Skip to main content

Table 1 Overview of CIDM parameters

From: A model for the co-evolution of dynamic social networks and infectious disease dynamics

Parameter Admissible Used
I. Utilities
 I.I. Social benefits (\(B_{i}\))
  Benefit of direct ties \(\alpha \in \mathbb {R}\) \(\alpha = 10\)
  Discount of infected direct ties \(0 \le \kappa \le 1\) \(\kappa = 1.0\)
  Benefit of indirect ties \(\beta \in \mathbb {R}\) \(\beta \in \{2, 8\}\)
  Discount of infected indirect ties \(0 \le \lambda \le 1\) \(\lambda = 1.0\)
 I.II. Social maintenance costs (\(C_{i}\))
  Costs to maintain direct ties \(c \in \mathbb {R}\) \(c = 9\)
  Cost increase for infected direct ties \(\mu \ge 1\) \(\mu \in \{1.0, 1.5\}\)
 I.III. Potential harm of infections (\(D_{i}\))
  Disease severity \(\sigma > 1\) \(\sigma \in \{2, 10, 50\}\)
  Probability of getting infected per contact \(0 \le \gamma \le 1\) \(\gamma = 0.1\)
  Risk perception (disease severity) \(0 \le r_{\sigma } \le 2\) \(r_{\sigma } = r_{\pi } = r \in \{0.5, 1.0, 1.5\}\)
  Risk perception (probability of infection) \(0 \le r_{\pi } \le 2\)
  Recovery time \(\tau > 0\) \(\tau = 10\)
II. Network
 Network size \(N > 1\) \(N \in \{10, 15, 20, 25, 50\}\)
 Initial network structure \(\iota \in \{\text {empty}, \text {full}\}\) \(\iota \in \{\text {empty}, \text {full}\}\)
 Proportion of ties to evaluate per time step \(0 < \phi \le 1\) \(\phi = 0.4\)