# Table 1 Overview of CIDM parameters

Parameter

Used

I. Utilities

I.I. Social benefits ($$B_{i}$$)

Benefit of direct ties

$$\alpha \in \mathbb {R}$$

$$\alpha = 10$$

Discount of infected direct ties

$$0 \le \kappa \le 1$$

$$\kappa = 1.0$$

Benefit of indirect ties

$$\beta \in \mathbb {R}$$

$$\beta \in \{2, 8\}$$

Discount of infected indirect ties

$$0 \le \lambda \le 1$$

$$\lambda = 1.0$$

I.II. Social maintenance costs ($$C_{i}$$)

Costs to maintain direct ties

$$c \in \mathbb {R}$$

$$c = 9$$

Cost increase for infected direct ties

$$\mu \ge 1$$

$$\mu \in \{1.0, 1.5\}$$

I.III. Potential harm of infections ($$D_{i}$$)

Disease severity

$$\sigma > 1$$

$$\sigma \in \{2, 10, 50\}$$

Probability of getting infected per contact

$$0 \le \gamma \le 1$$

$$\gamma = 0.1$$

Risk perception (disease severity)

$$0 \le r_{\sigma } \le 2$$

$$r_{\sigma } = r_{\pi } = r \in \{0.5, 1.0, 1.5\}$$

Risk perception (probability of infection)

$$0 \le r_{\pi } \le 2$$

Recovery time

$$\tau > 0$$

$$\tau = 10$$

II. Network

Network size

$$N > 1$$

$$N \in \{10, 15, 20, 25, 50\}$$

Initial network structure

$$\iota \in \{\text {empty}, \text {full}\}$$

$$\iota \in \{\text {empty}, \text {full}\}$$

Proportion of ties to evaluate per time step

$$0 < \phi \le 1$$

$$\phi = 0.4$$ 