
Zignani et al. Computational Social Networks  (2015) 2:13 
DOI 10.1186/s40649-015-0020-9

RESEARCH Open Access

Calling, texting, and moving:
multidimensional interactions of mobile
phone users
Matteo Zignani*, Christian Quadri, Sabrina Gaito and Gian Paolo Rossi

*Correspondence:
matteo.zignani@unimi.it
Department of Computer Science,
University of Milan, Via Comelico
39/41, Milan, Italy

Abstract

The communication networks obtained by using mobile phone datasets have drawn
increasing attention in recent years. Studies have led to important advances in
understanding the behavior of mobile users although they have just considered text
message (short message service (SMS)), call data, and spatial proximity, separately.
However, there is a growing awareness that human sociality is expressed
simultaneously on multiple layers, each corresponding to a specific way an individual
has to communicate. In fact, besides the common real life encounters, a mobile phone
user has at least two further communication media to exploit, SMSs and voice calls.
This is advocating a multidimensional approach if we are seeking a compound
description of the human mobile social behavior.
In this context, we perform the first study of the multiplex mobile network, gathered
from the records of both call and text message activities, along with relevant
geographical information, of millions of users of a large mobile phone operator over a
period of 12 weeks. By computing a set of complex network metrics, at different scales,
onto the three single layers given by calls, SMSs and spatial proximity, and their
extensions onto a three-level network, we provide a comprehensive study of the global
multi-layered network which arises from both the overall on-the-phone
communications performed by mobile users and their spatial propinquity.

Keywords: Multiplex network; Mobile phone graph; Social network analysis;
Co-location graph; Voice call; Text message; Communication network

Introduction
In recent years, we witnessed the growing awareness of the fact that human communi-
cations and social interactions are built on a stratified structure [1]. Today, a variety of
techno-communication channels—including online social networks, mobile phone calls,
short message services (SMSs), and e-mails—provides an intricate bundle of interac-
tions that is overlaid on real life relationships enabled by individuals’ spatial proximity.
Among all, communication networks constructed on top of mobile phone interactions
have attracted increasing research activities in recent years, becoming a relevant topic in
the computational social science [2]. Results have led to important advances in under-
standing the communication behaviors of mobile users [3, 4] at different scales. For
instance, the structural properties of the mobile phone graphs have been investigated
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by Nanavati et al. [5] and by Onnela et al. [3], whose studies represent the first attempt
to analyze large social networks as they emerge from mobile communications. On the
other side, a great effort has been devoted to study the local properties of mobile phone
graphs. Many researchers proposed measures to characterize the properties of the links:
the burstiness level [6, 7] and the link persistence [4] are often used to describe link
dynamics, whereas the link overlap [3] captures the role of the link with respect to (w.r.t.)
dense/sparse structures. Nonetheless, most of these studies limit their analysis to one or
two ways of communication, while an all-around vision is still missing. Mainly, studies
consider the set of voice call data, while, for instance, text messages (either instant mes-
sages or SMSs) have been considered rarely and separately from phone calls [5, 8], when
analyzing human communications and spatial proximity.
Mobile phone data also provide information about users’ mobility, leading to stud-

ies which combine human movement and communication patterns. A few of them have
stressed the interplay between users who call each other and their geographical proxim-
ity. For instance, the analysis of Phithakkitnukoon et al. [9] reveals that most of the places
visited by a person are close to their friends’ positions, while Calabrese et al. [10] and
Wang et al. [11] show that the frequency of encounters between users is highly correlated
with their frequency of calls. The above works mainly focus on link and geographical
proximity; however, more complex structures like communities have been related to the
geographic position. At a country level, Caughlin et al. [12] studied a Dominican Repub-
lic mobile phone communication network to determine whether the geographic context
can explain the community membership, while Expert et al. [13] have been able to divide
the Flemish and the French communities by adapting the modularity function to deal
with spatial networks. Finally, Onnela et al. [14] have shown that small social groups are
geographically very tight but become much more clumped when the group size exceeds
about 30 members.
In this paper, we take the first step in the direction of a multiple layer approach by per-

forming a combined analysis of the networks obtained from SMSs, voice phone calls, and
spatial proximity at a metropolitan scale. This study is based on the multiplex network
gathered from a large anonymized dataset of call detail records (CDRs) containing voice
call and SMS activities and related spatial information of nearly one million mobile sub-
scribers over a period lasting 12 weeks in 2012. Data have been structured like a network
of three networks [15] and formally described by a directed multigraph. By comput-
ing a set of complex network metrics, at different scales, onto the three single networks
and their extensions onto the multiplex network [16], we contribute to some findings on
human behavior in the different dimensions captured by mobile phone data.
First, we show that the two single layers describing on-phone interactions, SMSs and

calls, are macroscopically similar as far as regards the connected components, but they
are microscopically different. In fact, the two single networks do not perfectly overlap,
nor one is included in the other, while they rather partially overlap, since many users use
a communication medium only (call or SMS). User ego-networks perceivably enlarge in
the multiplex network, confirming that both communication media are needed to get a
complete vision of the users behavior captured by a mobile phone dataset. Besides, as
far as regards in-degree and out-degree distributions, it turns out that the SMS graph
behaves more similarly to online social networks, while the call graph is more similar to
Web graph. Second, we introduce the notion of multidimensional link reciprocity into the
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set of metrics for multiplex networks [17]. We show that interactions by mobile phone
are much more reciprocal and thus social [18] than what could be speculated if only calls
were considered. Nevertheless, reciprocity is much lower than observed in online social
networks and in the Web. As third contribution, we add a third layer given by the spatial
proximity, obtaining a denser graph than on-phone communication graphs and we find
that people communicating by phone are more likely to be in spatial proximity w.r.t. indi-
viduals who do not interact through any mobile medium. In particular, interactions by
SMSs are more predictive of spatial proximity than calls. However, a correlation analysis
between the degree of co-location (proximity) and the strength of the communications
between co-located pairs let emerge a novel result: in a metropolitan area like Milan, peo-
ple who are strongly spatially close do not need to frequently communicate, as observed
in other studies [10, 11]. At most, the frequency of communications increases when peo-
ple not frequently share some locations. Fourth, we study the correlation between the
different centralities of the mobile phone users in each layer. The results confirm that the
network which merges on-the-phone communications and spatial proximity is made by
loosely coupled layers in terms of degree and strength. Finally, we investigate the impact
of multiplexity also at mesoscopic scale by performing a community detection analysis
on each layer and on the multiplex networks. It comes out that communities at differ-
ent layers do not match. Among them, the SMS communities are more representative of
groups of people sharing the same interest than the call ones, being call-based communi-
ties weaker. This finding also explains why we observed that the communities extracted
from the multiplex network are mainly pivoted on SMS communities. In general, SMSs
are used by pairs and groups of people with closer relationships that lead them also to
meet.
The paper is organized as follows: in the “Dataset” section, we describe the mobile

phone dataset; in the “Network definitions” section, we introduce the notation and the
definitions to cope with multidimensionality; in the “Networks characterization” section,
we microscopically and macroscopically characterize each network separately in terms
of node sets, connected pair sets, degree distribution, multireciprocity, and connected
components; then, we measure the interplay among the different layers by correlating
node centralities and the weights associated to the links. Finally, in the “Community”
section, we analyze the overlapping between the communities extracted from the different
networks we take into account.

Dataset
This paper is based on a large anonymized dataset of call detail records (CDRs) con-
cerning voice calls and short text messages (SMS) of about one million subscribers of an
international mobile operator in themetropolitan area ofMilan and collected fromMarch
26 to May 31, 2012. The dataset contains an overall amount of more than 63 million
phone-call records and 20 million SMS records.
Unlike [19], where we took into account the CDR information about call and SMS inter-

actions only, here, we also add the spatio-temporal proximity dimension induced by the
human mobility. To include the spatio-temporal information, each entry of the CDR is
described by the 5-ple tCDR = 〈s, r, tstart , d, loc〉, where s and r, respectively, represent
the sender and the receiver of the call/sms, tstart is the initial time of the activity (when
the call starts or a SMS is sent), d is the duration, and loc is the serving cell the user s
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is attached to. We consider the cell tower loc as a proxy for the physical position of the
user s. 1 SMS duration is zero, while nearly 40 % of calls have duration equal to 0. Besides
missed or unanswered calls, such a large amount of rings is reckoning with a common
practice in Italy to use rings for meaning ‘call me back soon” or “I have just arrived”, for
instance, to get synchronized at a meeting. Due to the difficulty in detecting 0-duration
calls which express significant interactions, we remove these records from the dataset.
Furthermore, according to the literature on mobile phone cleansing [2, 6, 18], we filtered
out calls involving other mobile operators to mitigate the bias between operators. More-
over, the positions of the users not supplied by the mobile operator are incomplete as well
as the evaluation of the interplay between mobility and the communication activities.
On the basis of the CDR dataset, we construct two preliminary on-phone communi-

cation networks, one for each channel, that are then processed to extract only relevant
interactions. To the purpose, in the call graph, we consider the pairs of users whose sum
of the call durations exceeds the minute and whose total number of interactions is greater
than three. This way, we discard pairs with on average one interaction per month [18] and
who exchange a small quantity of information. For the same reasons, in the SMS graph,
the only relevant pairs are those with a total number of interactions greater than three.
After the data cleansing, the analysis is performed on a whole population of about 420,000
people generating almost seven millions calls, 317,000 h of conversations, and four mil-
lions SMSs. Furthermore, as shown in the “Networks characterization” section, we obtain
maximal degrees similar to reciprocated networks, keeping at the same the directionality
of the links.
Previous data are exploited to evaluate and study human interactions facilitated by

mobile phones and implicitly to measure the topological closeness of the mobile phone
users in a techno-communication dimension. Meanwhile, mobility data allows us to cap-
ture some degree of closeness between two individuals in a different dimension: the
physical space. The degree of physical proximity that can be extracted from a mobile
phone dataset does not equal to measure face-to-face contacts nor to quantify physical
interactions. However, the higher spatial granularity of cellular towers in a metropolitan
area2, w.r.t. other mobile phone datasets [9, 11, 14, 20], allows us to obtain more precise
results and levels of proximity closer to physical interactions.
To obtain a reasonable value which expresses the closeness of a pair of users in the

physical space, we leverage the co-location rate (CoL) as defined in [11]. Given n(u), the
set of CDR tuples such that u is equal to the sender s, we define CoL as:

CoL(u, v) =
∑

i∈n(u)

∑
j∈n(v) �(T − |tstart(i) − tstart(j)|)σ (loc(i), loc(j))∑
i∈n(u)

∑
j∈n(v) �(T − |tstart(i) − tstart(j)|) (1)

where �(t) is the Heaviside function, σ is the indicator function, and T is a time window.
To obtain a proximity measure closer to face-to-face interactions, we set T = 30 min
(lower threshold w.r.t. literature [11]). The co-location rate takes into account the spatio-
temporal proximity given by the simultaneous presence of the pair (u, v) at the same cell
tower, normalized by the number of times users u and v are both observed during the
same time window. Moreover, to avoid the bias given by a low numerator and denomina-
tor in Eq. 1, we discard CoL values which correspond to a numerator less than 10. This
way, we obtain more than two million pairs with CoLoc > 0, from the initial 170 millions.
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Network definitions
Interactions among individuals take place through a variety of communication chan-
nels and can be described by as much different networks, thus leading to a multiplex
graph. Although our dataset provides information about only three levels, in this section,
we introduce a general definition of edge-labeled multigraph which covers any multi-
layered setting. To represent the directional nature of the communications, we consider
only directed networks without any labels on vertices. The same holds for the physical
proximity graph, since it is possible to represent an undirected graph as a digraph.

Definition 1. An edge-labeled directed multigraph is a tuple D = (V ,E,D, l) where V
is the set of vertices, E ⊆ V × V × D, with D, the set of dimensions or layers, is the set of
labeled directed edges, and l : E → S is a mapping assigning an element s ∈ S to an edge
(u, v, d) ∈ E.

Likewise, the single layer case, we can extract from a directed multigraph its undirected
graph by removing the direction in each layer d and by introducing a function which
merges the labels of the edges whenever a link is bidirectional.
Given an edge-labeled directed multigraph, we may need to extract only a specific layer

or consider them separately. This occurs, for instance, when comparing the properties
of different networks or evaluating the importance of a vertex in a specific layer. To this
purpose, we provide the definition of d-network layer.

Definition 2. Given an edge-labeled directed multigraph D = (V ,E,D, l) and d ∈ D,
we define the d-network layer Dd as the graph Dd = (Vd,Ed) where Ed = {(u, v) ∈ V × V |
(u, v, d) ∈ E} and Vd = {u, v ∈ V |(u, v) ∈ Ed}. A similar definition holds for undirected
multigraphs.

The multigraph and the network layer definitions model multi-layered settings. To
adapt these definitions to the three-layer case given by the voice call, the SMS, and the
co-location layers, we set D = {c, s, loc}, where c, s, and loc, respectively stand for call,
SMS, and co-location. In particular, we denote Dc as call graph and Ds as SMS graph. The
co-location network, instead, is described by the undirected graph Gloc whose nodes are
contained in Vloc = Vc ∪ Vs and an edge (u, v) exists if CoL(u, v) > 0.
We finally define a mapping function l which enables the modeling of the strength of

the on-phone interactions and the level of co-location. l is defined as follows:

Definition 3. Given an ordered pair < f c(u, v), δ(u, v) >∈ R
2 , f s(u, v) ∈ R, and

CoL(u, v) ∈[ 0, 1],

l(u, v, d) =

⎧⎪⎨
⎪⎩

< f c(u, v), δ(u, v) > d = c
f s(u, v) d = s
CoL(u, v) d = loc

where f c(u, v) and f s(u, v) are the number of calls and SMSs from u to v, respectively, and
δ(u, v) is the aggregated duration of the conversations when u calls v.
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Although the previous mapping definition captures both duration and frequency, in the
following, we mainly consider frequency only. This way, weight variables on the different
communication dimensions, call and SMS, are comparable. To summarize the objects we
are dealing with, in the following sections, besides Dc, Ds, and Gloc, we take into account
two edge-labeled directed multigraph Dcs and Dcsloc. The former models the overall on-
phone interactions since it includes the call and the SMS layers. The latter represents the
overall multiplex network captured by the mobile phone dataset sinceDcs is merged with
the co-location network.

Networks characterization
Before dealing with many layers simultaneously, we analyze each property in each dimen-
sion, separately. This approach is intended to highlight the importance of all dimensions
in describing the human behavior in a mobile phone dataset. In this section, we charac-
terize mobile users in terms of communication media usage and physical presence in the
city of Milan by measuring how the three networks overlap. That allows us to say which
interactions between SMS or call are more predictive of the spatial proximity. The anal-
ysis of the layers overlapping stresses the importance of a multilayer approach since we
observe that if we focus our attention just on a single dimension, we lose a few interac-
tions. These findings also impact on the degree centrality. We ask whether active users,
for example hard texters, are as active in the other communication layer or whether users
with a high degree of proximity with many people are equally important into the techno-
communication dimension, and we find that the layers are loosely coupled. Finally, we
find that at the macroscopical level, the networks are similar despite their microscopical
differences.

Networks size and order

In Table 1, we report the basic properties ofDc,Ds,Gloc,Dcs, andDcsloc. The order and the
size of the SMS and the call graphs indicate that the on-phone communication layers are
very sparse. As for the co-location network, it is completely different from the previous
graphs since nodes are less, but the number of links is much higher, i.e., the co-location
network is denser, and many nodes are not physically co-located, as it will be discussed
afterwards.
To compare our results with the literature on phone calls, we also report the order and

the size of the giant weakly connected components. Generally, the percentages of nodes
in the giant components are comparable with other mobile phone graphs [5], and the SMS

Table 1 Basic properties of the Dc , Ds , Gloc ,Dcs ,Dcsloc , and of their giant weakly connected
components.

∣∣Vgwcc∣∣ and ∣∣Egwcc∣∣ represent the number of nodes and edges of the giant weakly
connected component (gwcc), respectively.med(k) indicates the median degree, andmed(f )
denotes the median strength. The column Perc. reports the ratio between the number of nodes in
the giant component and in the whole network

Type |V| |E| med(k) med(f )
∣∣Vgwcc∣∣ ∣∣Egwcc∣∣ Perc. (%) med(k) med(f )

Dc 394,834 1,098,774 2 9 356,895 1,070,576 90 3 10

Ds 272,310 575,555 2 7 221,210 537,600 81 3 8

Gloc 197,216 2,477,564 5 – 194,238 2,476,041 98 5 –

Dcs 417,728 1,674,329 3 12 383,659 1,643,518 91 5 14

Dcsloc 417,728 4,151,893 3 – 395,040 6,657,428 95 4 –
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graph is less connected w.r.t. the call graph. Observing the overall number of nodes (first
column in Table 1), the multilayer graph Dcs includes more users w.r.t. the single layers.
For instance, the social network built on voice calls loses about 5 % of users in the mobile
network up to 7 % of nodes when considering the giant component. The phenomenon is
further amplified if we consider Dcsloc. Here, the loss in the voice call graph is 9 %, and
the introduction of the spatio-temporal proximity links increases the number of nodes
weakly connected (more 3 % of nodes w.r.t Dcs).

Node sets

The analysis of the node set in Ds, Dc, and Gloc, respectively, allows us to highlight the
users’ habits in terms of usage and preference of the communication media. Do all users
adopt both media or someone prefers to communicate by call or SMS only?
The number of nodes in the different networks in Table 1 suggests that Vc and Vs do

not perfectly overlap, nor one is included in the other, rather they partially overlap. In
fact, we find that 35 % of active users adopt only the call as interaction media, while the
exclusive use of text messages involves 5 % of active users. In general, we observe that
many users perceive the two communication media as different. About 40 % of active
users prefers only an exclusive communicationmedium (call or SMS), while the remaining
ones prefer integrating the peculiarities of the two communication channels. In fact, calls
are more instinctive and similar to face-to-face conversations, whereas text messages are
more intimate and allow a greater level of reflection [1].
We extend the overlapping evaluation to the set of people who are co-located (Vloc).Vloc

represents a proper subset of the mobile phone users by construction (see the “Network
definitions” section) and contains 47 % of mobile phone users. The remaining 53 %, who
interact through the cellular network infrastructure in Milan, do not live mostly in the
city or are passing by. Consequently, we refine the above analysis on the exclusive usage
of the communication media by focusing only on the users who share locations in Milan.
In this case, 40 % of the users share with at least another user a different location in Milan
and use both SMSs and calls, whereas 0.6 and 6 % adopt exclusively SMSs or voice calls,
respectively.

Link sets

About the analysis of the link sets, in the following, we consider the connected pairs, i.e.,
(u, v) such that at least a link between u and v or v and u exists. By abusing of notation, we
denote as Ec, Es, and Eloc the set of the connected pairs in each layer, respectively. In this
case, we do not take into account the direction of the links because we focus only on the
interplay between the spatio-temporal proximity and the communication media adopted
to interact.
The first quantity we investigate is the number of connected pairs in the techno-

communication directedmultigraphDcs that happen to be co-located, i.e., |(Ec∪Es)∩Eloc|
(see Table 2). We find that the probability of interacting by media when in physical prox-
imity is equal to 0.06. This low value is justified by the spatial granularity of the cellular
cells and by the overcrowding of some locations, in particular gathering places where
the trajectories of a large amount of people intercept one another. Similarly, given a pair
interacting by SMSs or voice calls, we evaluate the probability of being co-located equals
0.143, a value much higher than the probability of being co-located when no interactions
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Table 2 Overlapping among different connected pair sets. The subsets are disjoint to make their
combinations additive

(Ec ∩ Eloc ∩ Es) = I (Ec ∩ Es) \ I Ec \ (Es ∪ Eloc) Es \ (Ec ∪ Eloc)

|E| 110557 553621 162458 131665

% 3 16 4 3

Ec ∪ Es ∪ Eloc (Es ∩ Eloc) \ I Eloc \ (Ec ∪ Es) (Ec ∩ Eloc) \ I
|E| 3325308 8485 2331671 26851

% 100 0.2 70 0.8

occur 4. Consequently, people communicating by phone are more likely to be in spatial
proximity w.r.t. individuals who do not interact through any mobile channel.
Since the multigraphDcsloc takes into account both SMSs and calls, we can estimate, for

each given pair of interacting users, whether the probability of being in proximity given a
SMS communication is greater than the same probability given an interaction mediated
by a call. We find that when interactions occur via SMS, this probability equals 0.285,
and it is greater than the probability obtained when voice calls are used (0.16)6, i.e., the
interactions via SMS are more predictive of a possible spatio-temporal proximity w.r.t.
voice calls.
To go further in the analysis, we introduce the weights associated to the different types

of link with the purpose of verifying whether interacting pairs happen to be more likely in
proximity than pairs that do not communicate but have a positive co-location rate. First,
we investigate the distribution of the co-location rate CoL of the connected pairs which
belong to Eloc ∩ (Ec ∪ Es) and compare it with the same distribution computed on the
co-located pairs that do not communicate. The results, reported in Fig. 1, do not show
significant differences in the distributions. However, the latter is slightly above the for-
mer, i.e., spatially close people that also use media to communicate are characterized by
a proximity index higher than people that do not interact through mobile phone. We also
investigate the probability that pairs, simultaneously sharing the same location, commu-
nicate by using a givenmedium (call or SMS separately). To this aim, in Fig. 2, we compare
different subsets of the union of the connected pair sets: pairs connected by calls, by

Fig. 1 Co-location on connected pairs. Complementary cumulative distribution function (CCDF) of CoL
extracted from the connected pairs in (Ec ∪ Es) ∩ Eloc (red) and in Eloc \ (Ec ∪ Es) (blue)
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Fig. 2 Proximity given the communication medium. CCDF of CoL in Es ∩ Eloc , Ec ∩ Eloc , (Ec \ Es) ∩ Eloc ,
(Es \ Ec) ∩ Eloc , and (Ec ∪ Es) ∩ Eloc

SMSs, by calls or SMSs exclusively, and by calls or SMSs (Ec ∪Es). We note that the distri-
butions are not different. That suggests proximity strength does not rely on the channel
people are using to communicate and interact.
Some recent studies have found a positive correlation among spatio-temporal prox-

imity, the presence of links in the related communication networks and their strengths;
so people in proximity are more likely to be connected in the social network and to
have intense direct interactions [10, 11]. We observe that both studies rely on mobile
phone datasets covering wide geographical areas and consequently are characterized by
a coarse spatial granularity. As a consequence, we wonder if the above results could be
confirmed by our dataset or if the size of the region and the spatial granularity influence
the outcomes. To replicate and compare the results, we apply the same methodology in
[11], i.e., we study the correlation between CoL and the strength of the on-phone com-
munication links. In Fig. 3, we show the average and median values of the link weights
(frequency of the interactions) as a function of the co-location rate. The trend is com-
pletely different from the aforementioned results. We observe that from CoL = 0.2, the
link strength decreases while CoL is increasing. That implies people who are very close
in the spatio-temporal dimension do not frequently interact, while people who are some-
time co-located communicate more frequently. This phenomenon could be explained in
the light of the limited geographical area under study. In a city, people sharing simul-
taneously many places do not need a mobile phone to communicate since they exploit
face-to-face interactions. Otherwise, people who are scarcely in proximity complement
the face-to-face interactions with the mobile phone communications. We argue that, in
a city area, mobile phones perform their original purpose, i.e., make the communication
between distant people easier.

Reciprocity andmultireciprocity

Any social interaction can be established through interleaved use of different communica-
tion channels and the one-dimensional notion of mutual relationship, i.e., the reciprocity
or mutuality needs to be extended.
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Fig. 3 Correlation between CoL and f c + f s . Blue bars and points represent the average strengths and their
standard deviation, while red bars and points indicate the medians and the 0.25/0.75 quantiles. Cyan points
represent the original sample

Among the two possible definitions of mutuality, we consider the dyad census adopt-
ing the approach presented in Wassermann and Faust [21]. As requested by the census
approach, in Fig. 4, we enumerate all the ways a pair of nodes has to establish a relation-
ship and then we gather them into equivalence classes which express similar behaviors.
According to Fig. 4, class A includes links definitely not reciprocal, neither on single lay-
ers nor on the multiplex network. Class B refers to links which are reciprocal in one layer
only. Class C refers to the true multidimensional reciprocity where links in the opposite
directions belong to different layers. Note that classes B and C reckon with the impor-
tance of considering both the two communication media when the overall reciprocity on
mobile phone has to be evaluated. Finally, class D contains very social edges as reciprocity

Fig. 4 Multireciprocity classes and related percentage of connected pairs. On the left, we report the elements
belonging to the different equivalence classes. The top arrows indicate the call layer whereas the bottom
arrows represent the SMS connectivity. On the right is a representation of the equivalence classes. Red lines
indicate links not reciprocated, green lines represent reciprocal links only in a single layer, whereas the blue
line indicates multireciprocal links
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exists in both layers. Note that the extension to more dimensions is easily achieved by
defining appropriate equivalence classes. In Fig. 4, we report the percentage of connected
pairs which belong to the different reciprocity classes. We observe a high number of non-
reciprocated pairs accounting for more than 60 %. As for classes B, C, and D, the overall
value of 0.34 is far from the reciprocity value that characterizes online social networks,
rather it is more similar to values observed in the Web graph. The dyad census allows us
to compute the reciprocity of each network layer, as class B contains reciprocated edges
in a single layer. We find the reciprocity of the call graph to be 0.28, while the SMS graph
has reciprocity 0.4. If we assume that reciprocity is a measure of the social importance of a
tie, these values indicate that there is a greater fraction of social edges in SMS graph than
in call graphs. Moreover, the resulting reciprocity is lower than in online social networks
and in the Web, where it came out to be around 0.7.
We find that connected pairs are poorly reciprocal, mainly due to the low reciprocity

of the call graph even if SMSs, as communication channel, are more suitable for bidirec-
tional relationships.Moreover, only 9 % of pairs take advantage of themultidimensionality
offered by the phone media to maintain relationships. As a matter of fact, the reciprocity
typical of class C is negligible.

Degree distribution

In this section, we examine the macroscopic structure of the mobile phone network by
considering the degree (k) and the strength (s) distributions. Degree and strength distri-
butions give information about the level of interaction of a mobile user on the basis of
the number of people contacting him/her, the number of people s/he contacts, and how
often. As we are dealing with directed networks, besides the degree and strength distri-
butions, we also analyze the in-degree (k−), the out-degree (k+), the in-strength (s−), and
the out-strength (s+) distributions, where s− and s+ are obtained adopting as weight the
frequency of the interaction f .(u, v). As for the multidigraph D, we define the degree of a
node as kD(u) = |�+

D(u) ∪ �−
D(u)|, where �+

D(u) and �−
D(u) represent the out-going and

in-going neighborhood onD, respectively. An analogous definition holds for the strength
distribution. These two variables account for the overall on-phone communication activ-
ity of a user whereas kDcsloc sums up phone communications and potential interactions in
the physical space.
Regarding the degree, mobile phone networks exhibit heavy-tail distributions as shown

in Fig. 5. In particular, the in-degree distribution obeys to a power-law with the exponent
α = 5.12 as a result in applying the likelihood-based method presented in [22], while the
out-degree and degree distributions exhibit a particular behavior due to presence of more
nodes with high degree than expected in a heavy-tail distribution. The obtained results
on degrees agree with those of socio-technological networks including online social net-
work and the Web. Nonetheless, in online social networks, the distribution of outgoing
links is similar to that of incoming links, while in the Web, the incoming links are signifi-
cantly more concentrated on a few high-degree nodes than the outgoing links [23]. In our
dataset, we observed a hybrid behavior where SMS degree distribution is more similar to
online social networks, while the degree distribution in the call graph is more similar to
the Web graph case. So, as suggested by the distribution in Fig. 5a, people use voice calls
to maintain more relationships w.r.t. text messages. A further insight involve the degree
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Fig. 5 Degree and strength distributions. The panels inside (a) and (c) report the degree and the strength
distributions, respectively

distributions of the multigraphs Dcs and Dcsloc. In Fig. 5a, b, we observe that the proba-
bility of connecting (or being connected) with more than k people in Dcs is ever greater
than in the single layers. This way, the multiplex mobile network captures much more
relationships than when considering only a single communication channel. For instance,
the number of relationships captured by the multigraph is on average almost twice as
much a single layer. This observation is further stressed if we take into account the degree
distribution in Dcsloc. As reported in Fig. 5a, the introduction of the co-location network
increases the number of neighbors of a node. Specifically, the co-location impacts on the
tail of the distribution, i.e., the probability of having hundreds of neighbors is much more
higher when we add the information about spatio-temporal proximity w.r.t. the on-phone
interactions only.
Analogous observations hold for the strength distributions reported in Fig. 5c, d. Here,

the values of the shape parameter are comparable within the same layer, so in- and out-
strength distributions are similar. Also, strength values almost double when considering
SMS and call, thus reinforcing that the multidimensional view on mobile phone datasets
is mandatory to really understand the communication attitudes of phone users.

Degree and strength correlations across dimensions

In the light of the above results, we ask whether a user maintains her/his level of activ-
ity across the diverse dimensions or conversely a user who is active through voice calls
is co-located with few people or is not disposed to communicate through SMSs. That
corresponds to verify if statistically significant correlations between the degrees and the
strengths of the same group of users in different layers exist. We can evaluate the degree
of correlation between pairwise layers by adopting different methods [24]. To get an over-
all picture of the pairwise degree and strength correlations, we apply a rank correlation
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analysis on the different pairwise quantities. As a rank correlation method, we compute
the Kendall’s rank correlation coefficient τb

7 on the ranking induced by the degrees and
the strengths. In Fig. 6, we visualize the rank correlation matrix, where each row (column)
corresponds to a centrality measure computed on the relative network.
Before comparing the interplay among the different layers, we analyze the correlation

between the degree and the strength in each single layer. In fact, by correlating the degree
and the strength, we can say if users who communicate or is contacted by many people
adopt heavily and frequently their mobile device. As for the call graph Dc, we observe
in Fig. 6 a positive correlation between the degree kDc and the strength sDc . However,
τb = 0.4 indicates that it is not always true that a high number of called people cor-
responds to a proportional call activity, i.e., some individuals communicate with a lot
of people but not so frequently. The same observation holds for the SMS graph, where
τb(kDs , sDs) = 0.5. Otherwise as regards the combined usage of the communication media
(Dcs), by comparing τb(kDcs , kDs) and τb(kDcs , kDc), we find that the addition of the calling
activity to the texting layer could change the importance of the users in Ds, i.e., mobile
phone users with a high rank in the SMS graph could drop off their ranking if one also
adopt the call activity to measure the users’ importance.
As for the correlation between the call/SMS layers and the co-location network, results

in Fig. 6 confirm the loosely coupled interplay observed in the connected pair analy-
sis. Here, we compare the degree distribution in Gloc that captures how many potential
face-to-face interactions a user could have and the degree distributions in the call and
SMS graphs, respectively. Also, in this case, the degree in Gloc is poorly correlated with
the centrality in the call or in the SMS networks. That means mobile phone users who
are spatially close to many individuals but communicate with few people exist. The
same observation is still true whereas we consider the global propensity to communicate
expressed byDcs. In this case, we measure τb(kDcs , kGloc) = 0.29.
In general, we find that the activity and the popularity is not straightforwardly main-

tained across the on-phone communications and the physical space; so, the different
dimensions are poorly coupled in terms of degree and strength.

Fig. 6 Correlation matrix based on Kendall’s τb coefficient
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Neighborhood overlapping

Regarding the comparison of the voice call and text message networks, the previous
results show that there is not a perfect overlapping between people calling and messaging
and highlight the importance of treating multidimensionality to better describe the social
relationships. However, the overlapping of the node sets Vc and Vs is a general and sharp
characteristic, which does not account for the different behavior of nodes. For instance,
a user who mainly calls and sporadically texts belongs to Vc ∩ Vs, even if she/he mainly
is a caller. The same observation applies to the degree distribution on Dcs, where we lose
which, among the layers, mostly contributes to the expansion of the node’s neighborhood.
To obtain further insights about nodes overlapping and neighborhood distribution

across different dimensions, we now adopt a user-centric view by focusing on the evalua-
tion of the in/out-neighborhood overlapping of a node u. To the purpose, we complement
the Jaccard index of the neighbors set by defining the exclusivity φ of a layer di for a
node u. This measure takes into account the different set of the out-going (in-going)
neighbors on the two dimensions as follows:

φ
(.)
{d1,d2}(u) = �

(.)
d1 (u) − �

(.)
d2 (u)

�
(.)
d1 (u) ∪ �

(.)
d2 (u)

, (2)

where �+
d (u) = {v|(u, v, d) ∈ E}, �−

d (u) = {v|(v,u, d) ∈ E}, and �
+/−
d = �+

d (u) ∪ �−
d (u)

are, respectively, the out-going, the in-going, and the general neighborhood of the node u
on the dimension d. For instance, a user who adopts only calls to maintain social relation-
ships with most of her/his contacts will have a φ

(+)
{c,s}(u) close to 1. By adopting exclusivity,

a mobile phone user is characterized by the call and text message exclusivity values and
by the Jaccard index J that captures the intersection between call and SMS neighbors.
In Fig. 7, we report the distributions of the different indexes computed on nodes with

degree (in-degree, out-degree) greater than 10, while the in-set figure shows the distribu-
tions on all nodes. Comparing the call exclusivity in both figures, we observe that many
nodes with degree less than 10 exclusively adopt voice calls. In fact, the probability of
observing an exclusive caller is about 0.3 in the in-set figure, while is close to 0 when
nodes are filtered. Further, the Jaccard index distribution (dashed line) in Fig. 7 shows that
users who communicate with more than 50 % of their neighbors are about 25 % of the
population, while people are more likely to engage in relationships via calls than via text
messages. In fact, the distributions of φ

(+)
{c,s}(u) and φ

(−)
{c,s}(u) show that about 20 % of users

almost exclusively call their friends and contacts. Text messages, on the other hand, are
less widespread as the main medium to exclusively relate with most of their contacts.

Connected components

In this section, we exploit reachability analysis to examine the macroscopic shape of our
networks with the aim of evaluating their structural similarity and comparing them with
other mobile phone networks or with other networks, such as, for instance, the Web
graph.
We firstly proceed by extracting weakly connected components in order to detect group

of users which are marginal w.r.t. other users. In Table 1 and in Fig. 8, we report the order,
the size of the giant weakly connected component GWCC, and the distribution of the
component size for each network. The large majority of the users belongs to the giant
component, while the rest of nodes form small components whose size does not exceed 30
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Fig. 7 Jaccard coefficient and exclusivity

elements. The order of theDcs’s giant component w.r.tDc’s one highlights the role of SMS
links. Through these links, the number of reachable nodes increases 9 % w.r.t nodes only
reachable by calls. Moreover, SMS users (users who exclusively use SMS) aggregate other
minor connected components of the call graph into the giant component. This suggests
that in spreading and diffusing information, the mobile operator and third parties clients
should take into account both communication channels to reach more phone users.
The link direction allows us to extract strongly connected components (SCC). Figure 8

shows the distribution of the SCCs size. Both strongly and the weakly connected com-
ponents exhibit a heavy-tail distribution, and this behavior applies to both mono- and
bi-dimensional networks. The considered networks are similar in terms of size distri-
bution, and the obtained results are in line with those of the Web graph and of other
online social networks. Shortest path and reachability analysis allows the identification
of a giant strongly connected component and of the regions connected to it. This way,
we can compare the macroscopic structure in terms of the Bow-tie model. The Bow-tie

Fig. 8 SCC size distributions
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model, introduced by Broder et al. [25], is characterized by a giant SCC, an IN region con-
taining components from which SCC can be reached, and an OUT region reachable from
the SCC. We assign each node to the proper region and compute the relative sizes of the
regions. Results, shown in Table 3, indicate that the three networks are structurally sim-
ilar, as about 40 % of users belongs to the SCC, 6 % forms the IN region, and 20 % are in
the OUT region. Moreover the reported percentages confirm the macroscopic structural
difference of the telecom graphs w.r.t. the WWW graph observed in [5] in terms of the
Bow-tie model.

Community
We have shown that the three considered layers are macroscopically similar, but nodes,
links, and consequently ego-networks are very different when considering call or SMS
on their own. We now wonder what happens at the intermediate level where people
aggregate in communities. Do SMS and call communities match? Otherwise, are multidi-
mensional communities 8 pivoted on SMS or call communities? What are the interplays
between SMS, call, and multidimensional communities with the co-location communi-
ties? To answer these questions, we first detect communities onto the networks by means
of three different detection algorithms. Then, we introduce a covering approach along
with a few metrics to measure the degree of similarity between communities. Finally, we
apply them both to compare SMS, call, and co-location communities and to deepen the
structure of the multidimensional communities.

Community detection methods

The cluster analysis described in this section relies on the following community detec-
tion algorithms: the well known Louvain method (LM) [26] and label propagation (LP),
a very powerful yet simple algorithm [27]. Besides, as LP might happen to move a label
towards nodes far from the origin, thus leading to a very poor community structure, we
also perform label propagation with hop attenuation (LPHA) [28] that overcomes this
drawback.
Label propagation (LP) [27]: The algorithm requires that each node v ∈ V determines

its community by choosing the most frequent label shared by its neighbors. Initially, every
node belongs to a different community. After some iterations, groups of nodes quickly
reach a consensus on their label and they begin to contend those nodes that lay between
groups. Here, we use the asynchronous update version, since it solves some problem of
label fluctuations in particular graph structures. We choose LP due to its scalability since
it has a linear time complexity and, unlike many others algorithms, it is parameter free.
Label propagation with hop attenuation (LPHA): LP is a very fast, scalable, and per-

forming algorithm; however, in some contexts, a label can get to nodes of the network very
far from the original one, thus leading to a very poor community structure. To curb this
problem, Leung et al. [28] proposed some improvements and adjustments to the original

Table 3 Portion of nodes in the different elements of the bow-tie model

Type IN SCC OUT Tendrils Tubes

D 6.1 48.1 22.0 13.5 0.6

Dcall 7.0 42.4 21.9 16.3 0.7

Dsms 5.9 41.2 26.5 5.8 0.1
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algorithm. We introduce in our LP implementation the hop attenuation improvement.
The idea is to assign a time to live score to labels in order to prevent them from reaching
too far nodes.
Every node updates its label choosing the one with maximum score shared by its

neighbors. When the label is chosen, the hop score is updated subtracting a δ ∈ (0, 1):

s′i(Lu) =
(

max
u′∈�(u)(L′

u)
si(Lu′)

)
− δ

where Lu is the node u label, su(L) ∈[ 0, 1] is the score of label L, and �(u) is the set of
neighbors for node u.
Louvain: The Louvain method (LM) was introduced by Blondel et al. [26] and is one of

the most popular greedy algorithms formodularity optimization. The method is very fast
and can produce very high-quality communities. The algorithm is iterative. Each itera-
tion consists of two steps. In the first one, every node is initially set to a new community.
Then, for every node i and its neighbors j, the algorithm calculates the gain in modularity
moving i from its community to j’s community. The node i is then moved to the commu-
nity with maximum gain. If there is no positive gain, it remains in its community. The first
phase finishes when there are no more movements. The second step is to group together
all the nodes in the same community in a macro node. A new graph is built, in which
macro nodes are linked by an edge if there is an edge between two nodes belonging to the
two different macro nodes. After the new graph is built, a new iteration starts and a new
phase one is initiated.
We run the three community detection algorithms on the weighted undirected net-

works Gc, Gs, Gloc, and Gcs. To estimate the weight of the undirected link, we sum the
strengths of the directed links connecting the pair. Figure 9 shows the size distribution
of the communities detected by LM, LP, and LPHA. Louvain and LP detect a giant com-
munity, while LPHA splits it into smaller ones. The community size distributions of LP
and LPHA are power-law, as found in other networks. Label propagation algorithms find
small-medium size communities, while Louvain favors small and medium-large com-
munities. The above results motivate the choice of three different community detection

Fig. 9 Distributions of the community size. In the main figure, the size distribution resulting from LPHA and
computed on call, text message, co-location networks, and on the multigraph Gcs . In the in-set figures, the
size distributions resulting from Louvain (bottom left) and from LP (top right). The PDF has been computed
adopting a logarithmic binning
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algorithms. An outcome that holds for three different partitions is more independent
from the chosen community detection method.

Communities match method

Although people aggregate in communities in both call and SMS layers, not necessary
those communities coincide across the layers. As a consequence, we aim to investigate the
degree of matching of the communities detected on the four networks. The evaluation
of the overlapping between communities has some common aspects with standard point
measures of cluster similarity [29]. The latter relies on finding the best matching between
communities, while we are interested in evaluating the degree of their overlapping, and
they assume the same node set, while we need to evaluate partitions on different sets as
described in the “Networks characterization” section.
This way, we adopt a covering-like approach similar to the one used in [30]. Given a

partition Pi on Vi and a community ci ∈ Pi, we compute how it is covered by the com-
munities of another partition Pj on Vj. We consider the maximal covering, i.e., the set of
communities performing the maximum coverage of ci:

MT(ci,Pj) = argmaxX⊆Pj ,∀cj∈X,ci∩cj �=∅
∑
cj∈X

|ci ∩ cj| (3)

In Fig. 10, we report the meaningful covering cases. The community ci can be partially
tiled or covered by one or more communities cjs of the other partition Pj, as in Fig. 10a.
Otherwise, ci can be totally covered by one or more communities as in Fig. 10b. As for
total covering, we separately analyze some specific cases: (a) the perfect matching indi-
cating communities that coincide, (b) communities which are properly subsets, and (c)
communities that are covered by multiple communities of the other layer.
The partial covering by many sets includes different situations where the degree of the

overlapping and the importance of the covering vary. For instance, many communities
could marginally overlap to a single community, resulting in a low overlapping level or
the region outside the covered community (yellow area in Fig. 10b) changes, indicating a
more or less strong similarity between ci and MT. We use three metrics to evaluate the
degree and the goodness of the covering, besides the population percentages of the classes
described above:

Fig. 10 Community overlapping cases. In a, the call community C1 (red rectangle) is partially overlapped by
the SMS communities S1, S2, and S3 (yellow rectangles). In b, C1 (red) is completely overlapped by the three
SMS communities
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• The cardinality ofMT(ci,Pj), denoted as ν. Communities with a high ν act as bridges
across the communities in the other layer.

• The coverage ratio CR as the fraction of nodes of ci covered by MT, i.e.,∑
Xj∈MT |Xj ∩ ci|/|ci|. The closer to 1 the coverage ratio, the greater the accuracy of

the covering. This quantity is meaningful for the partial overlapping case.
• The coverage precision CP defines as

∑
Xj∈MT |Xj ∩ ci|/| ⋃Xi∈MT Xi|. It accounts for

that portion of nodes which are outside the covered set. Values of CP close to 1
indicate that MT almost coincides with ci in the total covering case or is almost a
proper subset of ci in the partial overlapping.

Communities across call, SMS, and co-location

First, we examine the communities overlapping focusing and comparing the call and
the SMS layers, separately. Although, at macroscopic level, the size distributions of the
communities detected by the three algorithms exhibit some differences, results about
community matching are very similar. Thus, we will show results on the partitions 9 of the
call layer, Pcall, the SMS layer, Psms, the co-location layer, Ploc, and the multidimensional
graph, P, induced by the communities detected by LPHA, only.
We ask whether people form similar groups despite the communication channel they

adopt or vice versa different media capture different groups. Furthermore, we wonder
which communication layer is more representative of the groups given by the spatial prox-
imity. The first difference emerges just examining the probability distribution function of
the community size in Fig. 9. SMS communities are generally smaller than call commu-
nities, independently of the detection algorithm. These outcomes support the idea that
SMS is the communication channel usually adopted by groups to build andmaintain close
social relationships or by socially anxious people [1].
More insightful results have been obtained by analyzing how the communities of the

two layers overlap. In the comparison, we only consider the communities with size greater
or equal to 10. As for communities equality, they are never identical and only a few are
proper subset. Whereas the lack of identical communities could be expected due to the
diversity of the node sets, the scarcity of proper subsets suggests that communities express
different groups in the two layers. The almost inclusion of the SMS node set into the
call set rebounds on the number of totally covered SMS communities. In fact, we find
that most of the SMS communities are totally covered by 7.5 call communities on aver-
age or they are partially covered with a high coverage ratio, but the coverage precision is
very low (0.8 quantile equals to 0.05 ). This indicates that neither the union of some call
communities can precisely express a single SMS community. A similar behavior concerns
the covering of the call communities with the SMS ones. In this case, SMS communi-
ties are a little more precise in the covering, but they only partially overlap with the call
communities.
The analysis of the call/SMS overlapping highlights that these communication channels

are used by different groups to establish interactions and relationships. Communities dic-
tated by voice call are totally different from SMS communities, nor a community in a layer
captures a specific subset in a community on the other layer.
We extend to the co-location network our analysis on the overlapping between the

communication media. In particular, we focus on the pairwise interplay between the co-
location graph and the interactions on the call and SMS networks separately, leaving the
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discussion about the multidimensional case to the next section. As for the SMS commu-
nities, we observe that a single co-location community is covered by many SMS groups.
This phenomenon is even more pronounced if we observe call communities as shown in
Fig. 11a. These high cardinality values could not necessarily imply that the call and SMS
networks are completely different from the co-location at a mesoscopic scale. Indeed, we
could have big location communities containing many small SMS or call groups. That is
not our case, as reported in Fig. 11b, c. In fact, despite the high coverage ratio of calls,
the coverage precision is very low for both layers. That means call and SMS communities
are entirely different from the co-location communities. These results are quite expected,
especially in light of the lack of an increasing relation between CoL and the strength of
the communications.

Multidimensional communities

As the two layers of the networks have completely different structures with respect to
communities, we ask ourselves the following question: Is the multidimensional network
related to the single layers? And is it driven by SMS or call communities? The commu-
nity detection in multidimensional networks is still an open issue [31]. Here, we follow
the approach presented in [32]. We proceed to extract multidimensional communities
by introducing a mapping which transforms Gcs into a monodimensional weighted net-
work W . Precisely, we assign as weight of an undirected link in W the total number of
interactions (SMSs and calls) between the connected users.

Fig. 11 Call/SMS covering on location. Cumulative distribution functions of the cardinality of the covering
set (a), the coverage ratio (b), and the coverage precision (c) with call/SMS covering on co-location
communities. Partially covered communities only were considered
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First, we look at how call and SMS communities cover multidimensional commu-
nities. Specifically, we evaluate how multidimensional groups aggregate or split layer
communities, and we implicitly highlight the value of including different dimensions.
As highlighted by Fig. 12a, call communities perform a higher coverage of a multidi-

mensional community than SMS, but many of them are needed as given by the covering
set cardinality in Fig. 12b and with a smaller coverage precision (see Fig. 12c). Note that,
as the call graph is greater than the SMS one, a great number of call links exist also in
the multidimensional communities. This way, the multidimensional communities can be
covered by using a large number of call communities, but the goodness of the covering is
less than that performed by SMS communities, the latter being more precise and with a
better matching. These results suggest that call communities are split into different multi-
dimensional communities as a consequence of the introduction of the SMS weights. The
same holds for SMS communities but the phenomenon is less evident.
In order to get an insight into the mechanism underlying the structure of multidi-

mensional communities and understanding whether they are driven by SMS or call
communities, we perform the opposite covering procedure, i.e., we tile the call and SMS
communities with the multidimensional ones. The analysis of the covering explicitly
shows how the communities are broken and split by the multidimensional partitioning.
As for SMS, the distributions of ν, CR, and CP reported in Fig. 13a–c remark that SMS
communities are split into fewer multidimensional communities than call ones. More-
over, the partial covering is more coating and precise in the SMS layer than in the call
layer. So, call communities are less similar and influent to the multidimensional one w.r.t.
SMS communities.

Fig. 12 Call/SMS/Co-location covering onDcs . Cumulative distribution functions of the cardinality of the
covering set (a), the coverage ratio (b), and the coverage precision (c) indexes. Partially covered communities
only were considered
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Fig. 13 Dcs covering on call/SMS/co-location. Cumulative distribution functions of the cardinality of the
covering set (a), the coverage ratio (b), and the coverage precision (c) indexes. Partially covered communities
only were considered

All these results lead to conclude that multidimensional communities are pivoted
by SMS communities which are merged in greater multidimensional communities by
means of call links, whereas SMS links bring portions of call communities into different
multidimensional communities.
For further information in Fig. 13, we report the overlapping results between the

multidimensional and the co-location communities. However, the same observations
in the previous analysis are still true and mainly highlight the weak interplay between
co-location and on-phone interaction communities.

Conclusion
This paper makes a contribution in showing that the study of single social network offers
a very partial description of user’s interactions and that only multiplex studies can offer
a vision closer to reality. With this aim, we have studied the multiplex social network
build on call and SMS communications and we added a further dimension given by the
spatio-temporal proximity. We have found that, despite the macroscopic similarities of
the two networks, the on-phone communication behaviors are very different at themicro-
scopic and the mesoscopic scales. In particular, the two single networks partially overlap,
since many users adopt exclusively a communication channel (call or SMS). This diversity
results in an enlargement of the users’ ego-networks in the multiplex network. As a con-
sequence, the studies of the interactions expressed only through calls are incomplete and,
according to [8], biased by the generational difference in the use of a particular media. For
this reason, modeling mobile phone data by a network of communication networks could
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represent an advance in the computational social science to offer a more complete vision
of user’s interactions.
Interactions and communications have many connections and relations with how

people move and visit common locations. In fact, we confirm that people interact-
ing by mobile devices are more likely to be in spatial proximity w.r.t. individuals
who do not interact through any mobile medium. In particular, interactions by SMSs
are more predictive of spatial proximity than calls. This result could be applied to
solutions for the next-location prediction problem which include features from the
communication layer.
The joint study of mobility and communication networks has also highlighted that

their interplay depends on the spatial granularity of the mobility traces and on the
covered area. In a metropolitan area, people sharing simultaneously many places do
not need to communicate since they exploit the co-presence. Otherwise, people who
are scarcely in proximity complement the face-to-face interactions with the mobile
phone communications. The last finding is in contrast with the results in [10] and
[11] so we are going to analyze the same dependency by coarsening the spatial
granularity.
Finally, we highlighted how the diversity of the layers impacts on the mesoscopic

structure given by the communities which form and emerge due to the call and SMS inter-
actions and the spatial closeness of the users. Specifically, we observe that communities
at different layers either do not match or they barely preserve from a layer to another.
The above results further highlight that at a metropolitan scale, the interplay between
co-location and communication is not well defined. However, the chance to associate a
spatio-temporal information to SMS and call communities may offer many applications.
Besides locating in the urban space to the communication communities when possi-
ble, it may be applied to improve home-work locations according to the communication
patterns or to filter out “non-social” interactions.

Endnotes
1For the purpose of ensuring customer anonymity, each subscriber is identified by a

surrogate key.
2In our metropolitan environment, the average radius of a cellular cell is about 45 m.
3|(Ec ∪ Es) ∩ Eloc|/|Ec ∪ Es|
42|Eloc \ (Ec ∪ Es)|/(|Vc ∪ Vs|(|Vc ∪ Vs| − 1) − 2|Ec ∪ Es|) = 2 × 10−5
5|Es ∩ Eloc|/|Es|
6|Ec ∩ Eloc|/|Ec|
7τb takes into account ties.
8By multidimensional communities, we mean the communities computed onto Dcs
9The above algorithms extract not-overlapped communities.
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