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Background
Social networking services (SNSs), such as Twitter, Facebook, and Google+, are fre-
quently used by many users around the world not only to share and exchange local infor-
mation among limited specialized and close-friend groups but also to publish/obtain 
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public information for the purposes of exchanging opinion, advertising, marketing, and 
politics [1, 2]. SNSs are usually run by companies and non-profit organizations but can-
not persist without huge amounts of up-to-date content being continually posted by 
individual users. Such user activities incur various costs in terms of creating and sub-
mitting the content, and why users continue to post articles and comments is not well 
understood. In addition, free riders (or lurkers) exist, that is, users who just read the con-
tent and never post articles. To provide incentives to individual users to keep submitting 
content, many SNSs have introduced specific mechanisms, such as providing comments 
on articles, comments on comments, indication of the number of followers, signs show-
ing articles have been read, and “Like” buttons. These mechanisms can provide quantita-
tive rewards (e.g. showing the numbers of readers of articles and users who clicked on 
the “Like” buttons) as well as psychological rewards that provide feelings of connection 
to people and a sense of belonging [3]. However, these incentive mechanisms also rely 
on users’ voluntary behavior and, thus, incur some cost and time.

As the variety of social media on the Internet continues to grow, it is becoming impor-
tant to identify the conditions, mechanisms, and/or design methodologies inherent to 
maintaining an active and thriving SNS. Thus, a number of approaches, such as network 
analysis [4, 5], social psychology [6], analysis of exchange patterns [7], and evolutionary 
game theory [8], have been used to tackle this issue. Here, we focus on the evolutionary 
game theoretic approach since the mechanisms maintaining for thriving of SNSs have 
not been fully investigated from this viewpoint.

In this approach, SNSs are assumed to have the characteristics of a public goods 
game, because SNS are shared resources sustained by many users. For example, Toriumi 
et al.  [8] and Hirahara et al.  [9] modeled an SNS as a rewards game (RG) and a meta-
rewards game (MRG), which are dual parts of Axelrod’s meta-norms game, and their 
own extension, called an SNS-norms game, to identify evolved behaviors of agents that 
model SNS users. They then analyzed the conditions under which a cooperation-dom-
inant situation arises, where cooperation in this game corresponds to posting an arti-
cle and a comment and a cooperation-dominant situation corresponds to a situation in 
which most users post them, so SNSs are active. They found that meta-rewards such as 
comments on article comments [8] and a simple (so, low-cost) response mechanism for 
rewards such as “Like” buttons for articles [10] play an important role in SNSs. However, 
these studies did not consider social and personal relationships between peers. Further-
more, some SNSs have no mechanism to provide meta-rewards, so another mechanism 
and/or interactive structure also seems to affect SNS activities.

Cooperation is a key activity to maintain public goods games. Nowak [11] pointed out 
that at least one of five mechanisms—kin selection, direct and indirect reciprocity, net-
work reciprocity, and group selection—is necessary for cooperation to evolve in human 
society. Rand and Nowak [12] subsequently showed empirical evidence of human coop-
eration sustained by these mechanisms. Other studies have also reported that these 
mechanisms, especially reciprocity, exist and that reciprocity plays a crucial role in 
online networks [7, 13, 14]. We believe that reciprocity, especially direct reciprocity, is 
essential in an SNS because connections between users are usually established through 
direct interaction such as “reading articles” and “commenting on articles”.
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Thus, our study was aimed at investigating the effect on direct reciprocity between 
users on cooperation-dominant situations and how network structures affect the users’ 
interaction strategy. For this purpose, we extended an existing abstract model of an 
SNS [8] to include direct reciprocity. The extended model is called a reciprocity (meta-)
rewards game whose structure is similar to the (M)RG, but agents tag peer agents and 
decide their behaviors on the basis of recent reciprocal behaviors of these peers. We 
then tried to determine the circumstances in which the rates of cooperation increase 
and when the established cooperation collapses in this game. Note that we particularly 
focused on the reciprocity rewards game that has no mechanism for giving a meta-
reward because a number of thriving SNSs do not have meta-rewards as mentioned 
above; thereby, we wanted to find another mechanism or interaction structure that pro-
motes a thriving SNS.

We experimentally show that in complete graphs, the Watts–Strogatz (WS) 
model  [15], the connecting nearest neighbor CNN model  [16], and Barabasi–Albert 
(BA) model  [17] networks, users do not cooperate with all neighbor agents but rather 
with a few close friends established on the basis of past reciprocal behavior. To explain 
this phenomenon, we propose the concept of half free riders (or partial lurkers) and dis-
cuss the interaction structure needed to maintain a cooperation-dominant situation in 
which the SNS continues to prosper. This is one main difference from the previous stud-
ies [8, 10]. Our experimental results suggest that user behavior like a half free rider sus-
tains cooperative activity in all types of network. However, this phenomenon raises in 
complete graphs under the additional conditions that (1) agents seldom miss the posted 
articles and (2) they do not comment on articles posted by non-reciprocal agents. We 
also conducted experiments using WS, BA, and CNN networks and tried to understand 
how the network structure affected reciprocity, and thus the prosperity of the SNS. We 
found that the network structure strongly affects continuation of a cooperation-domi-
nant situation without any additional conditions. We also examined the (non-)reciprocal 
relationships and the effect of varying the term of memory of the reciprocal agents.

Related work
A number of studies have attempted to understand what factors affect social media 
by analyzing the network structures of social media. For example, Karamon et  al.  [4] 
devised an algorithm that can analyze important network-based features of huge social 
networks for better understanding the user behavior therein. Saito and Matsuda [5] ana-
lyzed network structures to identify two key types of user who draw the attention of 
many other users on Twitter and showed that one type has higher link reciprocity. In 
the field of social psychology, Lin and Lu  [6] empirically studied reasons people have 
for joining SNSs and found that enjoyment is the most influential factor for people to 
continue using an SNS. They also found a notable difference between genders, i.e. the 
number of active peers is an influential factor for women’s enjoyment, and results in 
their continued use of social media, whereas the number of members has an insignifi-
cant effect on men’s enjoyment. Qasem et al. [2] attempted to detect influential actors in 
SNSs in order to identify who can influence others and to improve information diffusion 
and market efficiency.
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A number of studies have paid attention to reciprocity between users by conducting 
empirical analyses. For example, Surma [18] focused on reciprocity because it is crucial 
in social exchanges. He analyzed reciprocity on Facebook and showed strong empirical 
evidence that reciprocity messages sent from a user on online social networks increase 
reciprocity reactions from her/his audience. Faraj and Johnson [7] found that network 
exchange patterns in an online community are characterized by reciprocity patterns and 
are different from those characterized by preferential attachment [17]. Takano et al. [14] 
analyzed player action logs and found that cooperation based on reciprocity could be 
observed in a network game. These papers suggest that reciprocity is a key factor in 
keeping social media thriving.

A number of studies proposed abstract models of social media and investigated their 
properties. Anderson  [19] proposed a game theoretic approach aimed at understand-
ing how social media emerge as a driving force in contemporary marketing and how 
this would affect future marketing. Toriumi et  al.  [8] revealed that SNSs have similar 
properties to public goods games, but they correspond to the dual part of the meta-
norms game [20] because SNSs seem to lack a means of punishing non-cooperators and 
only give (psychological) rewards to cooperators. Their model includes two games, the 
rewards game (RG) and the meta-rewards game (MRG), and they indicated that meta-
rewards facilitate cooperation, resulting in active use of an SNS. Hirahara et al.  [9, 10] 
subsequently extended this model to the SNS-norms game that includes the character-
istics of the interaction patterns in SNSs. They ran this game in a variety of complex 
networks and found that users at network hubs facilitate posting articles to some degree 
even if no meta-reward is provided. However, their study did not take into account 
reciprocal relationships between peer agents.

We have already presented a model including reciprocity in an SNS [21], but described 
only a few experimental results on it. This paper is an extended version of our previous 
workshop paper [21], and it details more thorough experiments using a variety of com-
plex networks and discusses the characteristics of our model through a detailed analysis.

Proposed model for social networking services
Reciprocity rewards and meta‑rewards games

Social networking services are sustainable only when many articles and comments on 
them are posted by and shared among many anonymous participants. Although some 
cost personal time and effort, users can obtain information by reading such posts and 
can receive responses that provide feelings of connectivity, empathy, and contentment. 
On the other hand, there are many free riders who only read content. Therefore, SNSs 
have the properties of public goods that are produced and sustained by continuous 
cooperative activities in the SNS community. The game structure of this mutual inter-
ference is essentially an n-person prisoner’s dilemma (PD) game. Toriumi et al. [8] pro-
posed RG and MRG as dual games of the norms and meta-norms games proposed by 
Axelrod [20] (Fig. 1) and attempted to explain the mechanism of continuous voluntary 
participation in SNSs. Although they showed that a meta-reward, which corresponds to 
“comments on a comment” in an SNS, for example, can provide an incentive to a user 
for voluntary participation, they ignored reciprocity, which is crucial to characterizing 
activities in SNSs [7, 14, 18]. Hence, we devised the reciprocity rewards game (RRG) and 
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the reciprocity meta-rewards game (RMRG) by incorporating reciprocal relationships 
among agents into the RG and MRG (see Fig. 2). 

Let A = {1, . . . , n} be the set of agents. Agents are connected with a graph G = (A,E), 
where E is the set of links between agents. The set of neighbor agents of i ∈ A is denoted 
by Ai (⊂A). Agents in an R(M)RG game select the strategy of either cooperation or defec-
tion. Cooperation indicates posting articles and comments, and defection indicates just 
reading them. A user who almost always selects defection is defined as a free rider. Agent 
i ∈ A has three learning parameters: the probability of cooperation (i.e. posting a new 
article) Bi, the probability of giving rewards (e.g. posting a comment on the article) to 
reciprocal agents LCi, and the probability of giving rewards to other (normal) agents LNi. 
We call Bi, LCi, and LNi the article posting rate, the reciprocal comment rate, and the nor-
mal comment rate, respectively. We also call LCi and LNi the comment rates hereafter. To 
apply the genetic algorithm (GA), we express each of these parameters as three bits, so 
they take on a discrete, i.e. value 0/7, 1/7,…, or 7/7. This expression is identical to the one 
used in the meta-norms game [20]. Agent i has a memory for reciprocal agents Wi (⊂Ai), 
which is the set of reciprocal agents that are defined as neighbor agents that posted com-
ments on i’s articles in the most recent TW(>0) rounds. Positive integer TW is called the 
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memory term. We define a round as the period in which all agents perform R(M)RG or 
(M)RG once with the neighbor agents.

An RRG or RMRG proceeds as follows. For ∀i ∈ A, the parameter Sti  (0 ≤ Sti ≤ 1) is 
defined randomly or with a certain method in the t-th round (t is a positive integer) 
when i is going to post an article. Intuitively, Sti  expresses the degree of fun of (or the 
degree of attention to) the contents of the article that i is going to post and the associ-
ated comments after that. Thus, if Sti ≥ 1− Bi, i posts a new article with cost F and agent 
∀j ∈ Ai reads the article posted by i and gains reward M by reading it. Then, j proceeds 
to the next phase with probability Sti . Then, agent j comments on the article with prob-
ability Lji, where Lji = LCj if i ∈ Wj; otherwise Lji = LNj. Then, j pays a cost C, and i gains 
a reward R through j’s comment. The game chain so far is referred to as the RRG.

Subsequent to the RRG, k ∈ Ai reads j’s comment and proceeds to the next phase with 
probability Sti . If this happens, k posts a response to the comment with probability Lkj, 
where Lkj = LCk

 if j ∈ Wk and Lkj = LNk
 if j �∈ Wk. When k posts it, k pays a cost C ′′ and j 

gains a reward R′′. The RMRG ends here. Note that, because reciprocity is not taken into 
account in RG or MRG, agent i has only two parameters, Bi and LNi (LNi is denoted by 
Li in RG) and Wk = ∅. Li in (M)RG is called the comment rate after this. The glossary of 
variables used in the RRG and RMRG is shown in Table 1.

From the definition of reciprocal agents, a reciprocal relationship is mutual or one 
sided, and expresses the internal cognitive state of each agent. We think that the two 
types of reciprocity exist in the human relationships and thus in SNSs. This will be dis-
cussed using the experimental results in the "Analysis of reciprocal relationship" section.

Evolution by genetic algorithm

Reciprocity rewards game and RMRG are evolutionary games, as are the (meta-)norms 
game and (M)RG, and we define the evolutionary parameter setting in accordance with 
their experiments [8, 20]. One generation of the game is defined as a period in which all 
agents have four chances to post articles and write/receive comments related to them.1 
At the end of one generation, each agent selects two agents as parents from its neighbors 
on the basis of fitness values, which are defined as the cumulative rewards received 
minus the cumulative costs incurred during the current generation. This process is con-
tinued up to a certain generation.

Each of three learning parameters, Bi, LCi, and LNi, is represented as a three-bit gene, 
and each agent has a nine-bit gene.2 The initial values of the nine-bit genes are set ran-
domly. The evolution consists of three phases: (1) parent selection, (2) crossover, and (3) 
mutation. A child agent of i for the next generation is generated as follows. First, in the 
parent selection phase, i selects two parent agents from i and i’s neighbor agents on the 
basis of a probability distribution {�j | j ∈ Ai ∪ {i}} defined as

1  The length of one generation is determined according to the previous studies [8, 20]. We also conducted our experi-
ments in which the length of generation was set to six, eight, or ten as well as four, but we could not see a clear differ-
ence.
2  Likewise, two learning parameters in RG and MRG are encoded into a six-bit gene.

(1)
�j = (vj − vmin)

2/
∑

k∈Ai∪{i}

(vk − vmin)
2
,
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where vk is the fitness value of agent k ∈ A, and vmin = mini∈Ai∪{i} vi. Then, two new 
genes are generated using uniform crossover from the genes in the selected parent 
agents and one of them is randomly selected in the crossover phase. In the mutation 
phase, each bit of the gene of the child agent is inverted with a probability of 0.005. This 
means that if there are 20 agents in the network, 0.9 bits will mutate on average. After 
that, the derived gene is used for the child agent of i.

Experiments and discussion
Experimental setting

We focused on the reciprocity rewards game (RRG) in the experiments because the 
reward had by commenting on a comment seems small and thereby insignificant in 
an SNS. Furthermore, simple response mechanisms (rewarding mechanisms), such as 
“Like” buttons and “read” icons, cannot be used to give meta-rewards for these simple 
responses. In the first experiment (Exp.  1), we compared the results of the RRG with 
those of the RG [8] and investigated the features of the RRG. The agent network (A,E) 
was a complete graph; we chose it because it was used in Toriumi  [8] and also seems 
to be a basis of comparison with those when (A,E) are other types of network. The pur-
pose of Exp. 1 was to investigate how reciprocity affected user behavior in an SNS by 
comparing the transitions of the average rates of cooperation, that is, posting an article 
or a comment, in the RG or RRG. Then, we also tried to ascertain the causes of sustain-
ability and collapse of cooperation in the RG and RRG, as well as the reciprocal interac-
tion structure in the RRG. The second experiment (Exp.  2) investigated how network 
structures affect cooperation and the reciprocal structure in RRG. For this purpose, we 
ran RRGs on the WS, CNN, and BA networks and compared their results with those of 
complete graphs. In the third experiment (Exp. 3), we clarified the effect of the memory 
term, TW, on the evolution of cooperation in various networks. Note that the experi-
mental data described below are the average values of 100 independent experimental 
runs based on the different random seeds.

Table 1  Parameters/variables, descriptions in  RRG and  RMRG, and  values in  the experi-
ments below

Parameter Description Value

A Set of agents |A| = 20 or 1000

Bi i’s probability of posting an article Variable

LCi i’s probability of posting a comment to a reciprocal agent Variable

LNi i’s probability of posting a comment to a normal agent Variable

Sti Degree of fun of i’ article 0 < Sti < 1 (random)

F Cost of posting article −3.0

M Reward for reading article 1.0

C Cost of comment −2.0

R Reward for receiving comment 9.0

Wi i’ memory of reciprocal agents Variable

TW Memory term 1 (if nothing mentioned)
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Role of reciprocity on cooperation—complete graphs

The parameter values in Exp. 1 are listed in Table 1. These values were determined on 
the basis of the experiments of Axelrod  [20] and Toriumi et  al.  [8]. With this setting, 
Toriumi et al. [8] found that if the reward of comments was larger than the cost of post-
ing articles and comments, cooperation emerged, but only in the MRG, and cooperation 
did not emerge if there was no meta-reward mechanism. Figure  3 indicates the prob-
abilities of posting articles and comments over the generations. Note that we defined the 
average posting article rate as B =

∑
i∈A Bi/|A|, the average reciprocal comment rate as 

LC =
∑

i∈A LCi/|A|, and the average normal comment rate as LN =
∑

i∈A LNi/|A| in the 
RRG. We also investigated B and the average comment rate L =

∑
i∈A Li/|A| in the RG. 

Note that the parameters that are and will be defined in this section are summarized in 
Table 2.

In RG on the complete graph (Fig. 3a), B and L undergo transitions at approximately 
0.11 and 0.05, respectively; this result is consistent with that of Toriumi et al. [8] as men-
tioned above. On the other hand, in the RRG B and LC make transitions at approximately 
0.33 and 0.40, respectively, and LN transitions at approximately 0.11 in RRG (Fig. 3b). 
These results indicate that the values of B, LC, and LN are larger in the RRG than in 
the RG. These figures suggest that by taking into account reciprocity when deciding the 

Table 2  Glossary of parameters defined in the "Experiment and discussion" section

Parameter Description

B Average of Bi in RG and RRG

LC Average of LCi in RRG

LN Average of LNi in RRG

L Average of Li in RG

S′ Fixed value of the degree of fun of articles

LNmax
Maximum value of LNi

p Re-wiring probability in the WS model

u Conversion probability in the CNN model

m Number of links when a node is added in the BA model

ra Average number of reciprocal agents, rai
rm Average number of mutual reciprocal agents, rmi
ro Average number of one-sided reciprocal agents, roi
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behavior, the activity in the SNS improves, although the amount of improvement is quite 
limited. Another observation is that the dispersion of B and LC were large (Fig. 3b).

To see more clearly why B, LC, and LN increased to a limited extent, we investigated 
one experimental run of RG and RRG (Fig. 4). Figure 4a indicates that the article post-
ing and comment rates, B and L, in the RG, rose intermittently (but never reached 1.0) 
but then quickly dropped off. Such temporary cooperation was caused by mutation. 
However, the RG cannot maintain a cooperative situation; for example, when B and L 
increased in some agents, these agents temporarily gained rewards. However, because 
the free riders were benefited more in such a situation, cooperation soon disappeared.

On the other hand, in the RRG (Fig. 4b), B or LC sometimes reached (near) 1.0 and 
lasted much longer than in the RG (although they also dropped rapidly afterward). This 
means that almost all agents cooperate (by posting articles) and post comments on coop-
erators’ articles during this period. Furthermore, we can see that LC rarely fell to zero. 
The difference between the RG and RRG is that agents in the RRG distinguish reciprocal 
agents from other agents and so behave differently towards them. That is, agent i with a 
large LC comments only on articles posted by reciprocal agents who commented on past 
articles posted by agent i. Such selective comments prevent the collapse of cooperation 
by reducing the cumulative cost of making comments. However, they prevent collapse 
only when LC > LN ; otherwise, when many agents begin to comment on arbitrary arti-
cles without enough rewards and free riders gain high total rewards, cooperation col-
lapses like in the RG.

Now let us explain what the above phenomena correspond to in an actual SNS. When 
SNS users do not consider direct reciprocity (that is, they are in an RG), users who 
would otherwise often comment must stop commenting because the RG has no incen-
tive for it and it is more beneficial for agents to behave as free riders. On the other hand, 
if individual users consider direct reciprocity when making comments, they preferen-
tially comment on posts by reciprocal users preferentially by referring to their memory, 
Wi. Thus, when LC > LN , such selective comment behavior for receiving comments in 
the subsequent rounds sustains the norm for cooperation. We also believe that LC > LN 
is a reasonable assumption in an actual SNS. We discuss this in the "Discussion" section.

Sustainment or collapse of cooperation

We attempted to identify why the average rates of B, LC, and LNdeclined. The first factor 
that affects sustainability of cooperation is the relative values of LC and LN, as mentioned 
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above. Thus, we limited the maximum value of the normal comment rate, LNi , to LNmax
 

(0 ≤ LNmax
≤ 1). Note that LNi is expressed by three bits (it is a value ranging from 0 to 

7), so the probability of the normal comment rate is (LNi × LNmax
)/7. Another factor that 

affects the rewards of agents is the degree of fun of the posted articles and the associated 
comments, Sti . Thus, we set Sti  to a certain positive constant value 0 ≤ S′ ≤ 1, and investi-
gated how the evolution of cooperation changed as a result of varying S′.

Figure 5 plots the changes in B, LC, and LN over generations in the RRG when LNmax
 

was 0.1 (Fig. 5a) and when S′ was 1.0 (Fig. 5b). By comparing these figures with Fig. 3b, 
we can see that B and LC slightly increased in both cases, and no significant differences 
existed between them. However, when we set LNmax

= 0.1 and S′ = 1.0, we observed the 
emergence of cooperation, as shown in Fig. 6. To investigate the influence of LNmax

 and 
S′ , we conducted a more detailed experiment. The results, plotted in Fig. 7, indicate how 
the posting rates varied in accordance with S′ (LNmax = 0.1, Fig. 7a) and LNmax

 (S′ = 1.0 , 
Fig.  7b). Figure  7b shows that when S′ = 1.0, if LNmax

≤ 0.55, B was nearly 1.0, but it 
gradually decreased to around 0.5 as LNmax

 increased from 0.5 to 1.0. Conversely, Fig. 7a 
indicates that when LNmax = 0.1, if S′ ≥ 0.8, B remained almost 1.0, but as S′ decreased 
from 0.8 to 0, B gradually reached zero. Note that we will denote the RRG manipulated 
with parameters S′ and LNmax

 by RRG(S′, LNmax
), respectively, e.g. RRG (0.8, 0.1). 
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These results indicate that LNmax
 and S′ strongly affect the emergence of cooperation 

in the RRG: a smaller LN corresponds to the situation where agents may read articles 
from non-reciprocal agents but do not comment on them that much. A larger S′ cor-
responds to the situation where agents rarely miss articles posted by agents. Thus, while 
agents received more rewards from non-reciprocal agents by behaving like free riders, 
they commented on the articles posted by reciprocal agents. Both conditions must be 
satisfied in order to remove the causes of collapse from the RRG.

Effect of network structure

To investigate the effect of network structure on the emergence of cooperation in RRG, 
we ran the RRGs on WS networks [15] whose average degree was 20 (since the complete 
graph in Exp. 1 was 20), on CNN networks [16] and BA networks. We set the number 
of nodes (agents) to 1000 in each network. Note that we did not use S′ and LNmax

 in the 
RRG, and so did not fix the degree of fun of posts, S, or limit the comment rates to the 
usual neighbors, LNi, in Exp. 2.

We observed quite different phenomena in the WS networks. As shown in Fig.  8, 
the rates of B, LC, and LN remained relatively high and the dispersion of B was small 
when 0 ≤ p ≤ 0.1, where p is the re-wiring probability in the WS model. However, when 
p = 0.3 and 0.5, B decreased and fluctuated more. Figure 9 shows how the average rates 
of B, LC, and LN varied with p with which we can investigate the relationship between 
the re-wiring probability and the agent’s activity. Note that the WS model generates a 
regular graph when p = 0, whereas it generates a random network when p = 1  [22]. 
The cluster coefficients are small when p > 0.1, so the small-world property with a large 
cluster coefficient only appears when p ≤ 0.1. Figure 9 indicates that B was around 0.94 
when p ≤ 0.1, but as the re-wiring probability increased (p > 0.1), cooperation became 
weak, and eventually B reached around 0.3, which was smaller than the B of the com-
plete graphs (Fig. 3b). This result suggests that cooperation is dominant in WS networks 
with the small-world property and large-cluster coefficients. Note that B was small in the 
RG on the WS networks [23].

Figure 10 shows how B, LC , and LD varied with the conversion probability, u, i.e. the 
probability for converting a potential link to a link [16] in the CNN model, and Fig. 11 
shows the same in the BA networks in which we varied m, which is the number of links 
when a new node is added. These figures indicate that B ranged between 0.6 and 0.8, 
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and gradually increased with u and m, although LC and LN decreased. The increase in 
B was due to the existence of hub agents with extremely high degrees: Even if LN is low, 
such hub agents receive comments from non-reciprocal agents. Thus, a strategy that 
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makes LC and LN as small as possible is more optimal. However, such cooperation of 
hub agents was sustained by the neighbor agents in a non-cooperative strategy. We will 
discuss this phenomenon in the "Discussion" section.

Stability/instability of agents’ strategies

The most different phenomenon observed in Exps. 1 and 2 was the dispersion of B. For 
example, B in Figs. 3b and 8e, f were fluctuated although they were the average values 
of 100 experimental runs. However, B was stable in Fig.  8a–d. The similar dispersion 
in B could be seen in CNN and BA networks whereas we do not show the graphs. To 
see the changes in the agents’ strategies, we randomly selected one experimental run 
and plotted the changes in posting rate (Fig. 12). In the RRG on the WS network with 
p = 0.01 , B was almost always larger than 0.9 and seemed stabler than in the other net-
works (Fig.  12a). However, on the WS network with p = 0.5, B fluctuated with many 
sudden rises and falls (Fig.  12b). These sudden rises and falls appeared when p was 
around 0.2, and they gradually increased in height and numbers with p. Similar fluctua-
tions appeared in the RRG on the CNN and BA networks (Fig. 12c, d) and in the RRG on 
the complete graph in Exp. 1 (Fig. 4b).

These data indicate that although the average values of B were comparatively a bit 
higher (around 0.7 and sometimes around 0.8) on the CNN and BA networks, as shown 
in Figs. 10 and 11, they were unstable; B was stable observed only on the WS networks 
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with low p (≤0.1) values. Although the similar stability was observed in the RRG (1.0, 
0.1) in the complete graphs (Fig. 6), it had different characteristics; we will discuss this 
more in the "Discussion" section.

Analysis of reciprocal relationship

To express how many reciprocal neighbor agents and what types of reciprocal 
structure sustain cooperative behavior in agent networks, we should first intro-
duce some notation. For agent i ∈ A and for the set of i’s reciprocal neighbors Wi , 
we define the number of reciprocal neighbors as rai = |Wi|. There are two types of 
reciprocity: Wm

i = {j ∈ Wi | i ∈ Wj} is the set of mutual reciprocal agents of i, and 
Wo

i = {j ∈ Wi | i �∈ Wj} is the set of one-sided reciprocal agents of i. If we express 
rmi = |Wm

i | and roi = |Wo
i |, r

a
i = rmi + roi  obviously holds. Furthermore, we will express 

the average values of these parameters by eliminating the subscript i, e.g. ra =
∑

i∈A rai  . 
Table 3 lists the relationship between the number of reciprocal agents and the network 
type. Note that the networks in this table have their average degrees equal or close to 20.

The average number of reciprocal agents, ra, in the RRG was small on complete graphs, 
CNN networks, BA networks, and WS networks with high p values [marked with an 
asterisk (*) in Table 3]. Because LN was small, agents rarely received comments, and they 
eventually stopped posting. In this situation, a free rider was the optimal strategy. Nev-
ertheless, B remained slightly higher than that on complete graphs (see the "Discussion" 
section).

On the other hand, the values of ra were around 4 in RRG (0.8, 0.1) on the complete 
graphs and in the RRG on the WS networks with a low re-wiring probability, p. These 
values were not large but large enough to maintain cooperation, i.e. posting articles by 
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receiving comments. Of course, posting comments also incurred costs, but the agents 
behaved as free riders on the other non-reciprocal neighbor agents, and in so doing 
received sufficient rewards. We call such a strategy the half free rider, i.e. be coopera-
tive with reciprocal agents, but otherwise behave as a free rider. Half free riders with 
appropriate numbers of reciprocal agents strike a balance between rewards and costs, 
and thus are optimal in these environments. A larger ra facilitates comments on articles, 
and, thus, it seems to sustain cooperation. However, we also have to consider the cost of 
commenting; we will discuss this aspect in the next subsection.

The characteristic that distinguishes the WS networks from the complete graphs is 
the ratio of rm–ra: Table 3 indicates that cooperation was sustained by mostly mutual 
reciprocal relationships in RRG (0.8, 0.1) and RRG (1.0, 0.1) on the complete graphs, 
but in the RRG on the WS network with p = 0.01, it was sustained by both types of 
reciprocal relationship. Introduction of S′ and LNmax

 generated mutual reciprocity, and 
RRG (1.0, 0.1) on the BA and CNN networks showed cooperative behaviors and many 
mutual reciprocal links (the graphs of this experiment are not shown). We will examine 
the meaning of S′ and LNmax

 in an SNS in the "Discussion" section.

Effect of memory term on cooperation

In the third experiment (Exp. 3), we investigated how the memory term, TW, affected the 
agents’ behavior. Figure 13 plots the average posting rates, B, LC, and LN, when TW was 
varied from 1 to 20. Here, we could intuitively say that cooperation should be facilitated 
because agents with a longer memory do not forget past reciprocal behavior. However, 
Fig.  13 indicates that in RRG (1.0, 0.1) on complete graphs (Fig. 13a) and in the RRG 
on the WS networks (Fig.  13b), a longer memory negatively affected the evolution of 
cooperation.

We can think of two reasons for this phenomenon. First, when TW is larger, agents 
do not forget the reciprocal behavior of neighbors, so they continue to comment on 
posted articles for a longer time. However, the opposite phenomenon also occurs. When 
TW = 1, if agent i commented on an article of another agent j but j did not comment 
back on an article posted by i, i would eliminate j from Wi. However, when i has a longer 
memory, i would continue to consider j to be a reciprocal agent. Then, if j did not com-
ment on i’s articles in a few rounds, i would still assume that j is a reciprocal agent. Sec-
ond, agent i with a higher rai  must engage in costly activity, because LCi > LNi and i has 

Table 3  Number of reciprocal agents

Network type r
a

r
m

r
o

Complete graph (RRG)* 1.46 0.61 0.85

Complete graph RRG (0.8, 0.1) 4.65 3.66 0.99

Complete graph RRG (1, 0.1) 17.53 17.48 0.05

WS network (p = 0.01, RRG) 3.70 1.41 2.29

WS network (p = 0.5, RRG)* 0.34 0.07 0.27

CNN (u = 0.9, RRG)* 0.72 0.23 0.49

BA (m = 10, RRG)* 0.92 0.35 0.57

Facebook network (RRG) 4.30 1.55 2.75
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to comment on more articles. Agents that did not comment on the posts of others but 
received comments would have an advantage. This situation continues for longer when 
TW is large and, thus, is likely to lead to collapse of cooperation. Actually, Fig. 14a, b, 
which plots the average number of reciprocal agents versus TW, shows that the number 
of reciprocal agents decreased as TW increased because of the increase in cost, although 
the larger TW enabled agents to memorize more reciprocal actions by their neighbors.

If we compare Fig. 13a, b, we can see that the WS networks were somewhat robust 
to longer memory terms. The same phenomenon is apparent in Fig. 14a, b, which indi-
cates that in RRG (1.0, 0.1) on the complete graphs, the number of reciprocal agents, ra, 
quickly decreased as TW increased. On the other hand, in the RRG on the WS networks 
with p = 0.01, ra increased when TW = 2, 3, and 4 and cooperation was sustained by 
both mutual and one-sided reciprocal agents (Fig. 14b). However, the characteristics that 
were responsible for the robustness to memory in the WS networks are still unknown.

Games on a Facebook network

Finally, we conducted the same experiments using an instance of the Facebook net-
work [24] whose features are listed in Table 4. Figure 15 plots the experimental results, 
while Table 3 lists the number of reciprocal agents in the RRG. Figure 15 indicates that 
the article posting rate B was around 0.88, which is close to that of the WS networks 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

B L L

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

B L L

Po
st

in
g 

ra
te

Po
st

in
g 

ra
te

Memory length, T   

a Complete graph (RRG(1.0, 0.1)) b WS network ( p = 0.01, RRG)

NCNC

WMemory length, T   W

Fig. 13  Relationship between memory term and article posting rates

0

3

6

9

12

15

18

0 5 10 15 20

Reciprocal (r  )

Mutual (r   )

One-side (r  )

0

1

2

3

4

5

6

7

0 5 10 15 20

Reciprocal (r  )

Mutual (r   )

One-side (r  )

N
um

be
r o

f r
ec

ip
ro

ca
l a

ge
nt

s

Memory length, T   

a Complete graph (RRG(1.0, 0.1)) b WS network ( p = 0.01, RRG)

o

WMemory length, T   W

a

m

N
um

be
r o

f r
ec

ip
ro

ca
l a

ge
nt

s

o

a

m

Fig. 14  Relationship between memory term and number of reciprocal agents



Page 17 of 20Osaka et al. Comput Soc Netw  (2017) 4:2 

with p between 0.1 and 0.2, and that it was stable. In addition, the number of recipro-
cal agents, ra, in Table 3 was around four and cooperation evolved and was sustained by 
both one-sided and mutual reciprocal agents, although ro was slightly larger than rm, as 
in the WS networks. This instance of the Facebook network is more complicated than 
the networks used in Exp. 2, as is shown in Fig. 16, which visualizes it; it seems to con-
sist of clusters of communities that have their own sub-structures and a few hub agents. 
However, our results suggest that the RRG on the Facebook network had characteris-
tics similar to those of the RRG on the WS networks with p = 0.1–0.2, and cooperative 
behavior was sustained without introducing the parameters for manipulation, S′ and/or 
LNmax

.

Discussion

Here, let us discuss the experimental results from the viewpoint of an SNS. First, we 
can say that cooperation did not seem to emerge in the normal RRG on the complete 
graph, but if we manipulated RRG by introducing the parameters S′ and LNmax

, coopera-
tion (posting articles) emerged as shown in Figs. 6 and 7. If we look at these figures care-
fully, we see that B and LC had similar values, and this indicates that cooperation arose 
from LC, i.e. high comment rates by reciprocal agents, mostly mutual reciprocal friends.

For example, cooperation emerged when S′ ≥ 0.8 and LNmax
= 0.1, i.e. RRG (0.8, 

0.1). LNmax
= 0.1 means that users did not often comment on the articles if they were 

posted by non-reciprocal friends, while S′ = 0.8 means that users had attention to more 
than 80% of the posted articles by (reciprocal) users. We believe that this behavior is 

Table 4  Network characteristics of Facebook network

Network characteristics Value

Number of users (agents) 4039

Average number of friends (degree) 43.691

Clustering coefficient 0.606

Characteristic path length 3.693

Power-law exponent −1.180
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reasonable and frequently occurs in actual SNSs. Users behave as half free riders; they 
receive information (rewards) from non-reciprocal friends, but respond only to informa-
tion from reciprocal close friends to sustain SNS (because the articles posted by close 
friends are likely to be interested). This activity balances rewards and costs in the SNS. 
Note that the phenomenon described above also occurred in the RRGs on the CNN and 
BA networks, that is, B and LC became about 1.0 when S′ ≥ 0.8 and LNmax

= 0.1.
On the other hand, even in a normal RRG, cooperation, i.e. posting articles and com-

ments, became the optimal strategy on the WS networks with p ≤ 0.1 and the SNS 
seemed thriving. In this condition, WS networks have the properties of small-world 
and high cluster coefficient. Our experimental results also suggest that the instance of 
Facebook network that was generated in a bottom-up manner via interaction is likely to 
maintain cooperation. In addition, its average number of reciprocal agents was higher 
than those in other networks in the normal RRG. Although this network consists of a 
few communities, it has also the same properties (Table 4). Therefore, it is possible that 
these properties foster cooperation, but we need more study to clarify it.

Another implication from our experiments is that the number of reciprocal agents is 
important because the balance between rewards and costs because of reciprocal rela-
tionships strongly affects the agents’ strategies in a normal RRG. Now let us focus on the 
mutual and one-sided reciprocity in these networks. When TW = 1, agents remembered 
the reciprocal behavior only in the next round, and the number of mutual reciprocal 
agents, rm, was likely to be small, so ro > rm in the normal RRG (Fig.  14b). However, 
when TW ≥ 2, rm and ro had the similar values and they always coexist. This phenom-
enon was also true in the Facebook network. We believe that such a reciprocal structure 
is common in human society and, thus, observed in the SNSs in the real world. On the 
other hand, rm ≫ ro in RRG (1.0, 0.1) on the complete graph; thus, manipulation by S′ 
and LNmax

 fostered cooperation by enhancing the effect of mutual reciprocity. This situ-
ation corresponds to a dense cluster that becomes active if all users are communicated 
closely each other.

On the other hand, Figs. 10 and 11 indicate that B in the normal RRG on the CNN 
and BA networks was larger than that on the complete graphs. This result reflects the 

Fig. 16  Facebook network structure
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existence of hub agents, i.e. agents that have extremely high degrees. Even on these net-
works, just reading articles (acting as a free rider) is optimal. However, a few agents com-
ment on articles because of the mutation that corresponds to the vagaries of users. Thus, 
hub agents receive sufficient comments, have some reciprocal agents, and, thereby, con-
tinue posting articles. Because the hub agents earn rewards, their neighbor agents are 
likely to copy the hub’s gene for the next generation, and consequently B increases to 
some degree. However, this behavior is, of course, not optimal for non-hub agents; they 
cannot earn sufficient rewards. Hence, B, LC , and LN stopped increasing in the experi-
ments. By contract, the WS networks have no hub agents. Thus, the essential cause of 
prosperity of the RRG resides in the network structure of the WS networks; this finding 
is not so obvious and its explanation remains an open problem.

Conclusion
Social networking services are used by users around the world for purposes such as 
chatting with close friends, exchanging opinions, advertising, marketing, and poli-
tics. Although SNSs are usually run by companies and (non-)profit organizations, they 
depend on their users’ voluntary behaviors such as posting articles and comments. Since 
such voluntary behavior must incur some cost and effort on the part of the user, it is 
not obvious what makes them continue to participate in an SNS. Because SNSs have 
the features of the public goods game, a number of evolutionary game theoretic studies 
have attempted to understand the mechanism behind cooperation, which corresponds 
to posting articles in an SNS, by using extending the public goods game in various ways. 
However, conventional game theoretic models of SNSs ignore reciprocity, even though 
it plays an important role in evolving cooperation in human society. Thus, in this study, 
we devised a model, called the reciprocity rewards game (RRG), of an SNS that is based 
on the public goods game by incorporating direct reciprocity between users into the 
conventional model. After that, we ran the RRG on a variety of networks to see how 
reciprocity between users and the network structure affect cooperation. Our experi-
mental results indicate that reciprocity in complete networks slightly raises the rate of 
cooperation, but the rise is not significant. However, if we manipulate the RRG so that 
users hardly miss any articles posted by their neighbors but at the same time hardly 
comment on articles posted by non-reciprocal agents, cooperation emerges. Second, in 
RRGs on WS networks with a low re-wiring probability p, cooperation emerges without 
any manipulation like in the RRG on the complete graph. We also analyzed the evolved 
reciprocal structures and the effect of the memory term on cooperation. Finally, using an 
instance network of Facebook, we conducted the same experiment, and its results indi-
cate characteristics similar to those of WS networks with p between 0.1 and 0.2.

We found that a certain network structure facilitates cooperation in an RRG and 
makes cooperation robust to the memory term, but its essential cause is still unknown: 
this will be our future work. We also plan to add indirect reciprocity to our model and 
analyze the relationship between costs and rewards in continuous use of an SNS.
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