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Abstract

Complex networks often exhibit co-evolutionary dynamics, meaning that the network
topology and the state of nodes or links are coupled, affecting each other in
overlapping time scales. We focus on the co-evolutionary dynamics of online social
networks, and on Twitter in particular. Monitoring the activity of thousands of Twitter
users in real-time, and tracking their followers and tweets/retweets, we propose a
method to infer new retweet-driven follower relations. The formation of such relations
is much more likely than the exogenous creation of new followers in the absence of
any retweets. We identify the most significant factors (reciprocity and the number of
retweets that a potential new follower receives) and propose a simple probabilistic
model of this effect. We also discuss the implications of such co-evolutionary dynamics
on the topology and function of a social network. Finally, we briefly consider a second
instance of co-evolutionary dynamics on Twitter, namely the possibility that a user
removes a follower link after receiving a tweet or retweet from the corresponding
followee.

Keywords: Online social networks; Complex networks; Co-evolution

Introduction
Online social networks (OSNs), such as Twitter and Facebook, have changed how indi-
viduals interact with society, how information flows between actors, and how people
influence each other. These are all complex dynamic processes that are now widely stud-
ied empirically and in a large scale, thanks to the availability of data from OSNs. Most
OSN studies focus on one of the following two aspects of network dynamics. Dynamics
on networks refer to changes in the state of network nodes or links considering a static
topology [1, 2]. Dynamics of networks, on the other hand, refer to changes in the topol-
ogy of a network, without explicitly modeling its underlying causes [3]. As noted by Gross
and Blasius in [4], however, real OSNs typically exhibit both types of dynamics, forming
an adaptive, or co-evolutionary, system in which the network topology and the state of
nodes/links affect each other through a (rather poorly understood) feedback loop.
Dynamic processes in OSNs, such as information diffusion or influence, are obviously
affected by the underlying network topology, but they also have the power to affect that
topology. For instance, users may decide to add or drop a “friendship” or “follower” rela-
tion depending on what the potential “friend” or “followee” has recently said or done in
the context of that OSN. Previous empirical or modeling OSN studies often choose to
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ignore such co-evolutionary dynamics, mostly for simplicity, assuming a static network
topology, or assuming that the topology and node/link states are decoupled and evolve in
separate time scales [5].

In this paper, we focus on co-evolutionary dynamics in the context of Twitter. Twitter
users create follower—followee relations with each other. A directed link from a user R to a
user S, denoted by R — S, means that R is a follower of S, receiving S’s tweets; S is referred
to as a followee of R. R can choose to propagate a tweet of S to her own followers, denoted
by F(R), creating a retweet. When a follower L € F(R) receives a retweet of S through
R, L can choose to add S to her followers. We call this sequence a Tweet-Retweet-Follow
(TRF) event, and refer to its three main actors as Speaker S, Repeater R, and Listener L.
TRF events represent a clear case of co-evolutionary dynamics: information propagation
(tweet-retweet) causes a topology change (new follower).

Figure 1 shows this sequence of events for the simplest TRF case in which R — S and
L — R.In general, the Repeater R may not be a follower of S but she may receive S’s tweet
through a cascade of retweets. Additionally, the Listener L may receive multiple retweets
of S from the same or from different Repeaters. The contributions of this study are as
follows:

1. We propose a measurement approach to detect TRF events, based on near
real-time monitoring of a Speaker’s activity and followers.

2. We show that the formation of new follower relations through TRF events is
orders of magnitude more likely than the exogenous arrival of new followers in the
absence of any retweets.

3. We identify the most significant factors for the likelihood of a TRF event:
reciprocity (i.e., is Speaker S already following Listener L?), number of received
retweets (i.e., how many retweets of S were received at L during a given time
interval A), and of course the interval A itself.

4.  We propose a simple but accurate two-parameter model to capture the probability
of TRF events.

5. We discuss the implications of TRF events in the structure and function of social
networks.

6. We briefly consider a second instance of co-evolutionary dynamics on Twitter,
namely the possibility that a user removes a follower link after receiving a tweet or
retweet from the corresponding followee.

This paper is an extended version of work published in [6]. We extend our previous
work by examining a second instance of co-evolutionary dynamics on Twitter, namely the
possibility of an unfollow event to occur.
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(a) Initial State (b) to: S tweets M (c) ty: R retweets M (d) ty: L follows S (e) Final state

Fig. 1 a—e Network co-evolution: a Tweet-Retweet-Follow event
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Related work

Preferential attachment [7] is a common way to think about the formation of new ties in
a social network. It is based on the idea that it is more likely for well-connected people
to attract new ties. Subsequent research provided a deeper understanding by exploring
mechanisms such as user similarity [8, 9] (homophily) and directed closure [10-12]. For
instance, Romero and Kleinberg [12] studied the directed closure process in Twitter. This
process states that there is an increased likelihood for a node A to follow a node C if there
already exists a direct path of length two from C to A. They showed that this process is
taking place at a significantly higher rate than what would be expected by chance, but
this rate also varies significantly among different users. Here, we identify TRF events as
a plausible mechanism for the emergence of directed closure. Further, we examine the
factors that affect the probability of closure, offering a plausible explanation for the high
variability across users.

Golder and Yardi conducted a user study to identify structural predictors for tie for-
mation in Twitter. Their results show that lack of transitivity has a negative effect in link
prediction [10]. Hopcroft et al. examined the question: “when you follow a particular
user, how likely will she follow you back?” [8]. They showed that geographic distance and
homophily are good predictors of follow-back (“reciprocal”) relations. Our work confirms
that reciprocity amplifies significantly the likelihood of TRF events.

Muchnik et al. examined the correlation between a user’s degree and activity, and found
that activity has a causal increasing effect on degree [13]. Our analysis is related, showing
that the number of retweets of a user S that user L receives increases the probability
that L will follow S. Leskovec et al. studied network evolution of four social networks
and observed that most edges are local, “closing triangles” in particular [11]. Gallos et al.
examined the formation and evolution of social networks and analyzed how reciprocity
and social balance affect what we refer to as TRF probability [14].

Information diffusion on Twitter has also received significant attention. Several events
have shown the major role that Twitter plays in amplifying and spreading information
across the globe [15, 16]. Romero et al. [17] analyzed ways in which socially sensitive
topics, including politics, propagate on Twitter and reported that such topics are more
likely to spread after multiple exposures than others. Myers et al. [18] examined how
information reaches a user in Twitter. By analyzing URL mentions, they discovered that
information tends to “jump” across the network (probably because users discover this
information from external sources).

The literature on co-evolutionary dynamics has relied mostly on abstract models so far,
without sufficient empirical validation. For instance, Kosma and Barrat examined how
the topology of an adaptive network of interacting agents and of the agents’ opinions
can influence each other [19]. When agents rewire their links in a way that depends on
the opinions of their neighbors, the result can be either a large number of small clus-
ters, making global consensus difficult, or a highly connected but polarized network.
Shaw and Schwartz [20] examined the effects of vaccination in static versus adaptive
networks. Interestingly, they show that vaccination is much more effective in adaptive
networks, and that two orders of magnitude less vaccine resources are needed in adap-
tive networks. Volz and Mayers studied epidemics in dynamic contact networks and
showed that the rate at which contacts are initiated and terminated affects the disease
reproductive ratio [21]. They concluded that static approximations of dynamic networks
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can be inadequate. Rocha et al. simulated epidemics in an empirical spatio-temporal
network of sexual contacts [22], showing that dynamic network effects accelerate epi-
demic outbreaks. Perra et al. studied the effect of time-varying networks in random walks
and search processes [23]. The behavior of both processes was found to be “strikingly
different” compared to their behavior in static networks.

The most relevant prior work, by Weng et al., analyzed the complete graph and activity
of Yahoo! Meme,! to identify the effect of information diffusion on the evolution of the
underlying network [24]. They show that information diffusion causes about 24 % of the
new links, and that the likelihood of a new link from a user X to a user Y increases with
the number of Y’s posts seen by X. More recently, Myers and Leskovec showed that Twit-
ter users gain or loose bursts of followers soon after their tweet activity event [25]. These
bursts increase both the density of connections between a user’s followers and the simi-
larity of a user with her followers. Similarly to our work, they show that 21 % of all new

follows are formed by users who recently saw a retweet of the target user.

Data collection
This section explains the data collection process in detail.

To identify TRF events, we need to observe the appearance of a new follower link from
an arbitrary Listener L to a monitored Speaker S, shortly after L has received a retweet of
S through a Repeater R. This requires information about both the time of the retweet(s)
as well as the time the new follower link has appeared. The Twitter API, though extended
in functionality, does not provide information about the creation time of follower rela-
tions. Furthermore, existing link creation time inference methods [26] are not applicable
in our study because they cannot be used in real time. To retrieve (near) real-time timing,
we have implemented a Twitter data retrieval system that periodically checks for new fol-
lowers and retweets in a given set of Speakers. An overview of our data collection process
is shown in Fig. 2. We explain each step of the process in the following paragraphs.

Selection of active Speakers
We obtain a number of active Twitter users as potential Speakers through a stratified
sampling method. It has been reported that about 25 % of Twitter users have never posted

/ Selection of a Speaker S Periodic monitoring of S
to identify TRF events

to: Observation TRF Event: TRF Event:
[ S tweets M ] [ R, retweets M ] [ of Speaker S J [ L1 follows S ] [ R, retweets M ] [ Lo follows S ]

Sampling instant, collect:

Time
1) New Retweets of S
2) Followers of S

3) Followers of R

Fig. 2 Speaker selection and monitoring process timeline. Our data collection process consists of two
phases. In the first, we select a number of Speakers (active Twitter users that have been recently retweeted).
In the second phase, we periodically monitor the Twitter activity of each Speaker (posts and changes in their
set of followers) to identify TRF events

©, <2 hours \
a <1 day

0 Retweet TRF latency Sampiing
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latency period
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any messages [27] and that most users check their Twitter feeds rarely [28]. A random user
selection process would most likely visit a number of users without recent posts, wasting
a large number of our limited Twitter API calls. The adopted sampling method ensures
that we monitor users that have recently posted a tweet. Specifically, we crawl the Twitter
search page [29] based on a single-character search selected at random from the set of
[1—9A — Za — z]. The search returns the latest 20 tweets containing the search term.
We identify the users that posted these tweets and add them to our monitored Speakers
set. For each selected Speaker, we also collect information about their “join time’, number
of followees, followers and posted tweets. For each observed tweet, we collect the time it
was posted and the posted message. Note that the collected tweets are not limited to the
English language (as long as they include at least one numeric digit or English character).

Given this set of monitored Speakers, we look for any retweets of their tweets posted
during the last 2 h. We only consider retweets that are flagged as such by the Twitter APIL.
For each retweet, we retrieve the set of followers, set of followees of the Speaker and the
Repeater R at the time instant we first observed that retweet. Additionally, we collect the
set of followers and followees of the Repeater at that time.

Monitoring of Speakers

The previous process results in a number of possible TRF events, whenever a follower of
a Repeater receives a retweet of a monitored Speaker. To identify new followers, we need
to examine any changes in the Speaker’s followers before and after the retweet. To do so,
we retrieve the set of followers of the Speaker periodically, approximately every 5 min. We
identify a TRF event when the set of followers of S gains a new member (Listener L) that
was previously seen in the set of followers of R. At that point, we log the time L was seen
to follow S and calculate TRF latency as the time difference between the time R retweeted
S and the time L followed S. If L received multiple retweets of S (as the same tweet from
multiple Repeaters, multiple tweets from the same Repeater, or multiple tweets from mul-
tiple Repeaters), we assign the TRF event to the most recent retweet of S received by L.
The intuition here is that the most recent tweets will appear at the top of L’s inbox and
they are more likely to be read than older retweets. At this point we also collect the set of
followers and followees of the Listener.

Every 5 min, we also update the set of monitored Speakers as follows. If a selected
Speaker has not posted any tweets during the last 24 h, we stop monitoring that user
and select a new Speaker using our sampling method. The reason is that most new fol-
lower relations tend to occur within few hours from the time a Speaker has been active
(30, 31].

Data collection system

Due to the complexity and the real-time nature of our data collection process, we need
a large Twitter API request throughput. We used Twitter’s API 1.0, which limits users to
350 API requests per hour. To increase this request throughput, we use a large number of
distributed hosts, provided by PlanetLab, as proxies for accessing Twitter [32]. Our col-
lection process is coordinated by a “dispatcher” application located at Georgia Tech. The
dispatcher decides what data are required at any point in time and instructs a number
of “workers” to request that data from Twitter. Each worker is assigned a single Plan-
etlab host that routes API requests to Twitter. When a worker runs out of requests, it
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deactivates itself and notifies the dispatcher. At that point, the dispatcher generates a new
worker, providing it with a fresh request workload.

We divide the data collection process to small independent processes, each of them
requiring the smallest possible number of requests. In this way, we partition different
parts of the Speaker monitoring process to a number of workers, speeding up the col-
lection process. For instance, when requesting an update for a Speaker, the retrieval of
tweets, retweets and follower sets are executed through different Planetlab hosts. Further,
we limit the number of concurrently monitored Speakers to 500 to avoid overloading both
Twitter and our collection system.

Bot-filtering

A major concern for any Twitter dataset is to avoid bots. Such accounts act differently
than most regular Twitter users, biasing the analysis. To identify and remove bot accounts
from our dataset, we revisited each account 3 months after the initial data collection to
check which of those accounts have been suspended by Twitter. This practice has been
used by Thomas et al. [33] as “ground truth” for the Twitter bot detection problem. Fur-
ther, it has been reported that only few bots survive Twitter’s policies for more than a week
[34]. In our data, about 1% of the observed users were suspended by Twitter (uniformly
distributed across Speakers, Repeaters, and Listeners), accounting for roughly 10 % of the
observed TRF events.?

Collected data

Dataset-1

To estimate the exogenous and endogenous probabilities (Section “Endogenous versus
exogenous link creation”) we use a small-scale dataset (compared to the dataset used in
the rest of the paper). Specifically, we monitor 200 unique Twitter users (Speakers) for
a period of 10 days. For each Speaker, we collect periodically (every 30 min) her Twitter
timeline, tweets and retweets, along with the list of her followers. We also collect the
followers of every follower of the 200 monitored Speakers. Based on this dataset, we can
observe all Tweet-Retweet (TR) events for every monitored Speaker over the course of 10
days, and so we can ask whether a Speaker has gained one or more new followers among
the set of Listeners of her retweets.

Dataset-2

In the rest of the paper, we use a larger dataset. This dataset was collected during 1
week, from September 19 to September 25, 2012. During this time period, we collected
about 300 GBytes of raw Twitter data. In this dataset we monitored 4746 Speakers that
posted 386,980 tweets. These messages were retweeted 146,867 times by 83,860 distinct
Repeaters. Twitter allows users that are not following a Speaker to retweet her messages.
For this reason, in Dataset-2, we do not require that the Repeaters are followers of the
Speaker. After removing bot accounts, we end up with 7451 observed TRF events. This
figure represents 17 % of the new follower links observed in our dataset.

Endogenous versus exogenous link creation
A user also gains new followers due to exogenous factors, such as Twitter’s “Who to fol-
low” service [35]. Here, we compare the likelihood with which a user gains new followers
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when there are no recent retweets of her messages (exogenous link creation) compared to
the case that she gains new followers when at least one of her messages has been recently
retweeted (endogenous link creation).

We focus here on potential new followers L of S that were already following a follower of
S. That is, we only examine three-actor relations in which L — Rand R — S. We then ask
“is it more likely that L will follow S (L — S) when L received a retweet of S through R (TRF
event) or when L did not receive any retweet from her followees that follow S (TF event)?”
Fig. 3a illustrates the TRF and TF events. Note that the difference between endogenous
(TRF) and exogenous (TF) events is the retweet of S from R; the local structure and the
activity of S remain the same in both cases.

We estimate the probability Pexo(A) of exogenous new followers as follows. Consider
a tweet of Speaker S at time £;. Suppose that this tweet is not retweeted by any of the
followers of S in the period [ &, £, + A]. Let ®(S, ;) be the set of followers of followers of
S that are not directly following S at ¢, i.e., (S, &) = {X : X € F(S,t),X € F(Y,t),Y €
F(S, ts)}. What is the fraction of these users that follow S by time ¢, + A?

IL:L e ®(S,t),L € F(S,ts+ A)|
|D (S, 25)]

Pexo(A) =

(AL

(i) TRF event: Follow after (i) TF event: Follow without

receiving a Retweet receiving a Retweet
b
107 Tee
107 R :
2 10*
a ° se e
8105 T PR —
e oot
a 10
107 bt
e o P(ENDO)
. M » ¢ P(EXO)
107, 5 10 15 20 25
A (Hours)

Fig. 3 a Controlling for the structural relation between S, R and L and for the activity of S allows us to
compare the likelihood of a new follower L when L received a retweet of S (i) compared to the case that L did
not receive a retweet of S (ii). The arrow direction shows who follows whom. Orange nodes represent tweet or
retweet activity. Red edges show the extent of information propagation. Green dashed edges show new
follower links. b Probability that a Speaker S gains at least one new follower L within an interval A from the
time of a tweet (TF) or retweet (TRF) of S. The Listener L is not a follower of S at the time of the tweet (TF) or
retweet (TRF)
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Similarly, we estimate the probability PEnpo(A) of endogenous new followers as fol-
lows. Consider again a tweet of Speaker S at time #; but suppose that this message has
been retweeted by a specific follower of S, referred to as Repeater R, at time ¢, > £. Let
DR(S, tr) be the subset of (S, t,) that includes only followers of R. What is the fraction
of these users that follow S by time ¢, + A?

IL:L e ®p(S,t),L € F(S,t + A)|

Penpo(A) = D205, 0] (2)

In a small-scale dataset (Dataset-1), we observed 4945 new followers for the 200 mon-
itored Speakers over 10 days. TRF events accounted for 42 % of these new links. This
shows that TRF events are rather infrequent, compared to tweets and retweets, but they
are responsible for a large percentage of the new links in Twitter.

Figure 3b compares the two probabilities for increasing values of A, averaged across
all TF and TRF events in our dataset. We omit confidence intervals because they are
too narrow. Note that the probability of endogenous new followers is consistently much
higher than the probability of exogenous new followers. Especially for short A (up to 2 h),
Ppnpo is three orders of magnitude higher than Pgxo. The difference drops to two orders
of magnitude and remains stable even for values of A larger than 24 h.

Please note that the previous comparison does not prove causality: we cannot be certain
whether a user L decided to follow S because she received a retweet of S. However, if L had
not received that retweet, it would be 100—1000 times less likely that she would follow S
within a given time interval.

Figure 3b shows that Penpo increases significantly as A increases to about 24 h. After
that point, PpNpo saturates to a value that is about 1072, It can be argued that this under-
estimates the actual TRF probability. The reason is that a large fraction of Twitter users
are either completely inactive or they do not visit Twitter often. Recent statistics report
that only 20 % of registered users visit Twitter at least once per month [36]. Additionally,
a report from Pew Internet [37] in 2010 reported that only 36 % of Twitter users check
their inbox at least once a day.

TRF characteristics

The previous analysis verifies our initial intuition that the likelihood with which a user
L follows a user S greatly increases when L receives a retweet of S. Furthermore, this
likelihood is also affected by the length of the interval between the retweet and the time L
observed of that retweet. We now give a more precise definition of Tweet-Retweet-Follow
events. We say that a Tweet-Retweet-Follow event between users S, R, and L, where R
might not be a direct follower of S, occurs when we observe the following sequence of

events:

S tweets a message M at time &,

2. A user R retweets M at some time £, > &,
A user L, who is a follower of R (i.e. L — R) at ¢, but not a follower of S, follows S
by time ¢;, where t; €[ ¢, ¢ + Al.

We collected a larger dataset (Dataset-2) that we use to analyze and model TRF events.
In this dataset, we observe 7451 TRF events, which represent 17 % of the observed new
follower relations.
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Fig.4 a Percentage of identified TRF events as function of A. b Retweet latency for all observed retweets.
We plot separately retweets that lead to a TRF event, and retweets that do not (TR retweets). ¢ Delay between
the time of a retweet of Speaker S and the time the Listener L follows S

A is the only parameter in this definition, and it affects the likelihood of TRF events.
Figure 4a shows the percentage of identified TRF events as a function of the parameter A.
As expected, the number of TRF events increases with A but most of them occur within

24 h from the corresponding retweet.

Retweet latency

Figure 4b distinguishes between retweets that resulted in at least one TRF event (TRF
retweets) and retweets that did not result in a TRF event (TR retweets). The analysis
of these retweet events shows that more than 90 % of them occur in less than an hour
from the corresponding tweet; we refer to this time interval as retweet latency. This result
supports the idea that “retweeting users” tend to act soon after new information becomes

available.

TRF latency
We observe new L — S relations even 4 days after L has received a retweet of S, as shown
in Fig. 4c. However, more than 80 % of the TRF events occur in less than 24 h after the

retweet. Unless stated otherwise, in the rest of this paper we set A =24 h.

TRF probability

For each monitored Speaker, we collect at each sampling instant her list of followers F(S),
tweets, retweets, Repeaters and the set of followers for each Repeater F(R). We then iden-
tify the set of Tweet-Retweet (TR) events for each retweet of Speaker S: TR(S, R, L, t,, ).
A TR event denotes that Listener L received a message of S at time ¢, through a retweet
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by Repeater R. The indicator variable /4 is 1 if L followed S during a time period of length
A after t,.

We could define the TRF probability as the fraction of TR events for which /In = 1.
This calculation, however, does not consider that a Listener may receive multiple retweets
(of the same or different tweets) of that Speaker. It would not be realistic to assume that
the Listener will decide whether to follow the Speaker immediately after each retweet.
Typically, users do not read each tweet immediately when it is generated, nor they have
an infinite attention span that would allow them to consider all tweets in their inbox [31].
It is more reasonable to expect that each time a user opens her inbox she reads several
recent tweets at the same time. So, we assume that a Listener decides whether to follow a
Speaker based on a group of received retweets that were recently received.

Specifically, we group TR events into Retweet Groups (RG) as follows. Each RG is rep-
resented as RG(S, L, ty, n,Ip), where S and L are the Speaker and Listener, respectively, ¢,
is the timestamp of the first retweet in that group, and # is the number of retweets of S
received by L during the time window < ¢, ¢ + A >. Note that these retweets may be
generated by different Repeaters. The indicator variable I, is 1 if L followed S by the end
of the previous time interval. If L followed S at time ¢, < ¢t < ¢, 4+ A, the correspond-
ing RG includes only those retweets received by L before £; any subsequent retweets are
ignored because L already follows S.

Based on this Retweet Grouping method, we calculate the TRF probability Prrr(A) as
the fraction of RGs for which I = 1.

Factors that affect the TRF probability
We now examine a number of factors that may affect the TRF probability. The small
magnitude of the TRF probability makes the identification of important factors more
challenging [38]; the following results, however, are given with satisfactory statistical
significance (see p values in Table 1).

Table 1 lists the structural and informational factors (features) we consider.? We use
logistic regression to analyze how these features correlate with the TRF probability. Based

Table 1 List of examined factors

Factor Description Oddsratio  95%Cl
Structural features
IF(S)] Number of followers of S 1.000%** [1.000, 1.000]
IF'(S)| Number of followees of S 0.999*** [0.999,0.999]
AGE(S) Number of days since S joined Twitter 0.998*** [0.998,0.998]
S—>1L Reciprocity: whether the Speaker was following the — 27.344%** [25.663,29.136]

Listener at the time of the TR event
Informational features

IST(S)| Total number of tweets of S 1.000*** [1.000, 1.000]

Arate (S) Rate of S tweets per day 0.989*** [0.988,0.991]

Tweets(S, L, A) Number of distinct tweets of S received by L during ~ 2.010%** [1.781,2.270]
period A

Retweets(S, L, A) Number of distinct retweets of S received by L during 1.603%*** [1.371,1.873]
period A

Repeaters(S, L, A) Number of Repeaters R that L received tweets of S 2.076™** [1.889,2.282]
from during period A

*p < 0.1;*p < 005 **p < 0.01
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on (3), we estimate the correlation coefficient «; for each factor X;. «; denotes the effect of
X; to the “odds” of TRF events,

p n
In <TRF> =K0+ZKiXi (3)
i=1

1 — Prgrr

Table 1 shows the odds ratio and the corresponding 95 % confidence interval for each
feature. An odds ratio p represents a p x Prrp increase in the TRF probability for every
unit increase of the corresponding feature. Thus, odds ratios close to 1 suggest that those
features have no major effect on the TRF probability. Table 1 shows that all odds ratios
are statistically significant (p < 0.01).

The “Twitter age” of the Speaker, the number of followers and followees (factors that
were previously shown to correlate with Twitter activity) as well as the tweeting [28, 39]
and retweeting [40] rate of the Speaker, show no correlation with the TRF probability.
Similar results are obtained when examining the age and number of followers or followees
of the Listener. We have also examined a number of aggregated informational features,
namely the Speaker’s overall activity and her daily tweeting activity. Both features show
no significant correlation with the TRF probability.

Reciprocity

A structural feature that examines the reverse relation between S and L, i.e., whether S
was already following L when L received one or more retweets of S, has a large effect on the
TRF probability. Reciprocity increases the probability that L will follow S by 27.3 times
compared to the base TRF probability. Previous work has shown reciprocity to be a dom-
inant characteristic of several online social networks such as Twitter [28], Flickr [41], and
Yahoo 360 [42].

In 44 % of the observed TRF events, S was following L prior to the formation of the
reverse link. Figure 5 shows Prrr(A) independent of reciprocity (solid line), when reci-
procity is present (dashed line), and when reciprocity is not present (dotted line). When
reciprocity is present, the TRF probability, denoted by Ptrr(A, <>), is one order of mag-
nitude larger than the probability without reciprocity, denoted by Ptrp(A, —). For A >
3 h, Prre(A, <>) further increases and gradually becomes up to two orders of magnitude

larger.
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The large quantitative effect of reciprocity on the TRF probability implies that there
may be different reasons for the formation of a link from L to S in that case. The existence
of the reverse link, S — L, could imply that these two users have some prior relation. They
may know each other in other social contexts (online or offline) or they may belong to
similar interest groups. In such cases, the retweet of S can make L aware of the existence

and activity of S in the Twitter network.

Number of tweets and repeaters

Earlier social influence studies showed that the probability that an individual adopts a
new behavior increases with the number of her ties already engaging in that behavior
[1, 17, 43—45]. Similarly, we examine whether the number of tweets and retweets of S
received by L affects the TRF probability. It turns out that Prgrp increases with both the
number of distinct tweets of S that L receives (odds ratio = 2.01), and with the number of
distinct Repeaters that L received retweets from (odds ratio = 2.08).

For simplicity, we choose to aggregate the number of distinct Repeaters and the num-
ber of distinct tweets of S that L received into a single parameter: the total number n of
retweets (potentially not distinct) of S that were received by L in a time period of length
A. This new factor has high correlation with the TRF probability (odds ratio = 1.25,
p < 0.001). Figure 6 (left) shows the TRF probability in the absence of reciprocity (L — S)
while Fig. 6 (right) shows the TRF probability in the presence of reciprocity (L <> S), as a
function of n.

TRF model

We now construct a simple model for the probability of TRF events. The objective of this
exercise is to create a parsimonious probabilistic model that can be used in analytical or
computational studies of co-evolutionary dynamics in social networks.

The model considers two independent mechanisms behind each TRF event: How many
retweets n of Speaker S did the Listener L receive? And, did L actually observe (i.e., read)
this group of retweets? The simplest approach is to assume, first, that the n received
retweets are either observed as a group with probability p or they are completely missed,
and second, that each observed retweet causes a TRF event independently and with
the same probability g. Then, the probability of a TRF event after receiving at most #
retweets is

Prre(m) =p x (1—- 1 —q") (4)
0.7 20
Tos s M L | e
X ‘2 ~ gl X 15 s D S L S Sy 1
< 0.5/ 4 i f +
z <23 + 2 | PR SRR YA PR |
304 3 10t0e ; ]
© ©
£ Without reciprocity — i & sb With reciprocity [ Py
w 0.2F vy A=3H w vy A=3H
o Ty — A=GH 4 — A=GH
[ m-a A=12H = B A=12H
0 —5 10 15 20 25 30 35 40 % 5 10 15 20 25 30 35 40
Number of retweets of S received by L Number of retweets of S received by L
Fig. 6 Empirical (solid) and model-based (dashed) TRF probability Prre(—, n) (left) and Prge (<>, n) (right) as a
function of the number n of received retweets of S at L, for four different values of A
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Table 2 Estimated value of the two model parameters pand p x g

A (h) p pxq p pxq
Without reciprocity With reciprocity

1 05x 107 012 x 1074 81x107* 72 % 107
3 05x 107 013 x 1074 11.0 x 1074 85x 1074
6 06 x107* 0.14 x 107* 130 x 107% 93 x 107
12 06 x107* 0.15 x 1074 176 x 1074 93 x 107*
24 07 x 1074 0.16 x 1074 240 x 1074 102 x 1074
48 08 x107* 0.16 x 1074 331 x 1074 102 x 1074

Thus, the probability of a TRF event after only one received retweet is p x ¢g. For a large
number of received retweets, the TRF probability tends to the observation probability p.

As shown in Fig. 6 (left), the measured TRF probability Prrp(—, #) without reciprocity
seems to “saturate” after n exceeds about 10-20 retweets. The same trend is observed
in the case of reciprocity (Fig. 6 (right)), but the saturation appears earlier (after around
5-10 retweets). The model of (4) captures the dependency with # quite well. The param-
eters p and g depend on reciprocity as well as on the time window A, as shown in Table 2.
Reciprocity increases significantly both the observation probability p and the probability
p % q that a single received retweet will cause a TRF event. As expected, increasing the
observation time window A increases the observation probability. The effect of A on the
probability p x g is weaker, especially when there is no reciprocity.

We further examined the accuracy of the proposed model through a cross-validation
approach. We split the dataset in two equal parts, one for parameterizing the model and
another for testing that model. Figure 7 shows this comparison for different values of A.

Implications of TRF events

Most prior work in online social networks focused either on the exogenous evolution of
the topology (dynamics of networks) or on influence and information diffusion on static
networks (dynamics on networks), ignoring the potential coupling between these two
dynamics. We now discuss how TRF events may gradually transform the structure of a
social network. We consider two fundamentally different network topologies, and discuss
the implications of TRF events from the information diffusion perspective.

Effect on topologies with directed cycles
The left graph of Fig. 8a shows a weakly connected network, which may be a subset of the
Twitter topology. A directed cycle exists between some of its nodes, namely A — B —

0.7 20
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b H+ HHHHH < 15+ 1
— 0.5t 19T oot CEnn3azcs s NS < AR R
z PR 2 A [ PR S S
E04 E 10 vy TITTTY TITITITTITITTLY
2 A
So - LR TR | o ysininnc e e o e
& Without reciprocity — 5o & st With reciprocity
w 02 vy A=3H w
o H — A=6H o
~ 01 Bl A=120 [ 0 Bem A=12H

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Number of retweets of S received by L Number of retweets of S received by L

Fig. 7 Cross-validation of the proposed model. Half of the observed TRF events are used to parameterize the
model of Eq. 4 (dashed lines), while the other half is used to estimate the TRF probability empirically (solid lines)
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® © ©

(i) Initial network topology (ii) Final network topology

Fig. 8 a Aninitial network that includes a directed cycle. A sequence of TRF events can transform this cycle
to a cligue, meaning that the corresponding users gradually form a tightly knit community. b A hierarchical
initial network. A sequence of TRF events can transform this multi-layer hierarchy into a two-layer hierarchy in
which each sink node is directly followed by a set of other nodes (its “sphere of influence”), while each
non-sink node follows at least one sink node

D — E < C — A. Let us focus on the largest directed cycle in this network, i.e., in
its largest strongly connected component (SCC). The ties of the participating nodes may
also include links to or from nodes out of this cycle, such as the E <> F relation.

Suppose that A posts a tweet at some point in time and C decides to retweet it. Node
E will receive that retweet and may follow A (TRF event). It is easy to see that, after a
sufficiently large number of TRF events, the nodes of this directed cycle will form a fully
connected directed graph, as shown in the right graph of Fig. 8a (red edges denote con-
nections created through TRF events), in which everyone is following all others. This
transformation can only take place when a cycle already exists in the initial network; TRF
events cannot create directed cycles. So, when an initial network includes a directed cycle,
a sequence of TRF events may transform that cycle into a clique in which everyone can
generate information that all others receive directly from the source.

Effect on hierarchical topologies
The left graph of Fig. 8b shows a hierarchical weakly connected directed network. Again,
this network may be a subset of the Twitter topology. This network contains no directed
cycles, but a number of sink nodes (i.e., nodes with no outgoing edges; A and B in this
example).

User F may receive a retweet of A and B through C, and she may then decide to follow
them. After a sequence of TRF events, this network can then reach the topological equi-
librium shown in the right graph of Fig. 8b, in which no new links can be added through
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TRF events. More generally, suppose that F/(X) = {Xj,...,X,} is the set of followees
of X. The set of Speakers that X may receive a retweet from can be defined recursively
as F;(X) = F'(X) U (F;(X1) U ...F;(X,)); if user X does not have any followees then
Fj;(X) is the empty set. It is easy to see that, after a sufficiently large number of TRF
events, a multi-layer hierarchical network will converge to a two-layer hierarchy in which
every non-sink user X follows all users in F;;(X). Then, an initial sink node X will be
followed directly by all users that had a directed path towards X in the initial network.
A consequence of TRF events in such hierarchical networks is the emergence of some
highly influential users that were the sink nodes in the initial network. Further, non-sink
nodes will be partitioned, with the users in each partition following a distinct set of sink
nodes.

The previous two topologies are obvious extremes. In practice, a given weakly con-
nected subset of Twitter users may contain groups of nodes that form directed cycles as
well as nodes that do not belong in any directed cycle. An interesting question then is:
given a weakly connected directed social network, what fraction of its nodes belong to the
longest directed cycle (i.e., largest SCC) in that network? If this fraction is large, the net-
work resembles the example of Fig. 8a, while if it is close to zero the network is similar to
the example of Fig. 8b.

We investigated the previous question based on samples of the actual Twitter topology,
at least as it was measured by Kwak et al. [28] in 2010.*

We collected weakly connected network samples using the Random-Walk [46] and
Snowball (Breadth-First-Search) [47] sampling methods. The largest SCC was determined
with Tarjan’s algorithm [48].

In the case of moderately large samples, between 1000 to 1,000,000 nodes, the largest
SCC contained consistently more than 90 % of the nodes. This result suggests that the
Twitter topology is closer to the network of Fig. 8a than to the network of Fig. 8b.
The creation of such large cliques, however, may require a very long time, and it may
also be impractical for a user to follow thousands of other users. Consequently, we
are more interested in smaller samples, including only tens or hundreds of Twitter
users.

Figure 9 shows the percentage of Twitter users that are included in the SCC of
small network samples, in the range of 10-1000 nodes. Each point is the average
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Fig. 9 Fraction of Twitter nodes in the largest SCC for different sample sizes, using two sampling methods
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of 1000 samples of that size, and the error bars represent 95% confidence intervals.
Independent of the sampling method, the SCC typically includes the majority of
the nodes even for samples of few tens of users. The SCC percentage increases to
about 80-90% for networks with more than 200-400 users. These results imply that
co-evolutionary dynamics, and the TRF mechanism in particular, have the potential
to gradually create very dense communities of users in which everyone is following
almost everyone else, as long as the involved users are active, tweeting and retweeting

information.

Unfollow events

TRF events can be considered as only one instance of co-evolutionary dynamics in social
networks. More such mechanisms may exist however. For instance, a sequence of one or
more tweets from a Speaker S received by a follower L may cause L to remove the link to S;
we refer to this as an endogenous unfollow event. On the other hand, exogenous unfollow
events occur when L removes the link to S for reasons that are unrelated to S’s tweeting
activity. In the rest of this section, we briefly investigate unfollow events. Unfortunately,
we are not able to distinguish between endogenous and exogenous unfollow events.
Instead, we simply examine the timing of unfollow events relative to the Speaker’s last
tweet and analyze statistically the effect of various structural and informational features
on the probability of unfollow events.

Kwak et al. showed through data analysis and user interviews that unfollow events are
highly correlated with the tweeting activity of the Speaker [49]. Additionally, Kivran-
Swaine et al. [50] showed that structural properties of two individuals significantly affect
the probability that they will be connected in the future.

Unfollow data

We monitor a set of Speakers selected as described in Section “Data collection”. One dif-
ference is that we collect periodically only the set of followers of S; we do not collect
retweets, repeaters and their followers. A follower L of S is said to unfollow S at a sam-
pling instant ¢y if L is in F(S, ) but not in F(S, tx11). As in the case of TRF events, the
sampling period is about 5 min.

Additionally, we download the total activity of each monitored Speaker during the data
collection period (1 week). This activity includes the original tweets posted by the Speaker
as well as tweets of others that were retweeted by the Speaker. We also log the time of the
tweet or retweet, and the initiator of that post in the case of a retweet.

This “unfollow dataset” includes 3648 monitored Speakers, while the initial number
of followers (before any unfollow events) is 4,055,327 (3,609,649 distinct users). During
the 1-week data collection period, we observed 5325 unfollow events (0.13 % of the total
number of followers)) from 5220 Listeners to 983 Speakers.

Figure 10 shows the CDF of the latency between the time L unfollowed S (L 4 S)
and the last activity of S received by L before the unfollow event. Almost 60 % of the
unfollow events occur during the first hour after S has posted some content, and almost
100 % of the unfollow events occur within a day. This observation suggests that many
unfollow events may be endogenous. We cannot distinguish between endogenous and
exogenous unfollow events strictly based on this latency, however, especially when the
Speaker tweets at a high frequency (say, several times per day).
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Fig. 10 Elapsed time between the last activity of S observed by [ and the time of the unfollow event L 4 S

Unfollow probability

How likely is for a Listener L to unfollow Speaker S during a time period A after receiving
a tweet (or retweet) from S? We define the probability of an unfollow event similar to the
TREF probability. We first identify all Activity events (A) for each post of each Speaker S. An
Activity event is denoted by A(S, L, t,, Iz, Ix) and it means that follower L of S (L € F(S))
received a tweet or retweet from S at time £,. The indicator variable Iy is 1 if the message
was a retweet, and O if it was an original tweet of S. The indicator variable I is 1 if L
unfollowed S during a time period of length A after ¢,.

We group such Activity events to Activity Groups (AG) of the form AG(S, L, ¢,
n, ng, ny, Ip). n, ng, 0, denote the total number of posts, tweets, and retweets of S received
by L during the time window < ¢,,¢; + A >. The grouping method is similar to the clus-
tering of TR events in RG. We then calculate the probability of an unfollow event Pynp(A)
as the fraction of AGs for which /o = 1. Figure 11 shows the unfollow probability PynE as
a function of A.

Using the multivariate logistic regression model of Eq. 3, we estimate the correlation
between a number of features and the unfollow probability. We use features similar to
those described in Table 1, but excluding any Repeater-related features. The “number
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Fig. 11 Overall (Pynr(A)), reciprocal (Pyne(A, #2)) and non-reciprocal (Punr(A, 4 )) unfollow probability as
a function of A
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Table 3 Odds ratio and its 95 % confidence interval for each feature of the multivariate logistic
regression model for Pynr

Odds ratio 95% Cl

Structural features

IF(S)] 0.999%+* [0.999,0.999]

IF(9)] 1.000%** [1.000, 1.000]

AGE(S) 0.998*** [0.998,0.998]

S— 1L 0.302%** [0.261,0.348]
Informational features

ST(S) 1.000%** [1.000, 1.000]

Arate (S) 0.972%%* [0.967,0.978]

Tweets(S, L, A) 1.0477%** [1.025,1.057]

Retweets(S, L, A) 1.026 [0.992,1.006]

*p < 0.1;*p < 005, **p < 001

of tweets” and “number of retweets” refer to the number of original posts by S and the
number of posts forwarded by S, respectively.

Table 3 shows the resulting odds ratios and the corresponding 95 % confidence intervals
for each feature. Note that most of the features have limited or no effect on the unfollow
probability; most of the structural features return an odds value close to 1. As the number
of tweets increases, Pynr slightly increases, implying that unfollow events may be more
likely for Speakers that tweet too frequently. However, this effect is not sufficiently strong.

Only the reciprocity factor seems to significantly affect Pyng. In the presence of reci-
procity, meaning that the Speaker S follows the Listener L, it is about 70 % less likely for
L to unfollow S. In only 18 % of the observed unfollow events S followed L. Figure 11
shows Pynr conditioned on the presence of reciprocity (Pung(A, #)) or conditioned on
the absence of reciprocity (Pune(A, 7#)). Note that it is at least twice more likely for L
to unfollow S when their relationship is not reciprocal. As discussed in the case of TRF
events, reciprocal relations may represent a connection between two users outside the
context of Twitter, or a stronger degree of homophily between them.

The small percentage of unfollow events in reciprocal relations may be explained as
follows: Kwak et al. [49] claim that some users follow back all new followers as a courtesy.
After a while, however, the former may decide that they are not interested in the posts of
their new followers and unfollow them.

Kwak et al. showed that people often appreciate receiving acknowledgments from other
users (in the form of replies or tweets of the same content/hashtag). Such activity often
decreases the likelihood of unfollow events [51, 52]. Hutto et al. have found that the con-
tent of someone’s tweets significantly impacts the number of followers of that user [53].
Their results show that expressing negative sentiment has an adverse effect on the fol-
lower count, whereas expressing positive sentiment helps to increase the latter. This prior
work has focused on a small number of snapshots that are few months apart. We plan to
leverage our near real-time data collection system to monitor unfollow events and their
dependence on the actual content of tweets in smaller time scales.

Conclusions
Most prior work in online social networks focused either on the exogenous evolution of
the topology (dynamics of network) or on influence and information diffusion on static
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networks (dynamics on network), ignoring the potential coupling between these two
dynamics. In this paper, we considered co-evolutionary dynamics in the specific case of
the Twitter online social network. Most of our study focused on the addition of new links
through the so-called Tweet-Retweet-Follow events. We showed that it is much more
likely for a user to get a new follower if her tweets are retweeted than in the case where
her tweets are not retweeted. We showed that TRF events, although infrequent compared
to tweets or retweets, occur in practice and they are responsible for a significant frac-
tion (about 20 %) of the new edges in Twitter. Through (near) real-time monitoring of
many Twitter users, we showed how to identify TRF events and investigated their tem-
poral and statistical characteristics. More than 80 % of TRF events occur in less than 24
h after the corresponding retweet. The main factors that affect the probability of a TRF
event are reciprocity and the total number of retweets received by the Listener. Based on
these findings, we have proposed a simple probabilistic model for the probability of TRF
events. We have also discussed how TRF events can affect the structure of the underlying
social network. TRF events tend to transform directed cycles into cliques, creating closely
knit communities of users in which everyone is following everyone else. The analysis of
samples from the 2010 Twitter topology shows that weakly connected groups of more
than 200-400 users contain large directed cycles that include more than 80-90 % of the
users. Finally, we have argued that TRF events are not the only form of co-evolutionary
dynamics in Twitter. Users may also break existing relations (unfollow others) based on
the tweeting activity of the latter. An analysis of this effect shows that 60 % of the unfol-
low events occur during the first hour after the Speaker has posted some content. Also,
a reciprocal relation (a link from the Speaker to the Listener) greatly decreases the like-
lihood of an unfollow event in the opposite direction. In future work, we plan to explore
additional types of co-evolutionary dynamics and to quantify their effect. Such events
include the creation of new follower relations after a “reply” or “mention” user action.

Endnotes

Thttp://en.wikipedia.org/wiki/Yahoo!_Meme

2 Exploring the impact of bots on the evolution of the Twitter topology is an
interesting area for future work.

3Features such as the number of common friends between S and L are not examined
because they would require additional data that we have not collected.

*http://an.kaist.ac.kr/traces/W W W2010.html
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