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Background
Both the shortest path problem and the min-cut problem are of great importance to 
various kinds of network routing applications (e.g., in transportation networks, opti-
cal networks, etc.). A traffic request can be routed in the most efficient way (e.g., with 
minimum delay) by computing a shortest path. On the other hand, the min-cut problem 
arises in the context of network reliability, network throughput, etc. Fortunately, both of 
these problems are solvable in polynomial time for networks with independent additive 
link weights.

However, often correlations or (inter-)dependencies exist among link weights. For 
example, in overlay [1] or multilayer networks [2], the abstract links in the logical layer 
are mapped to different links in the physical layer. In this context, two or more abstract 
links, which use the same physical links, may have correlated latencies [3], bandwidth 
usage [4], or geographical failures [5, 6]. Or if the path must pass through some specific 
nodes (e.g., regenerators to boost the signal quality [7]), such important nodes and their 
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links may also introduce dependencies. Correlations also appear in social networks. For 
instance, a message may be forwarded more rapidly if it came from a close friend rather 
than from a distant acquaintance. Another example relates to interdependent networks 
[8], where for instance the electricity network and Internet are coupled and inter-con-
nected, and one node or link failure in one network may cause failures of nodes or links 
in the other network. Similarly, in Shared-Risk Link Group (SRLG) networks [9], links 
in, for example, the same duct will fail simultaneously, if their duct fails. The dependen-
cies in interdependent and SRLG networks can also be seen as correlations, so we use 
the term correlation throughout this paper and study relevant problems in these so-
called correlated networks. Our key contributions are as follows:

• • We propose two correlated link weight models, namely a deterministic correlated 
model and a stochastic correlated model.

• • We study the shortest path problem and the min-cut problem under the determinis-
tic correlated model, and we prove that both of them are NP-hard and even cannot 
be approximated in polynomial time.

• • On the other hand, we also show that both the shortest path problem and the min-
cut problem are solvable in polynomial time under a (constrained) nodal determinis-
tic correlated model.

• • To solve both problems under the proposed correlated models, we propose exact 
algorithms under the deterministic correlated model, and develop convex optimiza-
tion formulations for the stochastic correlated model.

The remainder of this paper is organized as follows. “Correlated link weight models” 
section introduces our two correlated link weight models. In “Shortest paths in cor-
related networks” and “Minimum cuts in correlated networks” sections, we study the 
shortest path problem and min-cut problem, respectively, for the proposed models and 
devise algorithms to solve them exactly. An overview of the related work is presented in 
“Related work” section and we conclude in “Conclusions” section.

Correlated link weight models
A network having node and link weights can be transformed into a directed network 
with only link weights, as done in [10]. Therefore, we assume that nodes are unweighted 
and only consider correlated link weights. Throughout this paper, we use the term “cor-
related model” to represent “correlated link weight model.”

Deterministic correlated model

Without loss of generality, we use w(l) to represent the weight of link l. For simplicity, 
in this paper we call w(l) the cost of l, although it could also reflect other metrics such 
as delay and energy. In the deterministic correlated model, for any two links li and lj, 
their joint total cost is represented by w(li)⊕ w(lj), where the operator ⊕ indicates the 
joint total cost of the links, which may differ from the + operator when they are cor-
related. When correlated, the use of one link may influence the cost of another in this 
model. For example, in Fig.  1 where the cost is shown above each link, it is assumed 
that only links (s, a) and (b, t) are correlated with joint cost of 11, and all the other links 
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have uncorrelated costs. We can see that in path s–b–t, the cost of link (b, t) is 10, since 
another link (s, b) in this path is not correlated with it. Therefore, this path’s cost is equal 
to 18. However, in path s–a–b–t, the cost of link (b, t) should be calculated together with 
link (s, a), leading to a joint cost 11, since they are correlated and both appear in this 
path. Therefore, this path’s total cost is equal to 11+ 4 = 15, which is smaller than the 
sum of the individual link costs (6+ 4 + 10 = 20).

Equivalently, we could formulate w(li)⊕ w(lj) = ρi,j · (w(li)+ w(lj)), where ρi,j stands 
for the correlation coefficient between links li and lj, and its value varies in the range of 
(0,∞), since we do not consider negative costs. When ρi,j is equal to 1, li and lj are uncor-
related, when ρi,j is greater than 1, li and lj have an increasing correlation, and otherwise 
we say that li and lj have a decreasing correlation.

Analogously, for given m > 1 links l1, l2, . . . , lm in the deterministic correlated model, 
their joint total cost can be expressed as follows:

Similarly, if the link l’s weight is multiplicative (e.g., failure probability), then by using 
−log(w(l)) to represent its weight value, Eq. (1) also applies. The decreasing correlation 
case can also reflect SRLG networks. For instance, in SRLG networks, each link is asso-
ciated with several SRLG events with their respective failure probabilities. Hence, the 
total failure probability (represented by PSRLG) of two correlated links that have at least 
one SRLG in common will be equal to the product of the failure probabilities of all the 
distinct SRLG events that belong to these two links. Let us denote by Pl1 = Ps1 · Ps and 
Pl2 = Ps2 · Ps the failure probabilities of these two links, respectively, where Ps denotes the 
common SRLGs’ failure probability between l1 and l2, and Ps1 (Ps2) is the non-overlapping 
SRLGs’ failure probability of l1 (l2). Then Pl1 · Pl2 < PSRLG = Ps1 · Ps2 · Ps < min(Pl1 ,Pl2) . 
By taking the −log, we have

Or equivalently,

where ρ < 1 denotes their correlation coefficient.
In probability theory, given two random variables X and Y with expected values µX 

and µY , and standard deviations σX and σY , their linear correlation coefficient ρ(X ,Y ) is 
defined as

(1)w(l1)⊕ w(l2) · · · ⊕ w(lm) = ρ1,2,...,m · (w(l1)+ w(l2)+ · · · + w(lm)).

max
(

− log(P1),− log(P2)
)

< − log(PSRLG) <
(

− log(Pl1)+ (− log(Pl2)
)

.

(2)− log(PSRLG) = ρ ·
(

− log(Pl1)+ (− log(Pl2)
)

,
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Fig. 1  An example of the deterministic correlated model
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where Cov[X, Y] represents the covariance of X and Y.
However, the linear correlation coefficient in probability theory is different from and 

cannot be transformed to the one defined in the deterministic correlated model, because 
the variances of X and Y in Eq. (3) must be nonzero and finite. However, in the determin-
istic correlated model, for any link l, when none of its correlated links simultaneously 
appear on a path, the cost of l is fixed/deterministic with a variance of 0.

Stochastic correlated model

In many real-life networks, the link weights are uncertain because of inaccurate Net-
work State Information (NSI) [11, 12]. For instance, Papagiannaki et al. [13] showed that 
the queuing delay distribution can be approximated by a Weibull distribution. Since the 
Cumulative Density Function (CDF) of a Weibull distribution is log-concave and the 
CDFs of many common distributions (e.g., Exponential distribution, Uniform distribu-
tion, etc.) are log-concave [14, 15], we make, as in [11, 16], a mild (general) assumption 
that the link weights follow a log-concave distribution.

We first define the Correlated Group (CG):

Definition 1  Given is a network G(N ,L) where N  represents a set of N nodes and 
L denotes a set of L links. A Correlated Group (CG) is a subset of links LCG ⊆ L, and 
∀l ∈ LCG, ∃l′ ∈ LCG\{l}, such that l and l′ are correlated (ρl,l′ �= 1).

Accordingly, the Maximum Correlated Group (MCG) is defined as a CG with the 
maximum number of correlated links. If a link l is uncorrelated/independent with all 
the other links, then we say {l} is a single-element MCG. Suppose there are � Maximum 
Correlated Groups (MCGs), and there are mi > 0 links (denoted as li1, l

i
2, . . . , l

i
mi

) in the i-
th MCG, where 1 ≤ i ≤ �. In the i-th MCG, a multivariate mi-dimensional log-concave 
Cumulative Density Function CDFi(x1, x2, . . . , xmi) is given to allocate cost x1, x2, . . . , xmi 
for links li1, l

i
2, . . . , l

i
mi

, respectively.
Therefore, if the possible cost of link l ranges from 0 to wmax

l  (0 < wmax
l ), then the prob-

ability of allocating a cost value out of this range is 0. Hence, we have CDFi(wmax
l ) = 1 

for a single-element MCG i, and CDFj(wmax

l
j
1

,wmax

l
j
2

, . . . ,wmax

l
j
mj

) = 1 for a multi-element 
MCG j.

For example, Fig.  2 shows a 2-dimensional multivariate normal distribution, where 

both variables are in the range [0,  4] with mean 2 and covariance matrix 
[

0.9 0.4
0.4 0.3

]

. 

Similarly to Eq. (3), the correlation matrix (composed of linear correlation coefficients) 
can be derived from the covariance matrix and the variables’ standard variances in the 
multivariate normal distribution. However, we do not explicitly use the linear correla-
tion coefficient in the stochastic correlated model, since we will later prove that via the 
log-concave property of this model, the shortest path problem can be solved by convex 
optimization.

(3)ρ(X ,Y ) =
Cov[X ,Y ]

σXσY
=

E[(X − µX )(Y − µY )]

σXσY
,
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Shortest paths in correlated networks
Shortest path under the deterministic correlated model

Definition 2  Given is a directed network G(N ,L), and each link l ∈ L has a cost w(l) 
following the deterministic correlated model. The Shortest Path under the Deterministic 
Correlated Model (SPDCM) problem is to find a path from a source s to a destination t 
with minimum cost.

In conventional deterministic networks, a subpath of a shortest path is also the shortest. 
We refer to this property as the dominance of the subpath. However, this is not the case 
in networks with deterministic correlated link weights, which means that a dominated 
path may also lead to an optimal solution. For instance, in the example of Fig. 1, we can 
see that although subpath s–b has a smaller cost than subpath s–a–b, path s–a–b–t 
(instead of path s–b–t) has minimum cost. In the following, we will study the complexity 
of the SPDCM problem.

Theorem 1  The SPDCM problem is NP-hard.

Proof  When the correlation coefficient is equal to 1, the SPDCM problem can be 
solved in polynomial time by a conventional shortest path algorithm. We therefore prove 
in the following that the SPDCM problem is NP-hard for “increasing correlation” >1 as 
well as “decreasing correlation” <1.

Increasing correlation
When the correlation coefficient is greater than 1, we make a reduction to the forbid-

den pairs shortest path problem, which is known to be NP-hard [17]. In a given network 
and for a given set of node pairs ζ, the forbidden pairs shortest path problem looks for 
the shortest path between s and t such that at most one node from each pair in the set 
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ζ lies on this path. Let us consider a network with deterministic correlated link weights. 
When two nodes i and j form a forbidden pair, their costs are correlated such that 
w(i, .)⊕ w(j, .) = ∞, where (i, .) and (j, .) represent any link that contains an end node of 
i and j, respectively. In all the other cases, the link costs are uncorrelated and finite. Since 
w(i, .)⊕ w(j, .) = ∞, if the two forbidden nodes appear in the same path, then the cost of 
this path will be ∞, so it will never lead to the shortest path. Now, the SPDCM problem 
is equivalent to the forbidden pairs shortest path problem.

Decreasing correlation
When the correlation coefficient is less than 1, we make a reduction to the Minimum 

Color Single-Path (MCSiP) problem, which is NP-hard [18]. Given a network G(N ,L), 
and given the set of colors C = {c1, c2, . . . , cg } where g is the total number of colors, and 
given the color set {cl} associated to each link l ∈ L, the Minimum Color Single-Path 
(MCSiP) problem is to find one path from source node s to destination node t such that 
it uses the least amount of colors.

Assume that each color ci is associated with cost 1, where 1 ≤ i ≤ g. We further 
assume that w(l1)⊕ w(l2)⊕ · · · ⊕ w(lm) = q, where q is the total number of distinct 
colors belonging to these m links. Therefore, the SPDCM problem is equivalent to the 
MCSiP problem.�  �

Theorem 2  The SPDCM problem cannot be approximated to arbitrary degree in poly-
nomial time, unless P = NP.

Proof  We provide a proof by contradiction.
Increasing correlation
Assume that a polynomial-time approximation algorithm exists that can find a path 

with a cost at most α · opt, where α > 1 is an approximation ratio. For a pair of forbidden 
nodes i and j, we further assume w(i, .)⊕ w(j, .) > α ∗ opt. Therefore, if an approxima-
tion algorithm can find a path ψ with cost at most α ∗ opt from s to t, then i and j cannot 
be simultaneously traversed by this path ψ, which means that the forbidden pairs short-
est path problem can be solved in polynomial time, which results in a contradiction.

Decreasing correlation
We first introduce the Disjoint Connecting Paths problem [19]. Given a directed net-

work G(N ,L), a collection of disjoint node pairs (s1, t1), (s2, t2), . . . , (sz , tz), does G con-
tain z mutually link-disjoint paths, one connecting si and ti for each i, 1 ≤ i ≤ z. This 
problem is NP-hard when z ≥ 2. Assume that a polynomial-time approximation algo-
rithm exists that can find a path with a cost at most α · opt, where α > 1 is an approxi-
mation ratio. Assuming that all the links in the network have weight 1, and link (u, v) and 
any m > 0 links in L\{(u, v)} are correlated, with a total cost of 1

β
·m. Moreover, any two 

or more links in L\{(u, v)} are assumed to be uncorrelated/independent.
According to this assumption, the minimum value of a shortest path is 1 if link (u, v) 

is not traversed, i.e., it traverses only one link from s to t. However, the optimal solution 
which traverses link (u, v) has a total cost of opt = 1

β
· c, where c is the sum of minimum 

hops from s to u and from v to t. For any given α, let βc > α, then 1 > α · 1
β
· c, which 

means 1 > α · opt. To find a path with cost at most α · opt, the polynomial-time algo-
rithm must find a path which traverses link (u,  v). In that case, the algorithm can, in 
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polynomial time, find two link-disjoint paths from s to u, and from v to t, which results 
in a contradiction.�  �

Next, we study the performance of a conventional shortest path algorithm running on 
a graph where each link has an “uncorrelated” weight value.

Lemma 1  When all the correlation coefficients are greater than 1, a conventional short-
est path ψ has a total cost at most ρmax

ρopt
· opt, where ρmax and ρopt are the largest correla-

tion coefficient and the optimal solution’s correlation coefficient, respectively, and opt is 
the cost of the optimal solution.

Proof  Let U(ψ) =
∑

l∈ψ w(l) and let C(ψ) = ρu ·U(ψ) = ρu ·
∑

l∈ψ w(l) reflect the 
total joint cost of path ψ considering their correlation, where ρu indicates the correla-
tion coefficient of path ψ. On one hand, a conventional shortest path ψ should satisfy 
U(ψ) ≤

opt
ρopt

. On the other hand, C(ψ) ≤ ρmax ·U(ψ) considering that ρmax is the largest 
correlation coefficient. Hence, C(ψ) ≤ ρmax ·U(ψ) ≤

ρmax
ρopt

· opt. � �

Lemma 2  When all the correlation coefficients are less than 1, a conventional short-
est path ψ has a cost at most 1

ρmin
· opt, where ρmin is the smallest correlation coefficient 

among all the correlation coefficients.

Proof  Let V (ψ) =
∑

l∈ψ w(l) and let C(ψ) = ρu ·
∑

l∈ψ w(l) reflect the total joint cost 
of path ψ considering their correlation. Since all the correlations are decreasing (ρ < 1 ), 
we have C(ψ) ≤ V (ψ). On the other hand, ρmin · V (ψ) ≤ opt considering that ρmin is 
the smallest correlation coefficient. Hence, C(ψ) ≤ V (ψ) ≤ 1

ρmin
· opt.�  �

Via Lemmas 1 and 2, we obtain Theorem 3.

Theorem 3  In a network with links following the deterministic correlated model, a con-
ventional shortest path can have cost at most max( ρmax

ρopt
, 1
ρmin

) · opt.

Theorem 3 reveals that a conventional shortest path may have arbitrarily bad perfor-
mance, since either ρmax

ρopt
 can be infinitely large or ρmin can be infinitely small.

An exact algorithm to solve the SPDCM problem

To solve the SPDCM problem exactly, we modify Dijkstra’s algorithm by letting each 
node store as many subpaths as possible, which is similar to the exact algorithm for solv-
ing the multi-constrained routing problem [20]. Since each node can store as many sub-
paths as possible, its running time is exponential. We start with some notations used in 
the algorithm:

sus[u][h]: the parent node of the h-th subpath from s to u.
dist[u][h]: the cost value of the h-th subpath from s to u.
counter[u]: the number of stored subpaths at node u.
u[m]: the m-th subpath from s to u.
adj(u): the set of nodes adjacent to node u.
The pseudo-code of the exact algorithm is given in Algorithm 1.
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The time complexity of Algorithm 1 can be computed as follows. Let kmax denote the 
maximum number of subpaths for each node to store, then in Step 2 Q contains at most 
kmaxN  subpaths. According to [21], kmax ≤ ⌊e(N − 2)!⌋, where e ≈ 2.718. When using a 
Fibonacci heap to structure the heap, selecting the minimum cost path has a time com-
plexity of O(log(kmaxN )) [22] in Step 3. Steps 7–11 take at most O(kmax) time for each 
link to be iterated and hence result in O(kmaxL) time; because for a fixed link, the steps 
within the inner loop (Steps 8–11) all cost O(1) time. Step 12 invokes O(kmax) time for 
node t to select the minimum cost path. Hence, the overall time complexity of Algo-
rithm 1 is O(kmaxN log(kmaxN )+ kmaxL).

Shortest path under the nodal deterministic correlated model

In some real-world networks (e.g., SRLG networks), the links that are spatially (geo-
graphically) close to each other are usually correlated, whereas the links that are located 
far from each other are usually uncorrelated. We make an additional assumption, 
which is that only the links sharing the same node can be correlated. We call this nodal 
correlation.

Although the SPDCM problem is NP-hard, we will show that, by transforming the 
original graph to an auxiliary graph, the Shortest Path under the Nodal Deterministic 
Correlated Model (SPNDCM) problem is solvable in polynomial time. For any node a, 
there are generally two cases of nodal correlation, namely (1) links in the form of (a, b) 
and (a, c), and (2) links in the form of (a, b) and (b, c) are correlated. When (a, b) and 
(a,  c) are correlated, a simple path cannot traverse both of them, since looping is not 
allowed. In this sense, any simple path only traverses at most one of them, which means 
that the links’ correlation will not affect the cost calculation of any simple path. There-
fore, we only need to consider the case when (a,  b) and (b,  c) are correlated. We first 
define that if (a, b) and (b, c) are correlated, then a and b are called correlated nodes, 
which is represented by Cn, else they are uncorrelated nodes, which is denoted by Un. 
Subsequently, based on the original graph G(N ,L), the auxiliary graph GA(NA,LA) can 
be constructed as follows:

1.	 For any two links (u, v) ∈ L and (v, y) ∈ L that are correlated in G, create new nodes 
uv, vuy, vy , and yy in GA if they do not already exist. For node v ∈ N  in G, in case vuy 
and vv need to be created, create vuy only and regard vuy to be the same as vv.

2.	 For any node a ∈ N  and if it is an uncorrelated node (in Un), create node aa in GA.
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3.	 For any two correlated links (u, v) and (v, y) in G, create links (uv , vuy), (vuy, vy) , and 
(vy, yy) in GA. Assign to the links (uv , vuy) and (vy, yy) the weights of w(u, v) and w(v, y), 
respectively, and the link (vuy, vy) with weight (ρ(u,v)(v,y) − 1) · (w(u, v)+ w(v, y)), 
where ρ(u,v)(v,y) is the correlation coefficient of links (u, v) and (v, y).

4.	 For each link (a, b) ∈ L such that both node a and node b are not correlated nodes, 
create the link (aa, bb) also in GA with the link weight of w(a, b).

5.	 For each link (a, b) ∈ L such that a ∈ Un and b ∈ Cn, draw links (aa, br) in GA, where 
r ∈ N  and br ∈ GA.

6.	 For each link (a, b) ∈ L such that a ∈ Cn and b ∈ Un, draw links (arz , bb) in GA, where 
r, z ∈ N  and arz ∈ NA.

The idea of the auxiliary graph is that if two links (u, v) and (v, y) are correlated, we cre-
ate four corresponding nodes uv , vuy, vy, and yy and then draw three links (uv , vuy) ,(vuy, vy) ,  
and (vy, yy). We use (uv , vuy) and (vy, yy) to indicate their uncorrelated values, respectively, 
if only one of these two links is traversed, and (vuy, vy) to represent the correlated loss 
(decreasing correlation) or gain (increasing correlation), respectively, if they are tra-
versed simultaneously. For instance, in Fig. 3 where the link weight is labeled above each 
link, assuming that links (a, b), (b, c), (c, t), and (b, d) are nodal correlated, then Fig. 4 is 
its corresponding auxiliary graph with the assigned weight shown on each link. In par-
ticular, since (a,  b), (b,  c) and (a,  b), (b,  d) may have different correlation coefficients, 
in Fig.  4 we use (bac, bc) and (bad , bd) to represent their correlation value. Meanwhile, 
when there is a link from an uncorrelated node to a correlated node in the original graph, 
e.g., (e, b) in Fig. 3, we draw links (ee, bc) and (ee, bd) (Step 5). When there is a link from 
a correlated node to an uncorrelated node in the original graph, e.g., (c, d) in Fig. 3, we 
draw link (cbt , dd) (Step 6). Considering that there are at most N (N − 1) nodal links in 
a graph, the original graph can be transferred to the auxiliary graph in polynomial time.

a cbw1

w4w6

d

t

e

w3

w5

w7

w8
w9

w2

Fig. 3  An example network with dotted links following the nodal deterministic correlated model
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Fig. 4  Auxiliary graph of Fig. 3 for the SPDCM problem under the nodal deterministic correlated model
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Consequently, running a shortest path algorithm on the auxiliary graph can return 
a minimum cost path under the nodal deterministic correlated model. Our auxiliary 
graph can deal with both decreasing and increasing correlation cases. Considering that 
(ρ(u,v)(v,y) − 1) · (w(u, v)+ w(v, y)) < 0 in the auxiliary graph under the decreasing cor-
relation case, and Dijkstra’s algorithm cannot handle negative link weights, we could for 
instance run Bellman–Ford algorithm on the auxiliary graph. No negative loops will exist 
in the auxiliary graph, since if a path traverses the negative weight link (say (vuy, vy)), it will 
also traverse the links in the form of (uv , vuy) and (vy, yy), whose total cost is always positive.

Shortest path under the stochastic correlated model

Definition 3  The Shortest Path under the Stochastic Correlated Model (SPSCM) 
problem: In a given directed graph G(N ,L) where the link costs follow the stochastic 
correlated model, it is assumed that there are in total � Maximum Correlated Groups 
(MCGs). The SPSCM problem is to find a path from source s to destination t such that 
its total cost is minimized and the probability to realize this value is no less than Ps.

We present a convex optimization formulation to solve the SPSCM problem. Convex 
optimization problems can usually be solved quickly and accurately with convex opti-
mization solvers [23]. Let us first introduce how to develop a Linear Programming (LP) 
formulation to solve the shortest path problem in deterministic networks:

Objective

Constraints

where yuv indicates whether link (u, v) is part of the shortest path. When yuv = 1, it indi-
cates that link (u, v) appears on the path, else yuv = 0. The objective is to minimize the 
total cost value of the path. Constraint Eq. (6) accounts for that except for s and t, the 
number of incoming and outgoing links that are part of the path must be the same. For 
the source node s, the number of its outgoing links should be 1, and for the destination 
node t the number of its incoming links should be 1. The dual of the above Linear Pro-
gram (LP) can be expressed as follows:

Objective

Constraints

(4)
min

∑

(u,v)∈L

w(u, v) · yuv

(5)yuv ≥ 0

(6)

�

v∈N

yuv −
�

v∈N

yvu =







1
−1
0

u = s
u = t
otherwise

,

(7)max dt

(8)ds = 0

(9)dv − du ≤ w(u, v) ∀(u, v) ∈ L,
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where du is a value between 0 and 1. Similarly, the SPSCM problem can be solved by the 
following convex formulation:

Objective

Constraints

where the variables x(u, v), x(li1), x(l
i
2), . . . , x(l

i
mi
) indicate the allocated possible cost of 

links (u,  v), li1, l
i
2, . . . , l

i
mi

, respectively. Constraint  (13) ensures that the total probabil-
ity of realizing the total cost is no less than Ps. In Eq. (13), for each MCG we apply the 
multi-dimensional CDF functions to calculate the probability of realizing a cost. Since 
the multi-dimensional CDF function is log-concave, − log

(

CDFi(x(l
i
1), x(l

i
2), . . . , x(l

i
mi
))
)

 
is convex, and by summing all the MCGs’ CDFs together, it remains convex, which indi-
cates that Eq. (13) is convex. The other constraints are also convex, which proves that the 
above formulation is a convex optimization formulation.

Widest path under the deterministic correlated model

The Widest Path in Deterministic Networks (WPDN) problem is to find a path from 
s to t such that the minimum link weight among all its traversed links is maximized. 
This problem appears with bottleneck metrics, such as bandwidth. The WPDN prob-
lem is solvable in polynomial time: First, we order all the link weights in the network in 
increasing order. After that, each round we prune lowest weight links in the graph and 
run a Depth First Search (DFS) or a Breadth First Search (BFS) algorithm to find a path 
from s to t. The algorithm will end if there is no path anymore from s to t and return the 
pruned weight value of the previous round.

In the Widest Path under the Deterministic Correlated Model (WPDCM) problem, if 
m > 1 correlated links in a path have a joint weight value W, then for each link the maxi-
mum average/amortized weight is Wm . For instance, if a path traverses three correlated 
links with a joint weight value of 15 and passes another uncorrelated link with a weight 
of 6, then this path has a “width” value of 5. The reason is that the maximum (average/
amortized) weight for each of these three correlated links is 15/3 = 5, and this value is 
less than for another uncorrelated link (6).

However, the WPDCM problem is still NP-hard and cannot be approximated to arbi-
trary degree. The proof follows analogously from Theorems 1 and 2.

(10)max dt

(11)ds = 0

(12)dv − du ≤ x(u, v) ∀(u, v) ∈ L

(13)
∑

i∈�

− log
(

CDFi

(

x(li1), x(l
i
2), . . . , x(l

i
mi
)

))

≤ − log(Ps),
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Minimum cuts in correlated networks
Min‑cut under the deterministic correlated model

Definition 4  The Min-Cut under the Deterministic Correlated Model (MCDCM) 
problem: Given is a network G(N ,L), and each link l ∈ L is associated with a cost w(l). It 
is assumed that two or more link costs are correlated under the deterministic correlated 
model. Given a source s and a target t, find a cut C that partitions G into two disjoint 
subsets X (X ∈ N ) and N − X such that s and t are in different subsets and the cost of 
the cut C is minimized.

The min-cut value is not equal to the maximum flow value under the deterministic cor-
related model. For example, in Fig. 5 assume that links (s, a) and (s, t) are correlated with 
a joint cost of 8. In this example, the maximum flow from s to t is s − a− t with value 10, 
while the min-cut is composed of links (s, a) and (s, t) and has a cost of 8.

Theorem 4  The MCDCM problem is NP-hard.

Proof  In Fig. 6, we assume that the links in the form of (xi, xi+1) and (zi+1, zi) have infi-
nite uncorrelated cost and the link costs of (xi, yi) and (yi, zi) follow the deterministic cor-
related model, where 1 ≤ i ≤ n. We want to find a min-cut to separate x1 and z1. Based 
on Fig. 6, we first derive Fig. 7 with the same nodes except that we add one more node s. 
We set s = y0, and t = yn. The link weight in Fig. 7 is set as follows: (yi−1, xi) and (yi−1, zi) 
have 0 uncorrelated cost, while (xi, yi) and (zi, yi) have the same (correlated) costs with 
(xi, yi) and (yi, zi) in Fig. 6, respectively, where 1 ≤ i ≤ n. In Fig. 7, we want to solve the 
SPDCM problem from the source s to the destination t. 

Since we want to find a min-cut that separates x1 and z1, any cut in the form of (xi, yi) 
and (yi, zi), where 1 ≤ i ≤ n, is not the optimal solution. The reason is that this kind of 
cut only separates yi and other nodes, but not x1 and z1. Moreover, considering that the 
links in the form of (xj , xj+1) or (yj , yj+1) have infinite costs, they cannot be in the optimal 
solution. Based on above analysis, any feasible cut C should contain one link of either 
(xi, yi) or (yi, zi), for all 1 ≤ i ≤ n. We prove in the following that the MCDCM problem 
in Fig. 6 can be reduced to the SPDCM problem in Fig. 7 in polynomial time.

The SPDCM problem to the MCDCM problem: Considering an opti-
mal solution of the SPDCM problem, denote by RSPDCM the set of links in the 

(s,a) ( , ) 8c c s t
Fig. 5  An example to illustrate that the maximum flow is not equal to the min-cut in correlated networks
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optimal solution of the SPDCM problem. Because RSPDCM has minimum cost, let 
CMCDCM = RSPDCM\{(yi, xi+1), (yi, zi+1)} and then ∀(zi, yi) ∈ CMCDCM, change it to 
(yi, zi) in CMCDCM. Since the links (yi, xi+1) and (yi, zi+1) have 0 cost, CMCDCM also has 
minimum cost (the same with RSPDCM). Therefore, solving the SPDCM problem yields a 
solution to the MCDCM problem.

The MCDCM problem to the SPDCM problem: An optimal solution of the MCDCM 
problem should be composed of either (xi, yi) or (yi, zi), where 1 ≤ i ≤ n. Denote 
by CMCDCM the set of links in the optimal solution of the MCDCM problem. Let 
RSPDCM = CMCDCM and then ∀(yi, zi) ∈ RSPDCM, change it to (zi, yi) in RSPDCM. Because 
CMCDCM has minimum cost value and the links in the form of (yi−1, xi) or (yi−1, zi) have 
0 cost, RSPDCM together with (yi−1, xi), if (xi, yi) ∈ RSPDCM or (yi−1, zi) if (zi, yi) ∈ RSPDCM, 
can form a path from s to t with minimum cost. Hence, a solution to the MCDCM prob-
lem can also solve the SPDCM problem.�  �

Fig. 6  NP-hardness of the MCDCM problem

y1 y2s

x1

z1

x2

z2

y3

x3

z3

yn-1

xn

zn

t

Fig. 7  Reduction of the MCDCM problem to the SPDCM problem
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Theorem 5  The MCDCM problem cannot be approximated to arbitrary degree in poly-
nomial time, unless P = NP.

Proof  The proof follows from the fact that the SPDCM problem cannot be approxi-
mated to arbitrary degree in polynomial time according to Theorem 2.�  �

Theorem 6  By assigning each link l with the cost w(l), running a conventional min-cut 
algorithm will return a cut with total cost at most max( ρmax

ρopt
, 1
ρmin

) · opt.

Proof  The proof follows analogously from Theorem 3.�  �

Since the MCDCM problem is NP-hard and even does not admit a polynomial-time 
approximation algorithm, we suggest a brute-force approach to solve it. The idea is that 
we start with two sets A and B, with s in A and t in B. Then we have N − 2 nodes left, and 
there are 

(N−2
0

)

+
(N−2

1

)

+ · · · +
(N−2
N−2

)

= O(2N ) combinations to assign these N − 2 
nodes to sets A and B. Each combination assignment corresponds to a cut to separate A 
and B, and the one with minimum cost is returned as the optimal solution.

Min‑cut under the SRLG‑like correlated model

In “Correlated link weight models” section, we introduced and formulated the joint fail-
ure calculation in SRLG networks, which follows the decreasing correlated model. We 
define the SRLG-like correlated model as follows:

Definition 5  The SRLG-like correlated model: Suppose l1, l2, . . . , lm (1 < m ≤ L) form 
a Correlated Group (CG), then w(l1)⊕ w(l2) · · · ⊕ w(lj) is greater than the sum of at 
most j − 1 link costs, but smaller than w(l1)+ w(l2) · · · + c(lj), where 1 < j ≤ m.

The Shortest Path under the SRLG-like model (SP-SRLG) problem is NP-hard, since it 
is a general case of the MCSiP problem introduced in “Shortest paths in correlated net-
works” section, which is NP-hard [18]. Also the min-cut under the SRLG-like correlated 
model (MC-SRLG) problem is NP-hard. Similar to the proof that the MCDCM problem 
is NP-hard in “Minimum cuts in correlated networks” section, the MC-SRLG problem in 
the form of Fig. 6 can be reduced to the NP-hard SP-SRLG problem.

In the Nodal SRLG-like correlated model, we assumed that only the links that share 
the same node follow the SRLG-like correlated model. As “Shortest path under the nodal 
deterministic correlated model” section shows that the Shortest Path under the Nodal 
Deterministic Correlation Model problem is solvable in polynomial time, we address the 
min-cut under the Nodal SRLG-like correlated model (MC-NSRLG) problem in the fol-
lowing. In general, the MC-NSRLG problem is still NP-hard. The reason is that for the 
MC-NSRLG problem in Fig. 8, where the links in the form of (x1, yi) are assumed to be 
correlated, we could derive a graph like in Fig. 7 by duplicating n− 1 more x nodes, z 
nodes, and one y node. We set s = y0 and t = yn. The link weights in Fig. 7 are set as 
follows: For any two (x, yi) and (x, yj) [or (yi, z1) and (yj , z1)] in Fig. 8, (xi, yi) and (xj , yj) 
[or (yi, zi) and (yj , zj)] in Fig. 7 follow the same correlation. This link weight setting also 
applies to more than two links. The link weights in the form of (yi−1, xi) and (yi−1, zi) 
have 0 uncorrelated cost, for 1 ≤ i < n. Consequently, based on these link weight 
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assignments, the MC-NSRLG problem in Fig. 8 can be reduced to the SP-SRLG problem 
in Fig. 7, similar to the proof of the MCDCM problem in “Minimum cuts in correlated 
networks” section.

However, we found that the MC-NSRLG problem is solvable in polynomial time when 
(1) only the nodal links in the form of (u, v) and (v, y) follow the SRLG-like correlated 
model and/or (2) for any node u ∈ N , at most two nodal links (u, v) and (u, x) follow the 
SRLG-like correlated model. To prove case (1), let us first study the following theorem:

Theorem 7  Any two links in the form of (u, v) and (v, y) will never both appear in the 
optimal solution of the MC-NSRLG problem in case (1).

Proof  Suppose s and t are separated by a min-cut C such that s is in the subset A and 
t is in the subset B. A proof by contradiction: we assume that (u, v) and (v, y) are both 
in the min-cut C. Since C is the min-cut that separates s and t, then node u should be in 
subset A, otherwise if node u is in subset B, there is no need to use (u, v) and (v, y) as the 
cut links, since their existence does not affect the connectedness between A and B. Simi-
larly, node v is in subset B, otherwise if node v is also in A, there is no need to cut link 
(u, v). Based on this analysis, if y is in A, then (v, y) is not necessarily the link in the cut 
C, since link (v, y) does not affect the connectedness from A to B. However, if node y is in 
B, link (v, y) is also not necessarily the link in the min-cut, since nodes v and y are in the 
same subsets, which results in a contradiction. � �

Fig. 8  NP-hardness of the MC-NSRLG problem
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Based on Theorem 7, we can use conventional Linear Programming (LP) for solving 
the MC-NSRLG problem under case (1). Following [24], the LP is as follows:

Objective

Constraints

where c(u, v) stands for the link weight (i.e., capacity) of link (u, v) in the deterministic 
network and hu,v is an indicator denoting whether (u, v) belongs to the cut.

Under case (2), the MC-NSRLG problem can be solved in polynomial time by running 
the above LP (Eqs.  (14)–(17)) on an auxiliary graph GU (NU ,LU ). The auxiliary graph 
can be derived from the original graph G as follows:

1.	 For each pair of two links (u, v) ∈ L and (u, x) ∈ L that are correlated in G, create a 
new node u′, and draw link (u′,u) with weight ρvx(w(u, v)+ w(u, x)) to represent the 
joint cost of links (u, v) and (u, x), where ρvx represents the correlation coefficient 
between (u, v) and (u, x).

2.	 For any link (a,u) ∈ L and (u, b) ∈ L\{v, x} such that (u, v) and (u, x) are correlated 
in G, draw link (a,u′) and (u′, b) in GU with weights w(a, u) and w(u, b), respectively.

3.	 For each pair of two links (v,u) ∈ L and (x,u) ∈ L that are correlated in G, create a 
new node u′, and draw link (u,u′) with weight ρvx(w(v,u)+ w(x,u)) to represent the 
total cost of links (v, u) and (x, u), where ρvx represents the correlation coefficient 
between (v, u) and (x, u).

4.	 For any link (a,u) ∈ L\{v, x} and (u, b) ∈ L such that (v, u) and (x, u) are correlated 
in G, draw link (a,u′) and (u′, b) in GU with weights w(a, u) and w(u, b), respectively.

5.	 For the other links (c, d) ∈ L, create link (c, d) also in GU with the same weight.

The proposed auxiliary graph shares similarities with the auxiliary graph in Fig. 4. For 
example, Fig. 10 is an auxiliary graph of the original graph shown in Fig. 9. Moreover, we 

(14)
min

∑

(u,v)∈L′

c(u, v) · hu,v

(15)hs,t ≥ 1

(16)hu,v + hv,y ≥ hu,y, ∀u, v, y ∈ N : u �= v �= y

(17)hu,v ≥ 0, ∀u, v ∈ N : u �= v,

W1

W2

W3

W4

W5

W6

W7

W8

Fig. 9  An example network with dotted links following the SRLG-like correlated model
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mention that the proposed auxiliary graph also applies when there are m > 2 links start-
ing from the same node that follow the SRLG-like correlated model, but the failure of 
one correlated link will trigger the other m− 1 links to simultaneously “fail” (e.g., SRLG 
networks, interdependent networks). 

Min‑cut under the stochastic correlated model

Definition 6  The Min-Cut under Stochastic Correlated Model (MCSCM) problem: In 
a given directed graph G(N ,L) with link costs following the stochastic correlated model, 
the MCSCM problem is to find a cut C which partitions G into two disjoint subsets X 
(X ∈ N ) and N − X such that

• • s and t are in different subsets;
• • the allocated cost of the cut C is minimum;
• • the total probability of realizing the cost value is no less than Pc.

We propose a corresponding convex optimization formulation based on Eqs. (14)–(17):
Objective

Constraints

where x(u, v), x(li1), x(l
i
2), . . . , x(l

i
mi
) indicate the allocated possible cost by links (u,  v), 

li1 , l
i
2, . . . , l

i
mi

, respectively. In particular, Eq. (19) ensures that the probability of realizing 
that the min-cut cost is no less than Pc. More specifically, for each MCG we apply the 

(18)
min

∑

(u,v)∈L

x(u, v) · hu,v

(19)
∑

i∈�

− log
(

CDFi(x(l
i
1), x(l

i
2), . . . , x(l

i
mi
))

)

≤ − log(Pc)

(20)0 ≤ x(u, v) ≤ cmax
(u,v) ∀(u, v) ∈ L

(21)hs,t ≥ 1

(22)hu,v + hv,y ≥ hu,y, ∀u, v, y ∈ N : u �= v �= y

(23)hu,v ≥ 0, ∀u, v ∈ N : u �= v

a' a

b

c

d

e ts e' W1

W2

W3

W4

W5

W6

W7

W8

ρ34(w3+w4)

ρ56(w5+w6)

Fig. 10  Auxiliary graph of Fig. 9 for the MC-NSRLG problem
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multi-dimensional CDF functions to calculate the probability of realizing a cost. Since 
the CDF function is log-concave, − log

(

CDFi(x(l
i
1), x(l

i
2), . . . , x(l

i
mi
))
)

 is convex, and 
by summing all the MCGs together, it remains convex, which indicates that Eq. (19) is 
convex.

It remains to show that Eq. (18) is convex. In general, the product of two convex func-
tions is not always convex; however, according to  [23, pp. 119], one special case is as 
follows: “If functions f and g are convex, both nondecreasing (or nonincreasing) and 
positive (nonnegative) functions on an interval, then f · g is convex.” Therefore, for each 
(u, v) ∈ L, x(u, v) · hu,v is convex.

Related work
Routing with correlated link weights

In a network with each link having multiple additive link weight metrics (e.g., delay, cost, 
jitter, etc.), the Quality of Service (QoS) routing problem is to find a path that satisfies a 
given constraints vector. Kuipers and Van Mieghem [25] study the QoS routing prob-
lem under correlated link weights. Another common source of correlation is Shared-
Risk Link Groups (SRLGs). Sometimes one SRLG can also be represented by one color, 
but they share the same meaning in terms of reliability. In this context, Yuan et al. [18] 
prove that the Minimum Color Single-Path (MCSiP) problem is NP-hard. Yuan et  al. 
also prove that finding two link-disjoint paths with total minimum distinct amount of 
colors or least amount of coupled/overlapped colors is NP-hard. Lee et al. [26] propose 
a probabilistic SRLG framework to model correlated link failures and develop an Integer 
Nonlinear Programming (INLP) formulation to find one unprotected path or two link-
disjoint paths with the lowest failure probability.

There is also some literature dealing with correlated routing problems in stochastic 
networks [27]. For example, in [28] only two possible states are assumed, which are con-
gested and uncongested, and each state corresponds to a cost value. A probability matrix 
P
u,v,y
a,b , which represents the probability that if (u, v) is in state a then (v, y) is in state b, 

is given. Two similar link weight models, called link-based congestion model and node-
based congestion model, are proposed in [29]. Based on these models, [28, 29] define 
and solve the least expected routing problem, which is to find a path from the source 
to the destination with minimum expected costs. However, in [28, 29] there are only 
two possible states for each link and only the correlation of the adjacent links is known. 
We assume a more general (and different) stochastic correlated model, where as long as 
the links (not necessarily adjacent) are correlated, their joint CDF for allocating costs is 
known.

Min‑cut in conventional networks

The (s, t) min-cut problem refers to partitioning the network into two disjoint subsets, 
such that nodes s and t are in different subsets and the total weight of the cut links is 
minimized. This problem can be solved by finding the maximum flow from s to t [30]. 
There is also a lot of work on the min-cut problem with no specified node pairs (s, t). 
A summary and comparison of polynomial-time algorithms to solve the min-cut prob-
lem can be found in [31]. The fastest algorithm to solve the min-cut problem has a time 
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complexity of O(L log3N ) and was proposed by Karger [32]. Accordingly, the min-cut 
problem can be tackled by solving at most N − 1 times the (s, t) min-cut problem.

Constrained maximum flow

As a dual of the min-cut problem, the maximum flow problem in conventional networks 
is solvable in polynomial time [30]. However, this problem becomes NP-hard if some 
constraints are imposed on the links. Suppose that negative disjunctive constraints indi-
cate that a certain set of links cannot be used simultaneously for the optimal solution, 
while positive disjunctive constraints force at least one of a certain set of links to be pre-
sent in the optimal solution. Pferschy and Schauer [33] prove that the maximum flow 
problems with both negative and positive disjunctive constraints are NP-hard and do 
not admit a Polynomial-Time Approximation Scheme (PTAS). For example, the disjunc-
tive constraint corresponds to the correlated link weights, so the maximum flow prob-
lem in correlated networks is also NP-hard and does not admit a PTAS. Assuming the 
link’s bandwidth and delay follow a log-concave distribution, Kuipers et al. [16] propose 
a polynomial-time convex optimization formulation to find the maximum flow in the so-
called stochastic networks. When a delay constraint is imposed on each path, the maxi-
mum flow problem is NP-hard. To solve it, Kuipers et al. [16] propose an approximation 
algorithm and a tunable heuristic algorithm.

Conclusions
In this paper, we have studied the shortest path problem and the min-cut problem in 
correlated networks under two link weight models, namely (1) the deterministic corre-
lated model and (2) the (log-concave) stochastic correlated model. We have proved that 
these two problems are NP-hard under the deterministic correlated model, and cannot 
be approximated to arbitrary degree, unless P =  NP. Subsequently, we have proposed 
exact algorithms to solve them. In particular, we have shown that both of them are solv-
able in polynomial time under a (constrained) nodal deterministic correlated model. For 
the stochastic correlated model, we have shown that these two problems can be solved 
by convex optimization.
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