
Modelling and analysis of the dynamics 
of adaptive temporal–causal network models 
for evolving social interactions
Jan Treur*

Background
Network-Oriented Modelling has been proposed as a modelling perspective suitable 
for processes that are highly dynamic, circular and interactive; e.g. [1, 2]. In different 
application areas, this modelling perspective has been proposed in different forms: in 
the contexts of modelling organisations and social systems (e.g. [3–5]), of modelling 
metabolic processes (e.g. [6]), and of modelling electromagnetic systems (e.g. [7–9]. To 
address dynamics well, Network-Oriented Modelling based on adaptive temporal–causal 
networks has been developed [1, 2, 10]. This approach incorporates a continuous (real) 
time dimension. Adaptive temporal–causal network models are dynamic in two ways: 
their states change over time based on the causal relations in the network, but these 
causal relations may also change over time. As, in such networks  many interrelating 
cycles often occur, their emerging behaviour patterns are not always easy to predict or 
analyse. This may make it hard to evaluate whether observed outcomes of simulations 
are plausible or might be due to implementation errors.

However, some specific types of properties can also be analysed by calculations in a math-
ematical manner, without performing simulations; see, for example [11–16]. Such proper-
ties that are found in an analytical mathematical manner can be used for verification of the 
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model by checking them for the values observed in simulation experiments. If one of these 
properties is not fulfilled (and the mathematical analysis was done in a correct manner), then 
there will be some error in the implementation of the model. In this paper, methods to ana-
lyse such properties of temporal–causal network models will be described. They will be illus-
trated for two types for dynamic connection weights in adaptive temporal–causal network 
models modelling evolving social interaction: one based on the homophily principle (“Mod-
elling evolving social interactions by adaptive networks based on the homophily principle” 
section), and one based on the more becomes more principle (“Modelling evolving social 
interactions by adaptive networks based on the ‘more becomes more’ principle” section). A 
preliminary, shorter presentation of part of the work described here can be found in [17].

Network‑Oriented Modelling by temporal–causal networks
The Network-Oriented Modelling approach based on temporal–causal networks, described 
in more detail in [1, 10] is a generic and declarative dynamic modelling approach based on 
networks of causal relations. Dynamics is addressed by incorporating a continuous time 
dimension. This temporal dimension enables modelling by networks that inherently con-
tain cycles, such as networks modelling mental or brain processes, or social interaction pro-
cesses, and also enables to address the timing of the processes in a differentiated manner. The 
modelling perspective can incorporate ingredients from different modelling approaches: for 
example, ingredients that are sometimes used in neural network models, and ingredients that 
are sometimes used in probabilistic or possibilistic modelling. It is more generic than such 
methods in the sense that a much wider variety of modelling elements are provided, enabling 
the modelling of many types of dynamical systems, as described in [1, 10]. The Network-
Oriented Modelling approach is supported by a few modelling environments (in Matlab, or in 
Python, for example) that can be used to model conceptually in a declarative manner, with-
out the need of programming. This code is in principle structure-preserving and follows the 
concepts described in the conceptual description presented in “Conceptual representations 
of temporal–causal network models” section below. It calculates simulation traces numeri-
cally based on the formulae discussed in “From a conceptual representation to a numerical 
representation” section, and in particular by means of the difference equations. A number 
of options for often-used combination functions are available within this software and can 
just be selected. However, for large-scale networks also, dedicated implementations can be 
developed directly using more efficient programming languages, or dedicated, optimised dif-
ferential equation solvers developed to handle large systems of differential equations.

Conceptual representations of temporal–causal network models

Temporal–causal network models can be represented at two levels: by a conceptual represen-
tation and by a numerical representation. A conceptual representation of a temporal–causal 
network model can have a (labelled) graphical form (or an equivalent matrix form), as shown 
in the examples presented below. The following three elements define temporal–causal net-
works, and are part of a conceptual representation of a temporal–causal network model:

• • connection weight ωX,Y Each connection from a state X to a state Y has a connection 
weight ωX,Y representing the strength of the connection, often between 0 and 1, but 
sometimes also below 0 (negative effect).
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• • combination function cY(..) For each state Y (a reference to) a combination function 
cY(..) is chosen to aggregate the causal impacts of other states on state Y. This can 
be a standard function from a library (e.g. a scaled sum function) or an own-defined 
function.

• • speed factor ηY For each state Y, a speed factor ηY is used to represent how fast a 
state is changing upon causal impact, usually in the [0, 1] interval.

In the first place, a conceptual representation of a temporal–causal network model 
involves representing in a declarative manner states and connections between them. The 
connections represent (causal) impacts of states on each other, as assumed to hold for the 
application domain addressed. Each state X is assumed to have an (activation) level that 
varies over time, indicated in the numerical representation by a real number X(t). In real-
ity, not all causal relations are equally strong, so some notion of strength of a connection 
from a state X to a state Y is used: a connection weight ωX,Y. Combination functions can 
have different forms. The applicability of a specific combination rule may depend much 
on the type of application addressed, and even on the type of states within an application. 
Therefore, for the Network-Oriented Modelling approach based on temporal–causal net-
works a number of standard combination functions are available as options and a number 
of relevant properties of such combination functions have been identified; e.g. see [10], 
Table 10, or [1], Chapter 2, Table 2.10. Some of these standard combination functions are 
scaled sum, product, complementary product, max, min, and simple and advanced logistic 
sum functions (for some of these examples of combination functions the numerical repre-
sentations are discussed in “From a conceptual representation to a numerical representa-
tion” section). These options cover elements from different existing approaches, varying 
from approaches considered for reasoning with uncertainty, probability, possibility or 
vagueness, to approaches based on neural networks; e.g. [18–26]. In addition, there is still 
the option to specify any other (non-standard) combination function.

Conceptual representations for an adaptive network

The above three concepts (connection weight, combination function, speed factor) can 
be considered as parameters representing characteristics in a network model. In a non-
adaptive network model, these parameters are fixed over time. But to model processes 
by adaptive networks, not only the state levels, but also these parameters can change 
over time. For example, the connection weights can change over time to model evolving 
connections in network models. For modelling processes as adaptive networks, some of 
the parameters (such as connection weights) are handled in a similar manner as states. 
For example, see Fig. 1, where the states affect the connection between them, as hap-
pens, for example, in adaptive social networks based on the homophily principle (see 
“Modelling evolving social interactions by adaptive networks based on the homophily 
principle” section).

This can be represented differently by considering the connection weight ωX ,Y  as a 
state �X ,Y  that changes over time, represented by an extra node in the network. As a first 
step, this node for the state �X ,Y  representing ωX ,Y  is added and connected; see Fig. 2 
for a conceptual representation. In the new situation depicted in Fig. 2, the weight ωX ,Y  
is represented by a state �X ,Y  with activation values �X ,Y (t) the same as the connection 
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weight values ωX,Y(t) in the old situation for each t: �X ,Y (t) = ωX ,Y (t). This state �X ,Y  
is affected by both X and Y, so connections from these states to �X ,Y  are incorporated. 
Moreover, a connection from �X ,Y  to Y is used to represent the effect of the connection 
strength on Y, and a connection from �X ,Y  to itself for persistence. The weights of all 
these connections are assumed 1; see Fig. 2. As a next step, it is explored what combina-
tion functions are needed for �X ,Y  and Y in this new situation depicted in Fig. 2.

First, a combination function c�X ,Y (..) for the state �X ,Y  has to be assumed, to aggregate 
the impacts of X and Y, and �X ,Y  on �X ,Y . This will depend on the adaptation principle 
that is chosen. Next, the new combination function for Y has to be determined. Below the 
corresponding combination functions will be discussed in more numerical detail.

From a conceptual representation to a numerical representation

Based on a conceptual representation of a temporal–causal network model, in order to 
obtain a numerical representation of the network model the following concepts can be 
defined:

• • The impact of state X on state Y at time t impactX ,Y (t) 
The impact of state X on state Y at time t is defined by

impactX ,Y (t) = ωX ,YX(t).

ωX,Y
X Y

Z

ωZ,Y

Fig. 1  Conceptual representation of an example with an adaptive connection weight

ωZ,Y

ΩX,Y

Z

1

1 1 1

1X Y

Fig. 2  Graphical conceptual representation with state ΩX,Y representing an adaptive connection weight ωX,Y
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Here X(t) is the activation level of state X at t. Note that also a connection from a 
state Y to itself is allowed. The weight ωY ,Y  of such a connection can, for example, be 
used to model persistence of state Y.

• • The aggregated impact on state Y at time t aggimpactY (t)

When more than one causal relation affects a given state Y, these causal effects have 
to be combined. To this end, some way to aggregate multiple causal impacts on a 
state is used; this is done using a combination function cY(..) that uses the impacts 
impactXi ,Y

(t) from states X1, …, Xk on Y as input and provides one aggregated impact 
value out of them:

• • Moreover, not every state has the same extent of flexibility in responding to impact; 
some states respond fast, and other states may be more rigid and may respond more 
slowly. Therefore, a speed factor ηY  of a state Y is used for timing of effectuation of 
causal impacts, as shown in the following difference and differential equations:

Given the above concepts, a conceptual representation of a temporal–causal net-
work model can be transformed in a systematic and automated manner into a numeri-
cal representation of the model, thus obtaining the following difference and differential 
equation for each state Y, expressed using the basic elements ωX ,Y , cY (. . .), and ηY of a 
conceptual representation of the model:

The numerical representations of some example combination functions are as follows:.

Numerical representation of a scaled sum combination function

In some cases, it is useful to apply a scaling factor to the sum combination function by 
dividing it by some scaling factor �:

In cases where this combination function is used for a state Y with X1, . . . ,Xk con-
nected to Y, then this function works as follows on the Xi:

Numerical representation of a simple logistic sum combination function

The logistic sum combination function has two closely related variants, the simple 
variant and the more advanced variant (see below). In these functions, τ is a threshold 
parameter and σ a steepness parameter. The simple logistic function is defined as:

aggimpactY (t) = cY (impactX1,Y
(t), . . . , impactXk ,Y

(t)).

Y (t +�t) = Y (t)+ ηY

[

aggimpactY (t)− Y (t)
]

�t

dY (t)/dt = ηY

[

aggimpactY (t)− Y (t)
]

.

Y (t +�t) = Y (t)+ ηY

[

cY
(

ωX1,YX1(t), . . . ,ωXk ,YXk(t)
)

− Y (t)
]

�t

dY (t)/dt = ηY

[

cY
(

ωX1,YX1(t), . . . ,ωXk ,YXk(t)
)

− Y (t)
]

.

c(V1, . . . ,Vk) = ssum�(V1, . . . ,Vk) = (V1 + · · · + Vk)/�.

ssum�(ωX1,YX1, . . . ,ωXk ,YXk) = (ωX1,YX1 + . . .+ ωXk ,YXk)/�.

c(V1, . . . ,Vk) = slogistic (V1, . . . ,Vk) =
1

1+ e−σ(V1+···+Vk−τ)
.
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To indicate the dependence of σ and τ , sometimes these are used as subscripts: 
slogisticσ ,τ (V1, . . . ,Vk).

In cases where this combination function is used for a state Y with X1, . . . ,Xk con-
nected to Y, then this function works as follows on the Xi:

Numerical representation of an advanced logistic sum combination function

In the simple logistic variant, it holds slogistic(0, . . . , 0) = 1/(1+ eστ ), and this is 
nonzero, which is undesirable property as it creates in an unintended manner activation 
out of no activation. This issue is compensated for in the advanced variant. The advanced 
logistic sum combination function is defined as

To indicate the dependence of σ and τ , sometimes these are used as subscripts:

For an overview of a number of standard combination functions, see Table 1.

Numerical representations for an adaptive network

In the simple example depicted in Fig. 1, Y has another impact from Z, besides the impact 
from X. Then in the new situation depicted in Fig.  2, there are not just two but three 
states with impact on Y, namely X, Z and �X ,Y . This requires a new combination function 
c∗Y (V1,V2,W )  for Y with three arguments, which is applied to the impacts X(t),ωZ,XZ(t) 
and �X ,Y (t) on Y, obtaining aggregated impact c∗Y (X(t),ωZ,XZ(t),�X ,Y (t)). This aggre-
gated impact is equal to cY (ωX ,Y (t)X(t),ωZ,Y Z(t)) in the previous model representation 
depicted in Fig. 1. Therefore, 

For example, if in the situation of Fig. 1 cY (V1, V2) is the sum function V1 + V2, then 
c∗Y (V1, V2, W ) = WV1 + V2, which is a combination of a product and a sum function. 
More in general, suppose in total there are k states Xi with impact on Y, according to 
combination function cY (V1, . . . ,Vk). If all these connections are adaptive, then the new 
combination function becomes 

Modelling evolving social interactions by adaptive networks based on the 
homophily principle
Next an adaptive temporal–causal network model is discussed to model evolving social 
interactions based on the homophily principle. According to this principle, also indi-
cated as ‘birds of a feather flock together’, connections are strengthened if the connected 
states are similar. For example, when two persons both like the same type of music, mov-
ies, drinks, and parties, they may strengthen their connection. For the current model, 
the dynamic connection weights ωXA,XB from state XA of person A to state XB of person 

slogistic(ωX1,YX1, . . . ,ωXk ,YXk) = 1/

(

1+ e
−σ

(

ωX1 ,Y
X1+···+ωXk ,Y

Xk−τ

)
)

.

c(V1, . . . ,Vk) = alogistic(V1, . . . ,Vk) =

[

1

1+ e−σ(V1+...+Vk−τ)
−

1

1+ eστ

]

(

1+ e
−στ

)

alogistic
σ,τ(V1, . . . ,Vk)

c∗Y (V1, V2, W ) = cY (WV1, V2)

c∗Y (V1, . . . ,Vk ,W1, . . . ,Wk) = cY (W1V1, . . . ,WkVk)
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B are assumed to change over time based on the principle that the closer the activa-
tion levels of the states of the interacting persons, the stronger the mutual connections 
between the persons will become, and the higher the difference between the activation 
levels, the weaker they will become. For a conceptual representation, see Fig. 3.

As discussed in “Network-Oriented Modelling by temporal–causal networks” section, 
ωXA,XB can be represented by state �XA,XB and the weights of the connections involving 
�XA,XB are assumed 1: the weights of the connections from XA and XB to �XA,XB, and 
from �XA,XB to XB and to itself. Based on this according to the temporal–causal network 
approach, the homophily principle may be formalised using the following general format 
and a combination function cA,B(V1, V2, W ) that still has to be determined:

Note that the connection weight �XA,XB increases when c�XA ,XB

(

XA(t), XB(t),�XA,XB
(t)

)

 
> �XA,XB

(t), decreases when c�XA ,XB

(

XA(t), XB(t),�XA,XB
(t)

)

< �XA,XB
(t) and stays the 

same when c�XA ,XB

(

XA(t), XB(t),�XA,XB
(t)

)

= �XA,XB
(t).

Examples of such combination functions can be obtained when a threshold value 
τ�XA ,XB

 is assumed such that the connection weight �XA,XB becomes stronger when 
|XA(t)− XB(t)| < τ�XA ,XB

 (levels of XA and XB close to each other) and weaker when 
|XA(t)− XB(t)| > τ�XA ,XB

 (levels of XA and XB not so close to each other). The following 
is an example which is linear in XA(t) andXB(t):

The factor β can be made dependent on �XA,XB(t), to keep values of �XA,XB(t) within 
the [0, 1] interval: β = α�XA,XB(t)

(

1−�XA,XB(t)
)

, with α an amplification parameter. 
This makes the combination function

�XA,XB
(t +�t) = �XA,XB

(t)+ η�XA ,XB

[

c�XA ,XB
(XA(t), XB(t), �XA,XB

)−�XA,XB

]

�t

d�XA,XB

/

dt = η�XA ,XB

[

c�XA ,XB
(XA, XB, �XA,XB

)−�XA,XB

]

c�XA ,XB
(XA(t), XB(t),�XA,XB(t)) = �XA,XB(t) + β(τ�XA ,XB

− |XA(t)− XB(t)|)

Table 1  Overview of a number of standard combination functions

Name Description Formula c(V1,…, Vk)=

sum(..) Sum V1 + · · · + Vk

product(..)
cproduct(..)

Product
Complement product

V1 ∗ · · · ∗ Vk
1− (1− V1) ∗ · · · ∗ (1− Vk)k)

min(..)
max(..)

Minimal value
Maximal value

min(V1,…, Vk)
max(V1,…, Vk)

slogisticσ,τ(..) Simple logistic sum 1
/(

1+ e
−σ(V1+···+Vk−τ )

)

 with σ, τ ≥ 0

alogisticσ,τ(..) Advanced logistic sum
[(

1
/(

1+ e
−σ(V1+···+Vk−τ )

))

−
(

1
/

(1+ e
στ )

)](

1+ e
−στ

)

 
with σ, τ ≥ 0

ssumλ(..) Scaled sum (V1 +⋯ + Vk)/λ with λ > 0

sisum(..) Scaled sum with interac-
tion terms

(V1 +⋯ + Vk)/λ + Σij μij ViVj with λ > 0

aproductβ(..) Advanced product β cproduct(V1,…, Vk) + (1 − β) product(V1,…, Vk) with 
0 ≤ β≤1

aminmaxβ(..) Advanced minimum and 
maximum

β max(V1,…, Vk) + (1 − β) min(V1,…, Vk) with 0 ≤ β≤1

aproduct-ssumβ,λ(..) Advanced product and 
scaled sum

aproductβ(V0, ssumλ(V1,…, Vk)) with 0 ≤ β≤1 and λ > 0
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 where V1,V2 refer to XA,XB and W to �XA,XB. Thus, we obtain the following:

The combination function for XB can be found in the same way as in the “Network-
Oriented Modelling by temporal–causal networks” section for Y.

In Figs. 4 and 5, as an illustration, an example simulation for this homophily model is 
shown, based on a (fully connected) example network of 10 states X1 to X10, with the ini-
tial values of the connection weights shown in Table 2. For the contagion between states, 
a dynamic scaled sum function has been used in which, at each point in time, the scaling 
factor is equal to the sum of the connection weights involved. The homophily threshold 
τ was set at 0.025, and the amplification factor α at 20. Speed factors for states were 0.5 
and for connections 0.3.

All connection weights approximate either 0 or 1, as can be seen for a few examples (of 
the 90 connections) in Fig. 5. In Fig. 4, it is shown that clustering emerges, in this case in 
3 clusters that in the end each are fully connected by connection weights 1, and the con-
nection weights between states from different clusters have become practically 0. That 
such patterns always occur will be analysed further in the “Mathematical analysis for the 
homophily principle” section.

Modelling evolving social interactions by adaptive networks based on the 
‘more becomes more’ principle
Another type of model for a dynamic connection from a person B to A takes into account 
to which extent other persons C connect to person A. The idea behind this is that some-
body who is very popular seems worth connecting to. Sometimes this is called the ‘more 
becomes more’ principle, and in a wider context it relates to what sometimes is called 
‘the rich get richer’ (Simon [27]), ‘cumulative advantage’ (Price [28]), ‘the Matthew effect’ 
(Merton [29]) or ‘preferential attachment’ (Barbasi [30]). For example, if B is followed by 

c�XA ,XB
(V1,V2, W ) = W + αW (1−W ) (τ�XA ,XB

− |V1 − V2|)

�XA ,XB
(t +�t) = �XA ,XB

(t)+ η�XA ,XB
[α�XA ,XB

(t)(1−�XA ,XB
(t)) (τ�XA ,XB

− |XA(t)− XB(t)|)]�t

d�XA ,XB
/dt = η�XA ,XB

[α�XA ,XB
(t)(1−�XA ,XB

(t)) (τ�XA ,XB
− |XA(t)− XB(t)|)].

ωXA,XB

ωXB,XC

XA
XB

XC

XD

ωXA,XD

ωXD,XC

Fig. 3  Graphical conceptual representation of an adaptive temporal–causal network model for the homoph-
ily principle
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many others C on Twitter, then B seems to be interesting to follow for A as well. As the 
connections of others to B may change over time, this will imply that A also will have a 
dynamic connection to B, and in turn this connection will affect the connection of oth-
ers to B over time as well. This can be modelled taking into account the weights ωCi ,B for 
i = 1,…, k of all connections from others Ci to B as shown in Fig. 6 in conceptual repre-
sentation and in numerical representation as follows:

dωA,B/dt = ηA,B[cA,B(ωC1,B . . . ,ωCk ,B)− ωA,B]

ωA,B(t +�t) = ωA,B(t)+ ηA,B[cA,B(ωC1,B(t), . . . ,ωCk ,B(t))− ωA,B(t)].

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14 16 18 20 22 24

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10

state values

�me

Fig. 4  State values for the homophily example simulation showing emerging clusters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

X2_X3
X3_X4
X4_X5
X5_X4
X8_X5

connec�on weight values

�me

Fig. 5  Some of the connection weights for the homophily example simulation
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Here cA,B(…) is a combination function for the values ωC1,B, . . . ,ωCk ,B; for exam-
ple, a logistic sum function or a scaled sum function with scale factor the number k of 
other persons connected to B. Note that the latter combination function only takes into 
account the average strengths of the connections, not the total number of them.

Note that a network modelling the initiation of connections is not automatically a net-
work indicating social contagion; this will depend on the application considered. For 
example, a network modelling a connection from A to B when A is following B on Twit-
ter will not play a role in social contagion from A to B. For social contagion, the opposite 
network plays a role where a connection from A to B occurs when A is followed by B, 
which is not initiated by A but by B: on Twitter and most other social media you cannot 

ssum�(V1, . . . ,Vk) = (V1 + · · · + Vk)/�

alogistic(V1, . . . ,Vk) =

[

1

1+ e−σ(V1+···+Vk−τ)
−

1

1+ eστ

]

(1+ e−στ ).

Table 2  Initial connection weights for the homophily example simulation
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0.1 0.2 0.1 0.2 0.15 0.1 0.25 0.25 0.1

X2 0.25 0.25 0.2 0.1 0.2 0.15 0.25 0.25 0.25

X3 0.1 0.25 0.1 0.2 0.15 0.1 0.25 0.1 0.15

X4 0.25 0.15 0.25 0.15 0.8 0.25 0.15 0.25 0.25

X5 0.25 0.2 0.1 0.2 0.25 0.2 0.1 0.2 0.15

X6 0.25 0.1 0.25 0.25 0.25 0.1 0.25 0.25 0.1

X7 0.2 0.1 0.2 0.15 0.2 0.2 0.2 0.15 0.25

X8 0.1 0.25 0.1 0.25 0.05 0.15 0.25 0.1 0.25

X9 0.25 0.15 0.25 0.15 0.2 0.1 0.2 0.15 0.15

X10 0.2 0.25 0.2 0.2 0.1 0.2 0.15 0.8 0.2

XC2

XB

XC1

XA

ωA,B

ωC2,B

ωC1,B

Fig. 6  Conceptual representation of an adaptive temporal–causal network model for the ‘more becomes 
more’ principle
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appoint your own followers. As another example, when A often contacts B for advice, and 
this advice is often taken over by A, then the initiation connection is from A to B but the 
contagion connection is from B to A. In other cases, it may be different. For example, if 
A wants to announce an event or new product, he or she can choose an occasion where 
many others will see the message; for example, posting it on a suitable forum; in such a 
case both the initiation and the social contagion are directed from A to the others.

Mathematical analysis of temporal–causal network models
In this section, we discuss how some types of dynamic properties of adaptive temporal–
causal network models can be analysed mathematically, in particular, stationary points and 
monotonicity. These are basic concepts that also can be found in [1], chapter 12 or [31] . 
A stationary point of a state occurs at some point in time if for this time point no change 
occurs: the graph is horizontal at that point. Stationary points are usually maxima or min-
ima (peaks or dips) but sometimes also other stationary points may occur. An equilibrium 
occurs when for all states no change occurs. From the difference or differential equations 
describing the dynamics for a model, it can be analysed when stationary points or equilib-
ria occur. Moreover, it can be found when a certain state is increasing or decreasing, when 
a state is not in a stationary point or equilibrium. First a definition for these notions.

Definition (stationary point, increase, decrease, and equilibrium)

• • A state Y has a stationary point at t if dY (t)/dt = 0.

• • A state Y is increasing at t if dY (t)/dt > 0.

• • A state Y is decreasing at t if dY (t)/dt < 0.

The model is in equilibrium at t if every state Y of the model has a stationary point at 
t. This equilibrium is attracting when for any state Y, all values of Y in some neighbour-
hood of the equilibrium value increase when the value is below the equilibrium value 
and decrease when the value is above the equilibrium value.

A question that can be addressed is whether observations based on one or more simu-
lation experiments are in agreement with a mathematical analysis. If it is found out that 
the observations are in agreement with the mathematical analysis, then this provides 
some extent of corroboration that the implemented model is correct. If they turn out 
not to be in agreement with the mathematical analysis, then this indicates that prob-
ably there is something wrong, and further inspection and correction has to be initiated. 
Considering the differential equation for a temporal–causal network model, more spe-
cific criteria can be found:

where X1,…, Xk are the states with connections to Y. For example, it can be concluded 
that 

In this manner, the following criteria can be found:

dY (t)/dt = ηY [cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) − Y (t)]

dY (t)/dt > 0 ⇔ cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) > Y (t).
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Criteria for increase, decrease, stationary point and equilibrium

Let Y be a state and X1, . . . ,Xk the states connected toward Y. Then, the following hold:

Note that these criteria can immediately be found from a conceptual representation 
of a temporal–causal network model, as long as the referred combination function is 
known. Using the above criteria, no further numerical representation is needed of the 
difference or differential equations, for example. From these criteria, more insight can 
be obtained about the behaviour of the network model, in particular which stationary 
points are possible for a state in the model, and which equilibria are possible for the 
whole model. Sometimes, the stationary point equation can be rewritten into an equa-
tion of the form Y(t) =  .. such that Y(t) does not occur on the right-hand side. In the 
“Mathematical analysis for the homophily principle” and “Mathematical analysis for the 
‘more becomes more’ principle” sections, examples of this are shown.

The criteria can also be used to verify (the implementation of ) the model based on 
inspection of stationary points or equilibria, in two different manners A and B. Note that 
in a given simulation the stationary points that are identified are usually approximately 
stationary; how closely they are approximated depends on different aspects, for example, 
on the step size, or on how long the simulation is done.

A. Verification by checking stationary points through substitution of the values from a 

simulation in the criterion

1.	 Generate a simulation.
2.	 Consider any state Y with a stationary point at any time point t and states X1, …, Xk 

affecting it.
3.	 Substitute the values Y (t) and X1(t), …, Xk(t) in the criterion 

cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) = Y (t).

4.	 If the equation holds (for example, with an accuracy <0.05), then this test succeeds, 
otherwise it fails

5.	 If this test fails, then it has to be explored were the error can be found

Note that this method A. works without having to solve the equations, only substitu-
tion takes place; therefore it works for any choice of combination function. Moreover, 
note that the method also works when the values of the states fluctuate, for exam-
ple according to a recurring pattern (a limit cycle). In such cases for each state, there 
are maxima (peaks) and minima (dips), which also are stationary points to which the 
method can be applied; here it is important to choose a small step size as each stationary 
point occurs at one time point only. There is still another method B. possible that can be 
applied sometimes; it is based on solving the equations for the stationary point values by 
symbolic rewriting. This can provide explicit expressions for stationary point values in 

Y has a stationary point at t ⇔ cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) = Y (t)

Y is increasing at t ⇔ cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) > Y (t)

Y is decreasing at t ⇔ cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) < Y (t)

The model is in equilibrium a t ⇔ cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) = Y (t)

for every state Y (i.e. a joint stationary state)
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terms of the parameters of the model. Such expressions can be used to predict equilib-
rium values for specific simulations, based on the choice of parameter values.

B. Verification by solving the equilibrium equations and comparing predicted equilibrium 

values to equilibrium values in a simulation

1.	 Consider the equilibrium equations for all states Y: 

2.	 Leave the t out and denote the values as constants 

An equilibrium is a solution X1, . . . ,Xk of the following set of n equilibrium equations 
in the n states X1, . . . ,Xn of the model:

3.	 Solve these equations mathematically in an explicit analytical form: for each state Xi 
a mathematical formula Xi = … in terms of the parameters of the model (connection 
weights and parameters in the combination function cXi(..), such as the steepness σ 
and threshold τ in a logistic sum combination function); more than one solution is 
possible.

4.	 Generate a simulation.
5.	 Identify equilibrium values in this simulation.
6.	 If for all states Y, the predicted value Y from a solution of the equilibrium equations 

equals the value for Y obtained from the simulation (for example, with an accu-
racy <0.05), then this test succeeds, otherwise it fails.

7.	 If this test fails, then it has to be explored where the error can be found.

For more details, see [1], chapter  12, or [31]. This method B. provides more, but a 
major drawback is that it cannot be applied in all situations; this depends on the chosen 
combination functions: e.g. for logistic functions, it does not work.

Mathematical analysis for the homophily principle
In the “Modelling evolving social interactions by adaptive networks based on the ‘more 
becomes more’ principle” section, it was shown how the homophily principle for evolv-
ing social interaction may be modelled using a combination function:

In this section, we analyse which stationary points can occur for �XA,XB, according to 
the approach described in “Mathematical analysis of temporal–causal network models”. 
For this case, the criterion from the “Mathematical analysis of temporal–causal network 
models” section for a stationary point is

cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) = Y (t).

cY (ωX1,YX1, . . . ,ωXk ,YXk) = Y .

cX1
(ωX1,X1

X1, . . . ,ωXn,X1
Xn) = X1

. . .

cXn
(ωX1,Xn

X1, . . . ,ωXn,Xn
Xn) = Xn

c�XA ,XB
(V1,V2,W ) = W +W (1−W )

(

τ�XA ,XB
− |V1 − V2|

)
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Clearly, for �XA,XB(t) = 0 or �XA,XB(t) = 1, one of the left-hand side factors in this con-
dition is 0. In contrast, when 0 < �XA,XB(t) < 1, the right-hand factor should equal 0:

Therefore, in principle, there are three types of stationary points for �XA,XB(t).
Stationary points for �XA,XB(t):

 Similarly, the following can be found.
Increasing �XA,XB(t)

Decreasing �XA,XB(t)

This shows that for cases that |XA(t)− XB(t) | < τ�XA ,XB
 the connection keeps 

on becoming stronger until �XA,XB(t) approaches 1. Similarly for cases that 
|XA(t)− XB(t)| > τ�XA ,XB

 the connection keeps on becoming weaker until �XA,XB(t) 
approaches 0. This implies that �XA,XB(t) = 0 and �XA,XB(t) = 1 can both become 
attracting, but under different circumstances concerning the values of XA(t) and XB(t) . 
In [1], chapter 11, section 11.7 for such an adaptive network model, an example simula-
tion is shown where indeed the connection weights all converge to 0 or 1, and during 
this process clusters are formed of persons with equal levels of their state; see also [32].

Mathematical analysis for the ‘more becomes more’ principle
The criterion for stationary points applied to the adaptive network model for the ‘more 
becomes more’ principle is the following:

where C1, . . . ,Ck, and A are the states connected to B. For a joint stationary point, this 
criterion applies to any state connected to B. Renaming A by Ck+1 this can also be for-
mulated by the following set of k + 1 equations for i = 1, . . . , k + 1:

 or written out:

c�XA ,XB

(

XA(t), XB(t),�XA,XB
(t)

)

= �XA,XB
(t)

⇔ �XA,XB
(t)

(

1−�XA,XB
(t)

)

(

τ�XA ,XB
− |XA(t)− XB(t)|

)

= 0

τ�XA ,XB
− |XA(t)− XB(t)| = 0 ⇔ |XA(t)− XB(t) | = τ�XA ,XB

.

�XA,XB(t) = 0 or�XA,XB(t) = 1 or |XA(t)−XB(t)| = τ�XA ,XB
and�XA,XB(t) have any value.

d�XA,XB(t)/dt > 0 ⇔ (τ�XA ,XB
− |XA(t)− XB(t)|) > 0 ⇔ |XA(t)− XB(t) | < τ�XA ,XB

d�XA,XB(t)/dt < 0 ⇔

(

τ�XA ,XB
− |XA(t)− XB(t)|

)

< 0 ⇔ |XA(t)− XB(t)| > τ�XA ,XB

cA,B
(

ωC1,B(t), . . . ,ωCk ,B(t)
)

= ωA,B(t)

cCi ,B

(

ωC1,B(t), . . . ,ωCi−1,B(t),ωCi+1,B(t), . . . ,ωCk+1,B(t)
)

= ωCi ,B(t)

cC1,B(ωC2,B(t), . . . ,ωCk+1,B(t)) = ωC1,B(t)

cC2,B(ωC1,B(t),ωC3,B(t), . . . ,ωCk+1,B(t)) = ωC2,B(t)

. . .

cCk+1,B(ωC1,B(t), . . . ,ωCk ,B(t)) = ωCk+1,B(t)
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If for the combination function cCi,B(..) the scaled sum function is chosen with scaling 
factor the number k, this provides the following set of k + 1 linear equations for a joint 
stationary state for the connections to B:

By multiplying both sides by k this provides

This set of equations can be solved easily. For each i, adding ωCi ,B(t) to both sides of 
the ith equation yields

As all left-hand sides are equal now, it follows that the right-hand sides are equal as 
well, so for a joint stationary point

for all i and j. Therefore in a joint stationary state for all connections ωCi ,B to B they have 
the same weight value.

By a slightly different argument a similar conclusion can be drawn when not a scaled 
sum combination function but a logistic combination function is chosen.

The aggregated impact on the connection weight  ωCi ,B is given by

(ωC2 ,B(t)+ · · · + ωCk+1,B(t))/k = ωC1,B(t)

(ωC1,B(t)+ ωC3,B(t)+ · · · + ωCk+1,B(t))/k = ωC2,B(t)

. . .

(ωC1,B(t)+ · · · + ωCk ,B(t))/k = ωCk+1,B(t)

(ωC2 ,B(t)+ · · · + ωCk+1,B(t)) = kωC1,B(t)

(ωC1,B(t)+ ωC3,B(t)+ · · · + ωCk+1,B(t)) = kωC2,B(t)

. . .

(ωC1,B(t)+ · · · + ωCk ,B(t)) = kωCk+1,Bt

ωC1,B(t)+ ωC2,B(t)+ · · · + ωCk+1,B(t) = kωC1,B(t)+ ωC1,B(t)) = (k + 1)ωC1,B(t)

ωC1,B(t)+ ωC2,B(t)+ · · · + ωCk+1,B(t) = kωC2,B(t)+ ωC2,B(t) = (k + 1)ωC2,B(t)

. . .

ωC1,B(t)+ ωC2,B(t)+ · · · + ωCk+1,B(t) = kωCk+1,B(t)+ ωCk+1,B(t) = (k + 1)ωCk+1,B(t).

ωCi ,B(t) = ωCj ,B(t)

alogistic
(

ωC1,B(t), . . . ,ωCi−1 ,B(t),ωCi+1 ,B(t), . . . ,ωCk ,B(t)
)

=

[(

1

/(

1+ e
−σ

(

ωC1,B
+···+ωCi−1,B

+ωCi+1,B
+···+ωC

k
,B−τ

)
))

−
(

1
/

(1+ eστ )
)

]

(

1+ e−στ
)

=

[(

1

/(

1+ e
−σ

(

ωC1,B
+···+ωCi−1,B

+ωCi ,B
+ωCi+1,B

+···+ωC
k
,B−τ−ωCi ,B

)
))

−
(

1
/

(1+ eστ )
)

]

×
(

1+ e−στ
)

=

[(

1

/(

1+ e
−σ

(

�−ωCi ,B

)
))

− µ

]

v

=
[(

1
/(

1+ e−σ�eσωCi ,B
))

− µ
]

v

=

[(

1

/(

1+ κe
σω

Ci ,B

))

− µ

]

v

= f(ωCi ,B)
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 with f(V ) a function defined by

Here κ, μ, ν are positive constants:

Using this function, for this case, the stationary point equations get the following uni-
form form:

Therefore, the question becomes how many solutions the equation f(V ) = V  
has. Now eσV  is monotonically increasing in V, and therefore 1/(1+ κeσV )) and 
also f(V ) are monotonically decreasing: V1 ≤ V2 ⇒ f(V1) ≥ f(V2). Suppose V1 and 
V2 are two solutions of the equation f(V ) = V , and assuming V1 ≤ V2, it follows 
V1 = f(V1) ≥ f(V2) = V2, soV1 = V2. This implies that the equation f(V ) = V  has at 
most one solution. From this, it follows that also for the alogistic function as combina-
tion function in a joint stationary point all ωCi ,B values will be equal.

There is also an abstract general argument possible for a whole class of combination 
functions, namely, the combination functions that are (1) symmetric in their arguments 
and that are (2) monotonic:

1.	 If U1, . . . ,Uk is a permutation of V1, . . . ,Vk, then c(U1, . . . ,Uk) = c(V1, . . . ,Vk)

2.	 If it holds Ui ≤ Vi for all i, then c(U1, . . . ,Uk) ≤ c(V1, . . . ,Vk)

If in a fully connected network a combination function c(..) is used that is symmetric 
and monotonic and all connection weights between different states are the same (for 
example, assume all of them 1), and no connections occur from states to themselves, 
then the argument is as follows. Suppose all states have the same combination function 
and joint stationary points are given, so that for all i and j (assume i < j):

 then by symmetry

Now suppose Xi ≤ Xj then by monotonicity

f(V ) =

[

1

1+ κeσV
− µ

]

ν

κ = e−σ� with � = ωC1,B + · · · + ωCk ,B − τ

µ = 1/(1+ eστ )

ν = (1+ e−στ ).

f(ωC1,B(t)) = ωC1,B(t)

. . .

. . .

. . .

f(ωCk ,B(t)) = ωCk ,B(t).

Xi = c(X1, . . . ,Xi−1,Xi+1, . . . . . . ,Xk)

Xj = c(X1, . . . . . . ,Xj−1,Xj+1, . . . ,Xk)

Xi = c(X1, . . . ,Xi−1,Xi+1, . . . ,Xj−1,Xj+1, . . . ,Xk ,Xj)

Xj = c(X1, . . . ,Xi−1,Xi+1, . . . ,Xj−1,Xj+1, . . . ,Xk ,Xi)
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From the above, it follows that Xi = Xj. The same argument applies when it is assumed 
Xi ≥ Xj. Therefore in this case, in a joint stationary point all state values are equal, which 
was also found above by more specific methods for the special cases of a scaled sum and 
an advanced logistic sum combination function, which indeed both are symmetric and 
monotonic combination functions. Thus, we obtain the following theorem:

Theorem  When in a fully connected network with equal connection weights a combina-
tion function is used that is symmetric and monotonic, then in a joint stationary point all 
state values are equal.

‘More becomes more’ and scale‑free networks

The ‘more becomes more’ principle has also been used to provide an explanation for the 
empirical evidence that most real-world networks are scale-free. The idea is that the typ-
ical distribution of degrees according to a power law emerges from an evolving network 
when it is assumed that the network dynamics is based on some form of a ‘more become 
more’ principle (also called preferential attachment); see, for example, [30, 33–35]; see 
also [36, 37]. An indication of the type of argument followed is illustrated in Fig. 7. Here 
the distribution of nodes (vertical axis) over degrees (horizontal axis) is depicted; this 
distribution is assumed stable over time. A time point t is considered and the focus is at 
the nodes with some degree dt at t (see at the horizontal axis). There is a (relative) num-
ber or density nt of them (vertical axis). Moreover, the nodes with degree between dt and 
a bit higher dt +�dt are considered, an interval of length �dt at the horizontal axis. The 
(relative) number of nodes with degree within this interval is represented in Fig. 7 by the 
area of the (left) rectangle above that interval. This area is approximated by nt�dt.

Now consider a time step from t to t +�t. Due to growth of the number of connec-
tions, the nodes with degree dt at time t will have a higher degree dt+�t at t +�t, and 
the nodes with degree dt +�dt at time t will have a higher degree dt+�t +�dt+�t at 
t +�t. Due to the ‘more becomes more’ principle, from dt < dt +�dt it follows that 
from t to t + ∆t the nodes with degree dt +�dt at time t will get more new connections 
than the nodes with degree dt at time t. Therefore the increase in degree of these nodes 
with degree dt +�dt at time t will be higher:

The numbers of nodes previously represented at t by the left rectangle are represented 
at t +�t by the right rectangle. Moreover, because they describe the same nodes, the 
areas indicated as shaded are the same:

Given this equality, from �dt+�t > �dt (‘more becomes more’ principle) it follows 
that nt+�t < nt. Therefore the distribution is monotonically decreasing. By a more 

Xi = c(X1, . . . ,Xi−1,Xi+1, . . . ,Xj−1,Xj+1, . . . ,Xk ,Xj)

≥ c(X1, . . . ,Xi−1,Xi+1, . . . ,Xj−1,Xj+1, . . . ,Xk ,Xi)

= Xj

�dt+�t > �dt

nt�dt = nt+�t�dt+�t
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complex argument it has been derived that based on some more precise assumptions on 
the formalisation of the ‘more becomes more’ principle, a distribution is obtained that 
is monotonically decreasing according to a power law; for example, see [30, 33–35] for 
more details.

Discussion
The Network-Oriented Modelling approach based on adaptive temporal–causal net-
works, as described here (see also [1, 10]), provides a dynamic modelling approach that 
enables a modeller to design high-level conceptual model representations in the form of 
cyclic graphs (or connection matrices). These conceptual representations can be system-
atically transformed in an automated manner into executable numerical representations 
that can be used to perform simulation experiments. The modelling approach makes it 
easy to take into account. on the one hand. theories and findings from any domain from, 
for example, biological, psychological, neurological or social sciences, as such theories 
and findings are often formulated in terms of causal relations. This applies, among oth-
ers, to mental processes based on complex brain networks, which, for example, often 
involve dynamics based on interrelating and adaptive cycles, but equally well it applies 
to the adaptive dynamics of social interactions. For a more detailed theoretical analysis 
on the wide applicability of the approach, see [38, 39]; for example, there it is shown that 
any smooth (state-determined) dynamical system can be modelled by a temporal–causal 
network model.

This enables to address complex adaptive phenomena within all kinds of integrated 
cognitive, affective and social processes. By using temporal–causal relations from those 
domains as a main vehicle and structure for network models, the obtained network 
models get a strong relation to the large body of empirically founded knowledge from 
the Neurosciences and Social Sciences. This makes them scientifically justifiable to an 
extent that is not attainable for black box models which lack such a relation.

In this paper, we have discussed in some detail how mathematical analysis can be used 
to find out some properties of the dynamics of a network model designed according to 
a Network-Oriented Modelling approach based on temporal–causal networks; see also 

0

0.4

0.8

dt

∆dt ∆dt+∆t > ∆dt

nt
nt+∆t

dt+∆t

Fig. 7  Emerging scale-free network from an adaptive network
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[1], chapter 12, or [31]. An advantage is that such an analysis is done without performing 
simulations. This advantage makes that it can be used as an additional source of knowl-
edge, independent of a specific implementation of the model. By comparing properties 
found by mathematical analysis and properties observed in simulation experiments a 
form of verification can be done. If a discrepancy is found, for example, in the sense that 
the mathematical analysis predicts a certain property but some simulation does not sat-
isfy this property, this can be a reason to inspect the implementation of the model care-
fully (and/or check whether the mathematical analysis is correct). Having such an option 
can be fruitful during a development process of a model, as to acquire empirical data for 
validation of a model may be more difficult or may take a longer time.

Adaptive network models combining the homophily and the ‘more becomes more’ 
principle also have been studied recently, in particular in [40, 41]. The methods 
described in the current paper can and actually have also be applied to such integrated 
cases. Moreover, it has been shown in [40, 41] how the modelling approach can be 
related to empirical real-world data on evolving friendship networks.

Mental processes can also be modelled by temporal–causal networks in an adaptive 
manner. The parameters that can change can be modelled in the same way as states, fol-
lowing the approach in “Network-Oriented Modelling by temporal–causal networks” 
section. This can be applied, for example to the way in which connection strengths can 
change based on Hebbian learning. Hebbian learning [42], is based on the principle that 
strengthening of a connection between neurons over time may take place when both 
states are often active simultaneously (‘neurons that fire together, wire together’). The 
principle itself goes back to Hebb [42], but see also, e.g. [43]. For some more details on 
this, see [31].
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