S32 + C9) . This is possible because community C1 and its sub-structures are also 
nested sub-structures of community C8 as can been seen in Fig. 14.

Full investigation of a large social network is a major task. In practice, the analysis is 
started from the most important communities detected from the network. This has been 
the idea in Figs. 13, 14. Alternatively the analysis is focused on communities, or nodes, of 

Fig. 13  Nested sub-communities and different divisions of community C1 are shown with solid and dotted 
lines correspondingly

Fig. 14  A sample of community structures in the Facebook social network. Selected sub-communities 
are shown with information about community sizes and community identifiers (rankings of communities). 
Arrows indicate nested structures of sub-communities. Analysis has been conducted with the entire network 
data of the 4039 nodes. Colouring is explained in Fig. 15
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special interest. Different search criteria for the analysed results can be used, for exam-
ple, node numbers, community identifiers and values of community measures. Nested 
structures are discovered by comparing the compositions (nodes) of the detected com-
munities. Deep nested hierarchies can exist when some sub-communities extend their 
influence widely, like C1 in Figs. 12 and 14.

Closeness centrality rankings of the most important nodes in sub-communities of 
Fig. 14 are shown in Fig. 15. Rankings of measures of Eq. (9) and (10) are not the same. 
However, their numerical values typically are close to each other.

Conclusion
We consider a model with one ego initiating the influence spreading process in a social 
network. This allows us to study different phenomena in structured networks. In practi-
cal calculations, the proposed model can also be used for simultaneous source nodes 
of influence spreading. Dynamic measures for spreading in a social network are used 
as measures for centrality and betweenness. These measures are functions of network 
activity and time. Time can be interpreted as the development phase of social relations 
in a social network. A steady state is reached at high values of time. Therefore, measures 
describing centrality, betweenness or other characteristics of a network, can be calcu-
lated for the steady state or for different development phases of a network.

The proposed model takes into account different paths of the network from a source 
node to target nodes. Secondly, the dependency of paths is modelled by considering 
common links at the beginning of the paths. Combining these aspects is the novelty 
of the model compared to other models in the literature. These features of the model 
enable many opportunities to study new phenomena in complex networks and to solve 
existing problems more accurately.

Highly connected peripheral groups have multiple possible paths at the begin-
ning of the spreading process which emphasizes the importance of these nodes as 

Fig. 15  Nodes and their rankings with the highest closeness centrality values in sub-communities of Fig. 14. 
The last column shows the rankings of the average value of Eqs. (9) and (10)
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influential spreaders. It is known that initial spreading dynamics is crucial for later 
development of dynamic processes in a network [47].

We consider networks with a constant structure of nodes and links. Influence 
is spreading in the network and one node can spread similar influence repeatedly. 
Results in several recent articles [48–50] indicate that peripheral nodes, which are 
not highly influential, have more spreading power than most of the existing models 
predict. Our study provides evidence supporting these statements. Allowing loops 
(a node is allowed in the same chain of links more than once) further enhance the 
importance of interconnected peripheral nodes with low connectivity to central core 
network structures.

Activity of nodes has a nonlinear effect on rankings of the most influential nodes 
in the network. For example, if nodes’ activity is lower, the prominence of periph-
eral connected nodes is higher. We can say that the activity of nodes is an important 
aspect and models should take activity as one of the main variables of dynamic social 
network analysis and influence measures. In the model, activity is described by node 
and link weighting factors.

A new community detection measure is proposed in this paper. The community 
detection algorithm can be used to analyse possible sub-communities or closely 
connected members of the network. The idea in analysing community structures is 
based on the concept of nodes’ role in the network as sources and targets of influence. 
Both of these aspects have a role in community formation. The algorithm computes 
local maxima of an influence measure which considers both in- and out-directions of 
influence. Typically, social networks with weak interactions between nodes or social 
networks that are at their early development phases have several local maxima with 
different compositions. These factions can intersect and overlap with each other.

In this paper, we propose a consistent modelling framework for computing power-
ful influence spreaders and mediators in a social network. The same theory can be 
used in analysing community structures. The method is discussed and illustrated with 
several examples and graphical presentations.
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