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Z;”a'i‘“asé‘Zfaati;heoggg‘;;’?ﬁg‘;':tii;e each node has been infected is also unknown. This missing data — infection states of
most nodes and the infection times of the observed infected nodes — poses a
challenge to the study of real-world epidemics/cascades.
In this work, we develop techniques to identify the latent infected nodes in the
presence of missing infection time-and-state data. Based on likely epidemic paths
predicted by a simple susceptible-infected epidemic model, we propose a measure
(infection betweenness centrality) for uncovering unknown infection states. We evaluate
infection state classifiers based on Naive Bayes, Naive Bayes with kernel density
estimation, and decision trees, in combination with features including infection
betweenness centrality and different centrality measures. Our experimental results
show that among the set of features that include degree and different centrality
measures, infection betweenness centrality is the most effective feature for identifying
latent infected nodes.
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Introduction

Networks are underlying mediums for the spread of epidemics such as diseases, rumors,
and computer viruses. Determining the infection states of network nodes is the first step
to taking corrective or preventive action to stop or slow the spread of an epidemic. Unfor-
tunately, the infection states of network nodes are often unknown; for example: in the
spread of computer malware (say, a contaminated email attachment) in a large organi-
zation, a network IT specialist will likely only inspect the computers of users that open
trouble tickets; a similar problem occurs with the spread of rumors over online social net-
works. Hence, the problem of effectively identifying the infection states of unobserved
nodes given a set of observed nodes is of central importance in the study of infection
cascades.

Our research question is: Given a set of nodes with known infection states and the
network topology, can we correctly uncover the unknown infection states of the remain-
ing nodes? In this work, we consider a network where an epidemic starts from a single
source. Each node appears in one of two states: (i) susceptible, capable of being infected,
(ii) infected, able to spread the epidemic further. We also assume that the infection states
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of a subset of nodes are known and the full network structure (adjacency matrix) is
available.

Let G be an undirected graph with node set V and adjacency matrix A = [ A;]. Suppose
that an epidemic starts at a single node (denoted ‘source’) and propagates to neighbors
in G. Let X;(¢) € {0,1} denote the state of node i € V at time ¢t > 0 where X;(¢) = 0
means node i is susceptible and X;(¢) = 1 that it is infected. Assume that an infected node
contaminates neighbors at rate 1. Then,

Xi(H): 0> 1 atrate A Y Xj(H)Aj;.
jev
Assume that at some arbitrary time there are / nodes with observed infection state L =
{(1,X1),...,(, X))} The states of the remaining u = |V| — [ nodes are unknown with /
typically much smaller than . Given the set of observed nodes L, our goal is to correctly
assign an infection state X; tonodei =/+1,...,/ + u.
Our contributions are as follows:

e We introduce a measure for estimating the states of unobserved nodes, denoted
infection betweenness centrality. We evaluate classifiers based on Naive Bayes, Naive
Bayes with kernel density estimation [1], and decision trees [2], in combination with
features including infection betweenness centrality and different centrality measures
on inferring unknown states. Our experiments show that the inclusion of infection
betweenness centrality significantly contributes to the quality of infection state
classification.

e We investigate the impact of parameters, such as the degree distribution, on the
estimation performance of the classifiers. Our experiments show that infection state
classification becomes more accurate as the degree distribution of network becomes
less skewed.

The remainder of the paper is organized as follows: ‘Measuring infection state’ section
proposes infection betweenness centrality. In ‘Infection state estimation’ section, we
introduce infection state classifiers using infection betweenness centrality and different
centrality measures. ‘Experimental results’ section represents the experimental results
about the performance of classifiers with infection betweenness centrality. ‘Related
work’ section reviews the related literature. Finally, ‘Conclusion’ section presents our
conclusions and future work.

Measuring infection state
Propagation properties
Under the assumption that an epidemic propagates from a single source to neighbor-
ing nodes following the susceptible-infected (SI) model [3], we identify the following
properties.

Let S, denote the set of observed susceptible nodes and I, the set of observed infected
nodes.

e Property 1: If removing all nodes in S, from the network disconnects the network,
then one of the disconnected components contains all of the infected nodes

e Property 2: Let S € V be a cut set that divides I, into multiple components, then at
least one node in S is infected
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To prove the correctness of the properties, we state and prove the following theorems:
Theorem 1. In the SI model, all infected nodes reside in one connected component.

Proof. In the SI model, a node can be infected only by its infected neighbors. Therefore,
all infected nodes are connected to the source node through at least one path that consists
of infected nodes, i.e., at least one path (via the source node) exists between every pair of
infected nodes. This means that all infected nodes are in one connected component. [

Theorem 2. In the SI model, removing all susceptible nodes yields a single component
consisting only of infected nodes.

Proof. As shown in the proof of Theorem 1, every pair of infected nodes is connected
by a path consisting only of infected nodes. Removing all susceptible nodes in the net-
work cannot disconnect such a path between the pair of infected nodes. Thus, two
infected nodes are always connected to each other even after removing some or all sus-
ceptible nodes. Since every pair of infected nodes is connected after susceptible nodes
are removed, by definition they belong to a single connected component. Consequently,
Property 1 is proved by Theorem 1 and Theorem 2. O

Using Theorem 1, we prove Property 2 as follows:

Proof. of Property 2 Based on the Theorem 1, the nodes in I, reside in one connected
component. Let v; and v, denote nodes in I, that belong to different components discon-
nected by cut set S. Since v; and v; are in one connected component before the connected
component is divided by the nodes in S, a path that consists of infected nodes exists
between v; and v,. By the definition of cut set, any path between v; and v includes at
least one node in S. That is, at least one node in S is infected. O

As an example, consider the topology shown in Figure 1. Removal of node 5, which is
observed and susceptible, divides the graph into two components, {1, 2, 3,4} and {6,7}.
Only component {1, 2, 3,4} contains infected nodes (Property 1): we can determine that
nodes 6 and 7 are susceptible (deterministic susceptible nodes). Observed infected nodes
{1,4} reside in two components when nodes 2 and 3 are removed, which have not been
observed. Because the removal of nodes 2 and 3 places infected nodes 1 and 4 in distinct
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Figure 1 Example topology: Red nodes and white nodes represent infected and susceptible nodes,
respectively. Dotted circles (nodes 2, 3, 6, and 7) show nodes with unknown infection state, and full circles
(nodes 1,4, and 5) show nodes with known infection state.
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components, node 2 and/or node 3 must be infected (Property 2). Using Property 1,
we can reduce the number of nodes whose states are unknown by ignoring nodes in
components that can be isolated by healthy nodes. In the rest of this paper, we focus only
on the nodes whose states remain unknown after applying Property 1. Although Property
2 does not provide a direct way to determine unknown infection states, it points to the
importance of particular nodes in possibly infecting known infected nodes.

These properties hold under the assumption of the SI model and the existence of only
one source of the infection. If multiple sources exist, infected nodes can be present in
multiple connected components; thus, a partially observed set of infected nodes is not
guaranteed to reside in one connected component. If an epidemic propagates according to
the susceptible-infected-recovered (SIR) model [3] where a node can recover and cannot
infect neighbors after the recovery, the properties hold by treating recovered nodes as
infected nodes. To this end, we need to know the history of infected state changes. Since
we seek to solve the problem without any temporal information, we focus on the SI model
in the rest of this paper. In future work, we will investigate propagation properties that
can be utilized for classifying latent infection states under more extensive assumptions
such as multiple sources and different epidemic models.

Infection betweenness centrality
Let G’ be a subgraph constructed by removing all nodes that are susceptible according to
Property 1. The number of paths of length > 0 between a pair of nodes (i, /) in G/, NLS-V) ,
is
(rn _
Ny = (Ar)ij ’

where A is the adjacency matrix of G'.
Suppose that each path of length r is given a weight & > 0; then

00 00
Nij = ZarNiY) = Z (OtrAr)ij .
r=0 r=0

is the weighted sum of paths from i to j. We can write this expression in matrix notation
o0
N=) oA =I-ad)""
r=0

Let N, (i,j) denote the weighted sum of paths from node i to j through node u. Given
G" = G — {u}, we calculate N,(i,)) by subtracting the weighted sum of paths from i to
jin G” from the sum in G’; however, constructing G” and performing the inverse opera-
tion for N of each G” requires additional computation. Therefore, we resort to a simple
approximation N, (i,j) &~ Nj, x N;. By summing over all possible nodes # € V, we define

My =) Nu(i,j) = ) NNy = (N?); V(i,)) € E.
ueV ueV
We define the infection betweenness of node u between two infected nodes i and j as:
Ny (@, )
Mi]’

B, (i,)) =

’

which is the fraction of the weighted sum of paths from i to j through u over the total
weighted sum of paths from i to j; thus, node u is more likely to be infected by node i or j as
B, (i,j) increases. We assume that B, (i, j) is the probability that node u is contaminated by
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node i or j and define infection betweenness centrality of node u given the set of observed

infected nodes as:

Pawy=1- [] (1-BuG)), (1)

ijel,, i#f

where I, is the set of observed infected nodes.

Infection state estimation
Now, we introduce several classifiers that use infection betweenness centrality and other
node features.

Node features

As features for building classifiers, we consider five node characteristics that are available
using information regarding the network topology and the observed nodes in addition
to infection betweenness centrality, P defined in Equation 1. The first five features are
the following: degree normalized by the maximum degree in the network D, observed
infected neighbor ratio R (the fraction of infected neighbors in observed neighbors),
betweenness centrality C?), closeness centrality C“), and eigenvector centrality C© [3].

Algorithms for building classifiers
We choose four algorithms for building infection state classifiers, which are often used
for a classification problem such as traffic classification [4-6], as follows:

Naive-Bayes (NB, NBK). Under the assumption that there are no correlations between
features given the class (infection state) variable, NB derives a conditional probability for
the relationships between the attribute values and the class. To this end, NB must esti-
mate the distribution of feature values. However, continuous valued features can have a
large range and it is hard to derive the unbiased distribution from the observed frequency
distribution. In order to address this problem, NB assumes that values of each feature
follows a particular distribution such as a Gaussian distribution [1].

We evaluate the performance of NB to classify the states of unobserved nodes as well as
Naive Bayes using kernel density estimation (NBK); kernel density estimation uses multi-
ple (Gaussian) distributions, and is generally more effective than using a single (Gaussian)
distribution [1].

C4.5 Decision tree (C4.5) constructs a decision tree model in which each internal node
represents a test on features, each branch an outcome of the test, and each leaf node a
class label [2]. In order to use a decision tree for classification, a given tuple (whose class
we want to predict), corresponding to node features, walks through the decision tree from
the root to a leaf. The label of the leaf node is the classification result.

We also consider a classifier that combines the predictions of multiple classifiers. The
simplest way to combine predictions of various classifiers is to take a vote by averag-
ing their estimates. The problem with voting is that it is not clear which classifier is to
be trusted. To overcome this limitation, stacked generalization, or stacking for short,
uses a metalearner that replaces the voting procedure. After all of the other classifiers are
trained using the training set, stacking again trains the metalearner as a classifier for a
final decision using all predictions of the other classifiers as additional features; the met-
alearner itself is a trained classifier, such as NB and C4.5, which is used to discover which
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classifiers are most reliable [7]. In ‘Stacking’ section, we examine stacking that combines
the predictions of NB, NBK, and C4.5.

Experimental results

To test our approach, we use datasets from several real-world networks. We classify the
datasets into three categories — biological, collaboration, and device networks: YEAST
(biological), GRQC, HEPTH (collaboration), POWER, and OREGON (device) as described
in Table 1. We run batches of simulations for each network while varying the fraction of
observed nodes from 5% to 25%. In each run, we simulate an SI cascade starting at a ran-
domly selected seed node with infection rate A = 0.5 until 10% of nodes are infected. The
parameter « of infection betweenness centrality is set to 0.01 to guarantee that it is less
than the reciprocal of the largest eigenvalue of the adjacency matrix of the reduced graph
(the condition that & must satisfy for the sum N in the equation of infection betweenness
to converge). If a network has multiple connected components as does YEAST, we assume
that an epidemic starts at a node in the largest connected component. In order to evaluate
accuracy, we use three metrics: precision, recall, and F-measure [7].

e Precision: the fraction of correctly classified nodes in nodes whose state is classified
as infected.

® Recall: the fraction of nodes whose state is classified as infected out of all infected
nodes.

® F-measure: a measure to consider both precision and recall in a single metric by
2><precision><recall)

taking their harmonic mean ( precision-frecall

Infection state determined by propagation property
Our first set of experiments investigates how many nodes can be handled by using Prop-
erty 1. We denote the nodes whose infection states can be fully determined using Property
1 as deterministic nodes. Figure 2 presents the average proportion of deterministic nodes
in the set of unobserved nodes according to the fraction of observed nodes.

We observe that in all networks, the average proportion of deterministic nodes
increases as more nodes are observed. This is because by removing more observed sus-
ceptible nodes from the network, we are more likely to divide the network into multiple

Table 1 Topologies®

Topology Type n m c o s d® Description
YEAST Bio. 1,870 2,277 00672 3.1374 65044 19 Yeast Protein Interaction Network [16]
GRrRQC Collab. 5,242 28980 05296 79179 38317 17 Collaboration networks from ArXiv

general relativity and quantum
cosmology [17]

HEPTH Collab. 9877 51,971 04714 6.1864 3.0213 18  Collaboration networks from ArXiv
high energy physics [17]

POWER Device 4941 6594 00801 1.7913 21898 46 Topology of the Western States Power
Grid of the United States [18]

OREGON Device 11,174 23409 0.2964 33.0948 464017 10 Topology of Autonomous Systems
(AS) peering information inferred
from Oregon route-views between
31 March 2001 and 26 May 2001 [19]

an, m, ¢, o, s, and d are the number of nodes, the number of edges, clustering coefficient, standard deviation of degree
distribution, skewness of degree distribution [20], and diameter of network, respectively.
bd is calculated with the largest connected component if a network has multiple connected components.
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Figure 2 Proportion of deterministic nodes in unobserved nodes according to the fraction of observed nodes.

disconnected components, all but one of which contains no infected node. In POWER, the
proportion increases more steeply than in other networks as more nodes are observed.
This means that POWER is more easily disconnected than other networks as more nodes
are removed. In contrast, OREGON yields a smaller fraction of deterministic nodes com-
pared with other networks. Note that OREGON has exceptionally high degree skewness,
that is, there exist nodes that have a significantly larger degree than other nodes in ORE-
GON. Since the existence of such nodes makes it hard to disconnect OREGON, a lower
proportion of unobserved nodes can be identified by Property 1. Recall that OREGON is a
snapshot of the Internet and is a representative example of a scale-free network that fol-
lows a power-law degree distribution. Such a scale-free network is known to be resilient
to random attacks [8], that is, it is not likely to be disconnected even though randomly
selected nodes are removed. By regarding the removal of observed susceptible nodes
from the network as random attacks, we can expect that scale-free networks have a small
proportion of deterministic nodes by Property 1.

Incorporating infection betweenness centrality into classifiers

In this subsection, we evaluate the classifiers, described in Section ‘Algorithms for build-
ing classifiers’, using infection betweenness centrality and other node features. To apply
those algorithms to experiments, we use the WEKA software suite [9], often used to
perform various experiments with machine learning algorithms. For each topology, we
collect the features of unobserved nodes from 30 simulations and then aggregate the col-
lected feature instances into a training set. We run another 70 simulations to use as testing
sets.

Predictive features
To examine which features provide meaningful information for identifying latent infected
nodes, we investigate the performance of the classifiers with each feature when we create
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cascades that infect approximately 10% of the nodes in the network and then reveal
the infection states of 15% of the nodes. Revealed nodes are randomly selected to fairly
compare the predictive power of each feature by obtaining uniformly distributed feature
observation. Figure 3 shows the average F-measure of NB and C4.5 with each feature for
all the networks. The best feature will have an F-measure close to one (darker squares).
We observe that infection betweenness centrality (P) produces the darkest column show-
ing it to be the best predictive feature in both the NB and C4.5 classifiers over nearly all
networks. In the case of C4.5, observed infected neighbor ratio (R) yields a similar per-
formance to infection betweenness centrality. We also see that normalized degree and
closeness centrality (D and C(©)) are also meaningful features in several networks although
not as good as infection betweenness centrality. However, except for infection between-
ness centrality, the effectiveness of other features differs significantly depending on the

network and the classifier.

Effect of infection betweenness centrality

Figure 4a shows the F-measure of each classifier using all features except for infection
betweenness centrality. In all of the considered networks, the classifiers yield F-measure of
less than 0.5. We observe that the best classifier differs according to the network, but there
is no significant difference between the classifiers for each network. Note the significant
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Figure 3 Predictive power of each feature: (a) NB, (b) C4.5.
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Figure 4 Performance of classifiers: (a) F-measure when using all features except for P, (b) F-measure
enhancement by including P.

low performance of the classifiers in OREGON: the F-measure of even the best classifier,
NBK, is around 0.2. This is because the predictive power of each feature is low in OREGON
than in the other networks as shown in Figure 3. Next, we compare the classifiers using
all of the features to those excluding infection betweenness centrality in order to check
whether infection betweenness centrality can improve the performance of the classifiers.

Figure 4b shows the F-measure of each classifier using all six features minus the
F-measure of the same classifiers using five features (which excludes infection between-
ness centrality). Including infection betweenness centrality improves the performance of
all classifiers on all networks with the exception of C4.5 when applied to OREGON. This
shows that classification can be improved by combining infection betweenness central-
ity with the other node features. In particular, the inclusion of infection betweenness
centrality in classification enhances considerably the performance of the classifiers for
YEAST and POWER, e.g., using all features increases the F-measure of C4.5 applied to
YEAST and POWER by approximately 0.15 and 0.3, respectively. In the case of NB, adding
infection betweenness centrality enhances performance by almost the same amount
(around 0.3) regardless of the network. This is because the predictive power of infection
betweenness centrality for NB is similar across the networks as shown in Figure 3a. Note
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that the inclusion of infection betweenness centrality in C4.5 increases the F-measure
except when applied to OREGON. Even with OREGON, the inclusion of infection between-
ness centrality in C4.5 yields a negligible decrease in F-measure. We observe then that
for C4.5, infection betweenness centrality is by far the most important feature as adding
infection betweenness centrality to the feature set in all other cases increases classification
accuracy.

Prediction v.s. fraction of observed nodes

Figure 5 compares the average precision and recall of each classifier as a function of
the fraction of observed nodes. As before, we consider a case where 10% of nodes are
infected. Here, we also compare our classifiers against random classification (random),
which tosses a biased coin and with probability 0.1 (0.1 is the fraction of infected nodes)
to declare a node to be infected. As shown in Figure 5, our classifiers outperform random
both in precision and recall. Also, the precision and recall of our classifiers increase with
the fraction of observed nodes; as expected, increasing the fraction of observed nodes
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provides more information about the infection states of the unobserved nodes. C4.5
exhibits the best precision over all classifiers on almost all networks: the only exception is
POWER, where NBK yields slightly better precision than C4.5. Comparing the precisions
of each network, we observe that our classifiers show the best precision for POWER fol-
lowed by GRQC, HEPTH, YEAST, and OREGON; POWER is almost planar, likely making the
classification task easier. In the next section, we also explore how network characteristics
affect the performance of our classifiers.

Figure 5 shows that NBK vyields the best recall performance over all networks except
POWER. Note that the precision of NBK is lower than that of C4.5 except for POWER. This
means that NBK is more likely to classify unknown node states as infected, resulting in the
higher recall, but those classifications are not as accurate as those made by C4.5. All clas-
sifiers yield better recall performance when applied to POWER than the other networks.
Also, OREGON remains the most difficult network within which to correctly identify the
infected nodes. Even though all classifiers yield relatively high precisions (greater than
0.5) in OREGON, their recall performance in OREGON is less than 0.2, which is similar
to that of random guessing. That is, in OREGON, our classifiers make correct decisions
when they classify unknown states to infected, but many infected nodes are classified as
susceptible.

Impact of network characteristics

We now investigate the impact of network characteristics on the performance of our
classifiers (using all six features). To this end, we investigate the Pearson correlation coef-
ficient between the ranks according to the F-measure performance of the classifiers and
network characteristics for each network; for instance, NBK vyields the worst perfor-
mance when applied to OREGON; furthermore, OREGON has the largest degree skewness.
Table 2 presents the Pearson’s correlation coefficient [10] between the ranks of network
characteristics and F-measure performance.

Table 2 shows that the performance of the classifiers is strongly negatively correlated
with degree skewness and the standard deviation of degree. As degree skewness and the
standard deviation of degree decrease, the classifiers become more accurate. Interestingly,
there is little correlation between clustering coefficient and classification performance
even though an epidemic is more likely to propagate to nodes in a same cluster.

Combining decisions from multiple classifiers

We now investigate whether infection state estimation can be improved by combining
decisions from multiple classifiers. To check the performance of the combined classifier,
stacking, we compare its F-measure to that of C4.5 using all features, which typically
yields the best performance in our experiments. To find the best metalearner for infection
state estimation, we investigate the performance of stacking with different metalearners

Table 2 Correlation coefficient between ranks according to F-measure performance and
network characteristics

ch L. Correlation

aracteristic NB NBK and C4.5
Clustering coefficient 0.1 0.2

Standard deviation of degree -0.7 —-06

Degree skewness -10 —-09
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(C4.5, NB, or NBK). Similar to previous experiments, we utilize the stacking algorithm
implemented in the WEKA [9].

Figure 6 presents the measured F-measures of C4.5 and stacking with different met-
alearners. As shown in Figure 6, C4.5 yields worse performance as a metalearner than NB
and NBK except for POWER even though it performs best as a single classifier: for our
considered networks, NBK is the best metalearner to combine multiple decisions from
the classifiers with stacking.

We also observe that stacking improves performance for the networks where no clas-
sifier works well whereas it exhibits worse accuracy in networks where one classifier
notably outperforms others. For example, recall that in terms of F-measure, C4.5 signif-
icantly outperforms NB and NBK in POWER. In POWER, stacking with all metalearners
fails to achieve performance enhancement while in YEAST and OREGON stacking with
NB or NBK improves F-measure performance. Notice that the networks in which stack-
ing yields performance improvement, such as YEAST and OREGON, have a comparatively
high standard deviation in degree distribution and also large degree skewness, which
result in worse performance of a single classifier as shown in Table 2. This shows
that a classifier for estimating latent infection state can be adaptively chosen accord-
ing to observed network characteristics, e.g. applying stacking if the degree skewness is
larger than some threshold and otherwise using C4.5. Devising a strategy to select an
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appropriate classifier based on extensive experiments using more networks is a part of

our future work.

Related work

Several methods to detect the presence of network worms and rumor spreading nodes
have been proposed in the literature. However, there has been little rigorous work done
on inferring the infection state from incomplete data obtained at a relatively few observed
nodes without the aid of infection timestamps.

Shah and Zaman [11] studied the problem of finding the source of a computer virus in a
network. They focused on how to find the source among the set of infected nodes that are
observed, which is different from our goal. Based on their metric called rumor centrality,
they constructed a machine-learning estimator that finds the source exactly or within a
few hops in networks. They also analyzed the asymptotic behavior of their virus source
estimator for regular trees and geometric trees.

Sadikov et al. [12] present an estimation method of network properties, such as the
number of weakly connected components, given a sampled network. By formulating a
simple k-tree model and approximating it to the original network, their method can
estimate the properties of original networks; they showed that their method can accu-
rately estimate properties of the original network even when 90% of nodes are not
sampled.

Closely related to our work is that of Gomez et al. [13], who develop an algo-
rithm for inferring the topology of the network over which a diffusion propagates.
Given the observed times when nodes become infected, they determine paths through
which the diffusion most likely took, i.e., a directed graph where a contagion passed
through. In contrast, our work tries to identify the infection state of each unobserved
node given a limited number of nodes with known infection state and no infection
timestamps.

Zou et al. [14] developed an early detection system that can detect the presence of a
worm in the Internet by using Kalman filter. The proposed detection approach monitors
traffic data at ingress/egree point of a local network. Even with biased monitored data, it
can accurately predict the overall vulnerable population size and estimate how many hosts
are actually infected in the global Internet system. However, their goal is not to exactly
identify the infected nodes in networks.

Sawaya et al. [15] proposed a flow-based attacker detection method focusing on the
characteristics of attackers that send flows to both the object TCP port and generally
closed TCP port in the global network. Thus, we need to inspect the flows from each
node to identify whether it is from an attacker.

Conclusion

In this paper, we studied the problem of identifying infected nodes in a network with-
out individually inspecting all nodes in the network. Based on the well known SI model,
we reduce the problem space by utilizing the propagation properties in the model. We
examined how network characteristics affect the effectiveness of propagation properties
on reducing the problem space. Then, we defined the infection betweenness centrality for
identifying the latent infection states of nodes. Our empirical results show that the clas-
sifiers using the infection betweenness centrality along with other network-wide features
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outperform random guessing and the same classifiers without it. We analyzed the impact
of the amount of missing data as well as the impact of network characteristics on the
effectiveness of the classifiers. Our experimental study also shows that the infection state
estimation can be improved by combining multiple classifiers in networks with high
degree skewness such as OREGON. Devising a strategy to select an appropriate classifier
based on more extensive experiments is a part of our future work.
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