Skip to main content

Table 5 Numerical values of \({S}_{L}, L=\mathrm{1,2},3\) and \({P}_{i}\left(T\right),i=I,II,III,IV\) and \({C}_{\mathrm{1,33}}\left(T\right), T=\mathrm{1,2},\infty\) \(\text{for }w=0.05, 0.25, 0.5, 0.75.\) Poisson distribution has been used for describing the time delays of the spreading process

From: Modelling community structure and temporal spreading on complex networks

  T = 1 T = 2 T = \(\infty\)
S1(T) 0.63212 0.86467 1.00000
S2(T) 0.26424 0.59399 1.00000
S3(T) 0.08030 0.32332 1.00000
PI(T) 0.00001004 0.00004042 0.00012500
PII(T) 0.00002007 0.00008079 0.00024969
PIII(T) 0.00067043 0.00152401 0.00261875
PIV(T) 0.00069008 0.00160196 0.00285536
C1,33(T),w = 0.75 57.512% 93.298% 99.912%
C1,33(T),w = 0.5 27.188% 60.090% 88.299%
C1,33(T),w = 0.25 6.239% 15.658% 30.465%
C1,33(T),w = 0.05 0.20997% 0.49243% 0.89381%