# Table 1 Overview of CIDM parameters

I. Utilities
I.I. Social benefits ($$B_{i}$$)
Benefit of direct ties $$\alpha \in \mathbb {R}$$ $$\alpha = 10$$
Discount of infected direct ties $$0 \le \kappa \le 1$$ $$\kappa = 1.0$$
Benefit of indirect ties $$\beta \in \mathbb {R}$$ $$\beta \in \{2, 8\}$$
Discount of infected indirect ties $$0 \le \lambda \le 1$$ $$\lambda = 1.0$$
I.II. Social maintenance costs ($$C_{i}$$)
Costs to maintain direct ties $$c \in \mathbb {R}$$ $$c = 9$$
Cost increase for infected direct ties $$\mu \ge 1$$ $$\mu \in \{1.0, 1.5\}$$
I.III. Potential harm of infections ($$D_{i}$$)
Disease severity $$\sigma > 1$$ $$\sigma \in \{2, 10, 50\}$$
Probability of getting infected per contact $$0 \le \gamma \le 1$$ $$\gamma = 0.1$$
Risk perception (disease severity) $$0 \le r_{\sigma } \le 2$$ $$r_{\sigma } = r_{\pi } = r \in \{0.5, 1.0, 1.5\}$$
Risk perception (probability of infection) $$0 \le r_{\pi } \le 2$$
Recovery time $$\tau > 0$$ $$\tau = 10$$
II. Network
Network size $$N > 1$$ $$N \in \{10, 15, 20, 25, 50\}$$
Initial network structure $$\iota \in \{\text {empty}, \text {full}\}$$ $$\iota \in \{\text {empty}, \text {full}\}$$
Proportion of ties to evaluate per time step $$0 < \phi \le 1$$ $$\phi = 0.4$$ 