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Abstract

The critical node detection problem (CNDP) aims to fragment a graph G = (V , E) by
removing a set of vertices R with cardinality |R| ≤ k, such that the residual graph has
minimum pairwise connectivity for user-defined value k. Existing optimization
algorithms are incapable of finding a good set R in graphs with many thousands or
millions of vertices due to the associated computational cost. Hence, there exists a
need for a time- and space-efficient approach for evaluating the impact of removing
any v ∈ V in the context of the CNDP. In this paper, we propose an algorithm based on
a modified depth-first search that requires O(k(|V| + |E|)) time complexity. We employ
the method within in a greedy algorithm for quickly identifying R. Our experimental
results consider small- (≤ 250 nodes) and medium-sized (≤ 25, 000 nodes) networks,
where it is possible to compare to known optimal solutions or results obtained by other
heuristics. Additionally, we show results using six real-world networks. The proposed
algorithm can be easily extended to vertex- and edge-weighted variants of the CNDP.

Introduction
Detecting important or critical vertices in a graph/network has many important applica-
tions. Depending on the context, these critical vertices/nodes may be used to promote
or mitigate a diffusive process that is acting upon the network. If promoting a spreading
process, such as to spread market advertisements or public health warnings, the notion
of ‘critical’ refers to the identification of individuals who are most likely to be influential
spreaders and maximally permit information spread through the network. In such cases,
the selected individuals may be targeted for demonstrations and promotions or invited to
public events. For mitigation contexts, such as stopping the spread of a computer virus or
for the construction of stable power delivery networks, the identified vertices are those
whose removal from the graph will maximally limit diffusive spread.
Numerous definitions of what a critical node ‘is’ have been previously investigated,

including junctions in cell-signaling or protein-protein networks [1], highly influential
individuals [2], smart grid vulnerability [3], targeted vaccination for pandemic prevention
[4,5], or keys to decipher brain functionality [6]. In some contexts, an accurate mathe-
matical definition for a critical node, particularly for highly complex systems such as the
brain [7], may not yet exist. It is important to note that both promotion and mitigation
can often be defined in a mathematically similar manner. In this paper, we focus on the
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context of mitigation; however, the results are typically applicable for problems where the
goal is to maximally aid the diffusive process [8-11].
More specifically, in this paper, we consider the critical node detection problem (CNDP)

as defined by [12]. Given graph G = (V ,E) where |V | = n and |E| = m, ascertain (a
typically small) subset of vertices, R ⊆ V , |R| ≤ k, whose removal leaves the residual
graph G \ R with minimum pairwise connectivity, i.e.,

argmin
R⊆V

∑
Ci

(
|Ci|
2

)
(1)

where the sum is over all connected components Ci of the residual graph, and |Ci| indi-
cates the number of vertices in component Ci. The optimal network is therefore one that
is maximally fragmented and simultaneously minimizes the variance among the number
of vertices in the connected components. That is, the residual network will contain a rel-
atively large set of connected components, each containing a similar number of vertices.
This problem has been shown to be NP hard [12,13]. Figure 1 highlights an example
graph before and after removing all of its cut vertices (as an illustrative and simple strategy
for detecting critical nodes) and the associated CNDP solution.

Related work

In general, graph partitioning has been an extremely active area of research for decades
andwe do not attempt a comprehensive review of those works here. Rather, in this section,
we focus on the most related previous research to the CNDP and only highlight related
works on graph partitioning for completeness.
The case whereG is a tree structure has been examined and proven to beNP complete

when considering non-unit edge costs [14]. A polynomial-time dynamic programming
algorithm with worst-case complexity O

(
n3k2

)
for solving the problem with unit edge

costs was also provided and applied to variants of the CNDP [15]. In [16], an integer linear
programming model with a non-polynomial number of constraints is given and branch-
and-cut algorithms were proposed. A reformulation of the CNDP that requires �

(
n2

)
constraints was recently shown and optimal solutions for small networks were ascertained
[17,18].

(a) Original graph (b) Without cut vertices (c) CNDP solution

Figure 1 Visualizations of an initial input graph, residual graph, and corresponding CNDP solution.
Visualizing an (a) initial input graph, the (b) residual graph after removing all cut vertices in the original graph
(shown in red), and (c) the corresponding CNDP solution which highlights the fully connected subgraphs
implied by Equation 1.
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Heuristic solutions without provable approximation bounds have also been investi-
gated, but computation time for very large networks remains an important issue in these
methods as well. The CNDPwork of [12] utilizes a solution to themaximum-independent
set (MIS) problem as a starting point for a local search, repeating the process until
a desired termination criteria is reached. The algorithm is tested on a limited num-
ber of network structures with promising results. Two stochastic search algorithms are
employed in [19] that permit solutions to significantly larger networks (having up to
a few thousand vertices) to be solved within reasonable time and without significant
resources. Randomized rounding-based algorithms have been also proposed in [20,21]
but without approximation bounds (although, an instance-specific bound was derived).
AO(log n log log n) pseudo-approximation algorithm was proposed in [13].
The CNDP is related to a variety of other graph partitioning problems in the literature;

for instance, the minimum multi-cut problem, which aims to separate a set of source-
sink pairs by removing a subset of minimum weighted edges. AnO(log n) approximation
for general graphs is provided in [22]. Another well-studied graph partitioning problem
is the k-cut problem. Given an undirected weighted graph, the goal is to find a mini-
mum cost set of edges that separates the graph into at least k connected components. An
O(2 − 2/k)-approximation algorithm has been devised for this problem [23]. Classical
multi-way cut, multi-cut, and k-cut problems that include a budget constraint to limit the
number edges or vertices that can be cut have been studied in [24], where the authors also
propose the problem of maximizing the number of connected components. In [25,26], an
O(

√
n)-approximation algorithm is presented for the sparsest cut, edge expansion, bal-

anced separator, and graph conductance problems, all of which are based on the notion
of graph partitioning. These approaches also minimize the size of the interface between
the resulting components. Their approach is based on semi-definite relaxation to these
problems in concert with expander flows and has influenced much subsequent research.
Among themany problems that have been defined, some of the most similar include the

following. The goal of the minimum contamination problem is to minimize the expected
size of contamination by removing a set of edges of at most a given cardinality [27]. A
variant of this problem is also proposed with the goal of minimizing the proportion of
vertices in the largest resulting network, and a bi-criteria algorithm is given that is able
to achieve an O

(
1 + ε, 1+ε

ε
(log n)

)
approximation. In [28], a game-theoretic analysis is

conducted that requires a solution to a generalization of the sum-of-squares partitioning
problem [4]. Exact methods for link-based vulnerability assessment using edge disruptors
have also recently been investigated [29,30].
The remainder of this paper is organized as follows. The proposed greedy algorithm and

its motivation are provided in Section ‘The proposed algorithm’. Section ‘Experimental
results’ provides experimental results on small- and medium-sized benchmark networks,
as well as six real-world networks, and a comparison to the greedy MIS-based algorithm
of [12] is conducted. Conclusions are then presented in Section ‘Conclusion’.

The proposed algorithm
In this section, we propose a greedy algorithm for the CNDP. Greedy algorithms are typ-
ically less computationally intensive than other strategies such as dynamic programming
but usually sacrifice solution quality to attain this speed. One exception occurs in the case
of maximizing a submodular function, where it was shown in [31] that unless P = NP , a
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greedy algorithmwill yield the optimal approximation. It is easy to verify that the CNDP is
not a submodular function. However, the greedy approach is still an appealing framework
in the CNDP context, especially for very large networks.
We first describe a linear-time algorithm to evaluate the impact of removing each v ∈ V

and then use this within a greedy algorithm for determining a solution to Equation 1. The
speed of the greedy algorithm is further enhanced by a priority-queue-based implementa-
tion that yields significant practical performance increases over a naive implementation.
Our algorithm has a running-time complexity ofO(k(n+m)) and is similar to theO

(
kn2

)
approach used for the maximum cascading algorithm in [3]. Both algorithms are based
on Tarjan [32].
For large networks with many thousands or millions of vertices (and edges), a compu-

tationally efficient approach to minimizing the CNDP objective is required. Selecting a
critical subset R ⊂ V from a single observation of the network may be easily deceived
due to the influence of cut vertices, as indicated in Lemma 1 [12]. That is, selecting R
in a sequential fashion may better allow for the discovery of a set that is more likely to
fragment the network by detecting cut vertices that are not obvious unless a sequential
approach is taken.

Lemma 1. Let M1 and M2 be two sets of partitions obtained by deleting D1 and D2 sets
of vertices from graph G = (V ,E), where |D1| = |D2| = k. Let L1 and L2 be the number
of components in M1 and M2 respectively and L1 ≥ L2. If Ch = C�, ∀h, � ∈ M1, then we
obtain a better objective function value by deleting the set D1 (where Ch is the number of
vertices in connected component h).

Thus, we propose the sequential greedy approach shown in Algorithm 1. At each iter-
ation, the vertex whose removal will have the largest decrease on the objective function
(Equation 1) is selected for removal and added to set R, where f () computes the CNDP
objective value. Computation of line 3 is a bottleneck to solving large-scale problems.
Naively, it implies removal of each v ∈ V \ R and re-evaluation of the objective function,
which is too computationally intensive.

Algorithm 1 High-level pseudocode for GREEDY-CNDP.
Require: k > 1 upper limit on the number of vertices to remove
1: Let R = ∅ be a set of removed vertices.
2: repeat
3: select v∗ = argminv∈V f (G \ {v∗})
4: remove v∗ from G, i.e., G = G \ {v∗}
5: R = R ∪ {v∗}
6: until |R| = k or |E| = 0

Instead, we provide an O(k(n + m)) algorithm based on a modified depth-first search
(DFS). On a practical note, the iterative (versus recursive) algorithm implementation of
DFS should be used because sufficiently large networks will quickly encounter stack over-
flow errors during the search. Performing a DFS on G will construct an equivalent graph
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representation called a DFS-tree DFS(v) rooted at arbitrary v. Figure 2 provides an exam-
ple of the conversion between an original graph G to a DFS tree rooted at v = 0. Our
subsequent solution is derived from observations of the DFS tree.

Observation 1. Ignoring back edges, a leaf vertex v ∈ V of a DFS tree has no children.
Hence, the subtree rooted at v contains a single vertex whose deletion will not create any
new connected components in the residual graph. That is, G and G \ {v} contain the same
number of connected components.

Observation 2. Let δ(v) be the set of children vertices of v in the DFS tree, ignoring back
edges. Then, the total number of vertices descendant from v through these children can be
recursively defined as

s(v) =
∑

w∈δ(v)

⎧⎨
⎩s(w), if w is an internal or root vertex

1, if w is a leaf
(2)

So, upon removing a vertex v∗ ∈ V , the residual graph will contain at least the same
number of connected components as the previous graph. Now, let T(v) denote the set of
subtrees of v in a DFS tree, as represented by the immediate descendant of v. For instance,
in Figure 2b, T(3) = {4} and for ti ∈ T(v), |ti| = 5. We can then make the following
observations.

Observation 3. Each internal vertex v of the DFS tree will either be a cut vertex or not.
Removing v∗ = v will obviously result in an updated objective value, but if v∗ is a cut vertex
then the residual graph G(V \ {v}) will contain a nonempty T(v∗) because at least one new
connected component will be split from G. Ignoring back edges from v∗, the contribution of
the children subtrees to the new objective value is computed as

∑
ti∈T(v∗)

(
|ti|
2

)
(3)
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(b) DFS Tree

Figure 2 Equivalent (a) original graph and (b) DFS tree. Back edges are indicated as dashed arrows in
DFS(0). The shaded areas correspond to resulting connected components if vertex v = 3 is removed from
the graph. A traditional application of DFS is to detect cut vertices (i.e., articulation points), which forms the
basis for our approach.
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where |ti| is the number of vertices in DFS subtree ti ∈ T(v∗). As will be shown below, this
sum can be straightforwardly computed for each vertex during the backtracking stage of
DFS under the presumption that the current vertex being explored may be the next vertex
removed.

Observation 4. If v is a cut vertex, then it will be identified as being so after visiting the
entire subtree of each of its children. However, the order in which vertices are visited during
the DFS does not guarantee that all non-descendant vertices in the graph will be explored
before reaching v. Hence, the number of vertices in the ancestor DFS tree of v must also
be recorded. This is accomplished by computing the difference between the total number
of vertices in the graph and those descendant vertices of v, i.e. |V (v)| − s(v), where V (v)
indicates the set of vertices reachable from v. V (v) is the size of the connected component
to which v belongs and can be easily monitored at run time.

The above four observations imply that v∗ of Algorithm 1 can be computed in linear
time by augmenting a DFS for identifying cut vertices to additionally calculate the impact
of removing any vertex v ∈ V . That is,

v∗ = argmin
v∈V

f (v) = argmin
v∈V

⎛
⎜⎜⎜⎜⎜⎝f

⎛
⎝|V (v)| − s(v) − 1︸ ︷︷ ︸

ancestors

⎞
⎠ +

∑
ti∈T(v)

(
|ti|
2

)
︸ ︷︷ ︸

descendants

⎞
⎟⎟⎟⎟⎟⎠ (4)

which is accomplished during the backtracking phase of DFS. Pseudocode for imple-
menting the approach is given in Appendix A. Since DFS has running time complexity of
O(n + m) and Equation 4 can be executed in constant time per node during the search,
then the proposed greedy algorithm requiresO(k(n+m)) complexity to remove k vertices
from G.
We make two further observations that will yield significant practical improvements

by storing each connected component in a priority queue, indexed by the vertex whose
removal in the component will most minimize Equation 1.

Observation 5. Let Q ⊆ V \ {v∗} be the subset of vertices not reachable in graph G from
vertex v∗. Then, it is not necessary to recompute the impact of removing any w ∈ Q from
G \ {v∗} since v∗ and each w belong to different network components. That is, only vertices
u ∈ V (v∗) must be re-examined if v∗ is deleted from G.

Observation 6. Each connected component Ci of graph G can be identified by a root
vertex associated with a DFS tree. For each Ci, there will exist a vertex v′

i whose removal
maximally decreases the objective function value. Let v′

i be the root of the ith DFS tree
associated with Ci. This requires no significant computational or memory overhead since
upon deletion of v∗, the subgraph to which it belongs must be re-evaluated with respect to
the objective function. The proposed algorithm in Appendix A will successfully determine
v′
i.

Observations 5 and 6 indicate that further practical improvements are possible. Specif-
ically, a priority queue can be utilized to store the set of connected components C, which
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are represented and ordered by their respective root vertices and their impact on the
objective value if removed, respectively. For each Ci, removing its root vertex will most
significantly decrease the CNDP objective value versus any other vertex in the same
component. After the component to which v∗ belongs is removed from the queue, it
will be re-evaluated using the modified DFS search and any newly resulting connected
components will be added to the priority queue with an appropriate root node. Depend-
ing on the queue implementation, maintaining priority should require no more than
O(log |C|). The per-iteration run time will significantly improve as the number of vertices
in each connected component decreases. Effectively, the expected computation time will
be ≈ k

(
(n+m)

|C| + log |C|
)
, although the worst case remains O(k(m + n)). Algorithm 2

outlines the priority queue-based approach.

Algorithm 2 Fast vertex removal for CNDP.
1: find q ∈ G using EVALUATE (Appendix A)
2: add q to priority queue
3: R = ∅
4: repeat
5: remove v∗ from priority queue
6: G = G \ {v∗}
7: R = R ∪ {v∗}
8: mark v∗ as deleted
9: while v∗ has unvisited neighbors do

10: get b the next unvisited neighbor v∗

11: find w ∈ G, rooted at b using EVALUATE
12: add w to the priority queue
13: end while
14: until k vertices have been removed from G

Experimental results
We evaluate the proposed algorithm on three sets of data sets: (1) small networks where
optimal solutions or bounds are known [20], (2) medium-sized benchmark networks [19],
(3) six real-world networks. The real-world benchmark networks and their properties are
given in Table 1. All networks are unweighted and simplified before use (no self-loops or
multi-edges).

Table 1 Benchmark networks and their properties
Network Type |V| |E| ρ δ ξ

Conmat [33] Collaboration 23,133 93,439 0.264 15 0.134

Ego [34] Social 4,039 88,234 0.519 8 0.064

Flight [35] Transportation 2,939 15,677 0.255 14 0.051

Powergrid [36] Power grid 4,941 6,594 0.103 46 0.003

Relativity [33] Collaboration 5,242 14,484 0.630 17 0.659

Oclinks [37] Social 1,899 13,838 0.057 8 −0.188

|V | and |E| are the number of vertices and edges, ρ is the global clustering coefficient, δ is the diameter, and ξ is the degree
assortativity.
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We compare results to the most similar approach in literature [12], which is anO
(
n2m

)
greedy algorithm based on MIS and local search. Unless stated otherwise, the MIS-
based algorithm is run for k iterations (for similarity to the proposed algorithm) with
one iteration during the local search phase. For medium-sized real-world networks, our
experimental results also compare Algorithm 1 to three centrality measures used in
greedy sequential fashion such as in [38]. These are used only as a base-level compari-
son for the quality of the greedy approach. We consider node degree, PageRank [39], and
authority score [40] centrality attacks. The computer used for simulations was a 3.4 GHz
Intel i7 processor with 16 GB RAM, running Linux Mint Debian Edition.

Small networks

Even though the purpose of the proposed algorithm is to provide a means of determining
a set of critical nodes in very large networks, an analysis of its performance on small
networks is useful to gauge approximation ability. The running time in all cases in neg-
ligible (less than 1 s). The MIS-based approach is also implemented for comparison and
required up to 30 s to complete. There are four network types, and the number of nodes
to remove is varied: k = {5, 10, 15, . . . , 50}. Gurobi Solver 5.6 [41] is used to determine
the upper and lower bound, within a 3,000-s time limit.
The results are summarized in Table 2 and Figure 3. The main difference between

the two greedy algorithm results is that for highly connected networks, the MIS-based
approach seems to be more useful; whereas the proposed algorithm is better suited for
sparse networks.

Medium-sized networks

Table 3 presents results using 16 benchmark instances found in [19]. The table indicates
the results of the PBIL algorithm [19], which is a population-based search, as well as
sequential node removal using maximum node degree and highest PageRank as a heuris-
tic objective, respectively. Of course, for these latter two experiments, the reported result
indicates the CNDP objective of Equation 1. Values indicated in bold are the best results
among those observed for each problem instance.
The benchmark results in Tables 2 and 3 reveal two insights. Firstly, sequential

algorithms may perform poorly when compared to non-sequential algorithms in the
instance of many potential solutions of equal quality. This is especially observed from the
Watts-Strogatz network results. In these cases, the networks are highly connected and so
there is unlikely to be many cut vertices. Moreover, as the networks are more sparse, the
greedy approach becomes increasingly desirable. These two insights are founded in the
same observation.

Observation 7 (The Problem of Ties). Highly connected graphs with few cut ver-
tices will admit numerous candidate solutions, each with similar objective value. Due to
sequential-based approaches lacking ability to investigate sets of potential solutions, these
algorithms are best suited for sparse graphs.

The first consequence of The Problem of Ties concerns an explanation for the observed
behavior, while the second leads to a conjecture.
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Table 2 Results of the proposed greedy algorithm (SEQ) versus theMIS-based algorithm
and upper (UB) and lower bound (LB) as determined by Gurobi 5.6 solver within 3,000 s

Graph k LB UB SEQ MIS Graph k LB UB SEQ MIS

ER125 5 405 405 851 715 ER150 5 4,277 4,277 4,972 5,471

ER125 10 133 133 151 199 ER150 10 837 2,301 2,678 4,862

ER125 15 66 66 76 81 ER150 15 347 347 976 890

ER125 20 36 36 44 43 ER150 20 167 167 220 410

ER125 25 20 20 23 24 ER150 25 94 94 101 201

ER125 30 9 9 12 15 ER150 30 58 58 69 124

ER125 35 3 3 7 10 ER150 35 36 36 44 79

ER125 40 0 0 2 5 ER150 40 22 22 29 52

ER125 45 0 0 0 0 ER150 45 14 14 16 36

ER125 50 0 0 0 0 ER150 50 8 8 11 22

BA200 5 818 818 818 1,073 BA250 5 782 782 782 1,235

BA200 10 297 297 298 668 BA250 10 342 342 342 626

BA200 15 156 156 156 413 BA250 15 221 221 221 462

BA200 20 104 104 104 304 BA250 20 143 143 143 355

BA200 25 70 70 70 206 BA250 25 105 105 105 293

BA200 30 48 48 48 164 BA250 30 77 77 77 243

BA200 35 33 33 33 135 BA250 35 60 60 60 213

BA200 40 20 20 22 114 BA250 40 45 45 45 183

BA200 45 15 15 17 98 BA250 45 30 30 30 158

BA200 50 10 10 12 77 BA250 50 21 21 23 135

WS100 5 2,766 4,465 4,465 4,465 WS125 5 4,578 7,140 7,140 7,140

WS100 10 1,054 2,941 4,005 4,005 WS125 10 1,796 6,005 6,555 6,555

WS100 15 572 945 3,570 1,784 WS125 15 892 3,642 5,995 5,995

WS100 20 379 495 3,160 1,107 WS125 20 618 3,187 5,460 5,460

WS100 25 234 300 2,775 578 WS125 25 433 708 4,950 1,719

WS100 30 176 219 2,415 414 WS125 30 309 467 4,465 758

WS100 35 132 148 2,080 271 WS125 35 239 344 4,005 480

WS100 40 98 103 1,770 159 WS125 40 195 246 3,570 370

WS100 45 70 72 1,485 94 WS125 45 152 180 3,160 278

WS100 50 48 48 1,225 67 WS125 50 117 137 2,775 207

FF125 5 3,237 3,643 3,874 5,280 FF150 5 5,895 7,789 7,660 7,789

FF125 10 872 1,805 2,202 2,588 FF150 10 2,362 9,591 6,252 6,711

FF125 15 318 318 1,198 515 FF150 15 1,491 7,893 5,087 5,819

FF125 20 165 165 773 249 FF150 20 911 3,909 4,043 5,192

FF125 25 111 111 422 158 FF150 25 561 1,967 3,359 4,319

FF125 30 73 73 118 103 FF150 30 339 1,237 2,322 3,869

FF125 35 46 46 65 69 FF150 35 216 380 1,874 693

FF125 40 29 29 40 45 FF150 40 159 174 1,275 344

FF125 45 16 16 25 31 FF150 45 105 117 793 240

FF125 50 11 11 15 21 FF150 50 79 79 321 155

The networks are those presented in [20].

Theorem 1. Assume G is sufficiently large and connected such that randomly removing
k vertices is, with very high probability, unlikely to reveal v∗. Then, the worst-case problem
instance for the proposed greedy algorithmwill result when G = (V ,E) contains no cut ver-
tices initially but a single vertex v∗ exists whose removal immediately uncovers a sequence
of k − 1 residual graphs that each contain a cut vertex and whose union forms the optimal
choice for set R.
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Figure 3 Plotting the results of Table 2.

Proof. Suppose there exists an optimal solution for the CNDP onGwith cut-set R, |R| =
k. Moreover, assume the residual graph H = G \ R contains z connected components of
equal size. Let a solution obtained by the greedy approach be composed of y components.
Then, the objective function can be written as, for z ≤ y,

z
(

|Ci|
2

)
≤

z∑
i=1

(
|Ci|
2

)
≤

y∑
j=1

(
|Cj|
2

)
(5)
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Table 3 Summary benchmark results comparing PBIL [19], degree and PageRank-based
sequential algorithms, and the proposed greedy approach

Problem |V| |E| K PBIL Degree PageRank Greedy

ErdosRenyi 235 350 50 6,700 1,086 1,953 3,011

ErdosRenyi 466 700 80 44,255 9,299 25,892 28,994

ErdosRenyi 941 1,400 140 225,576 123,947 113,752 116,135

ErdosRenyi 2,344 3,500 200 2,009,132 1,851,950 1,708,603 1,395,584

BarabasiAlbert 500 499 50 892 202 236 199

BarabasiAlbert 1,000 999 75 3,057 622 689 559

BarabasiAlbert 2,500 2,499 100 28,044 4,258 4,808 3,726

BarabasiAlbert 5,000 4,999 150 146,753 13,038 13,971 10,216

WattsStrogatz 250 1,246 70 13,768 16,110 16,110 16,110

WattsStrogatz 500 1,496 125 53,779 70,125 62,149 69,751

WattsStrogatz 1,000 4,996 200 308,596 319,600 319,600 319,600

WattsStrogatz 1,500 4,498 265 703,241 761,995 700,474 761,995

ForestFire 250 514 50 886 547 403 217

ForestFire 500 828 110 1,904 902 490 293

ForestFire 1,000 1,817 150 9,594 7,796 2,609 1,414

ForestFire 2,000 3,413 200 12,569 27,451 11,419 5,002

Italic values indicate best solution per problem instance. Problem instances are those in [19].

If k vertices are removed in both the optimal and greedy solutions, then if greedy never
encounters v∗ or reveals any cut vertices,

z
(

|Ci|
2

)
= z

( |V |−K
z
2

)
and

y∑
j=1

(
|Cj|
2

)
=

(
|V | − K

2

)
(6)

The exact value of z will depend on the number of new connected components created
as each vertex is removed (after the initial v∗). Of course, no better optimal solution can
be constructed in this circumstance. Moreover, the greedy algorithm will attain the worst
possible objective value since no connected components will be created as a result of
removing k vertices.

Equation 6 also reveals insight into why highly connected networks are more difficult.
That is, why the problem of ties is confounding. The difference between these two values
will be smallest if many cut vertices exist, with few ties between solutions. Hence, we
conjecture that reducing the Problem of Ties will result in higher quality solutions.

Real-world networks

To compare the quality of the greedy approach we vary k as 0.01, 0.05, 0.10, 0.15, 0.20,
and 0.25 proportion of each network, respectively. As with medium-sized networks,
we compare results to methods of network attack (degree, PageRank, and Kleinberg’s
authority score) in a similar greedy sequential approach. These strategies have been
recognized as potentially useful for network fragmentation when considering other
robustness measures such as minimizing the largest network component [38]. It should
be noted that betweenness and closeness centrality, which are often also employed to test
network vulnerability, are too computationally inefficient to be considered for these net-
works. We also compare the results to the MIS-based greedy heuristic. However, due to
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excessive computation time, we only report the result after one iteration of theMIS-based
algorithm.
Table 4 compares the objective value for k = {0.10n, 0.20n} of the vertices in each

network, respectively. The greedy approach outperforms the centrality-based strategies
in all cases. The MIS-based approach is competitive with SEQ, but the computation
time requirements limited its ability to discover a solution for the conmat network (see
Table 5). Figure 4 plots the same experimental results over the entire range of k values for
each network where the significance of the greedy solution quality is better highlighted
versus the centrality-based approaches. The proposed algorithm is especially destructive
for K < 0.15n. All of the networks except the ego network exhibit a power-law degree dis-
tribution, which seems to be a major influence on the ability of fragmenting the networks
for centrality-based approaches. The greedy algorithm significantly outperforms in these
situations. Moreover, the global clustering coefficient, diameter, or degree assortativity do
not seem to have such an obvious impact as the degree distribution does.
Running time (in milliseconds) for these networks was also investigated and shown in

Table 5. In order to highlight the benefit of the priority queue-based solution, we sequen-
tially remove vertices using both a naive greedy method that operates over the entire
graph at each iteration (termed slow greedy) and the proposed fast greedy approach
(SEQ), which will only consider vertices in the component that contained the most
recently removed vertex. The significant improvement of the priority queue is obvious.
The greedy approach requires similar time to run as PageRank, although optimizing our
implementation may further reduce or surpass this gap. As expected, sequentially remov-
ing vertices based on node degree is by far the fastest method. The MIS-based approach
is significantly more time consuming, which is expected based on its O

(
n2m

)
running

time behavior.

Conclusion
In this paper, we proposed an efficient greedy heuristic for identifying critical ver-
tices in networks whose removal leaves the residual network with minimum pairwise

Table 4 Comparison of the CNDP objective value after removing 10% and 20% of vertices
from each network in Table 1

Problem K SEQ Degree PageRank Authority MIS

Comnat
2313 58,796,393 103,398,683 87,630,163 126,804,602 NA
4627 83,686 90,610 92,242 7,399,785 NA

Ego
404 2,717,347 5,339,614 3,816,109 6,320,816 2,192,636
808 1,848,740 2,070,535 2,886,709 3,438,031 903,441

Flight
294 322,527 484,331 467,962 1,014,305 77,777
588 1,457 1,698 1,715 1,567 2,626

Powergrid
494 22,182 51,508 212,369 56,815 25,253
988 3,639 4,580 14,744 3,771 5,378

Relativity
524 224,010 1,628,337 302,309 3,382,195 23,620
1,048 4,089 4,896 9,023 6,390 6,163

Oclinks
190 637,936 785,662 758,328 835,297 746,085
380 218,215 258,277 246,876 306,289 402,824

SEQ-based results are those obtained by the proposed algorithm. The MIS-based approach was unable to arrive at solutions
within 40 h for the conmat networks.
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Table 5 Comparing the run times (in milliseconds) of each approach

Problem Slow greedy SEQ Degree PageRank Authority MIS

Conmat 1,732,841 21,229 379 16,810 26,027 126,101,000

Ego 7,036 2,129 92 1,480 3,750 111,931,000

Flight 10,199 207 25 144 231 3,273,000

Powergrid 29,896 252 41 288 3,470 22,292,000

Relativity 43,679 421 44 180 601 43,016,000

Oclinks 2,301 143 11 114 360 1,734,000

The proposed greedy approach is considered for both cases of using the queue-based strategy (fast greedy) or not (slow
greedy).

connectivity. We provided arguments for an upper-bound running time of O(k(n + m)),
although the practical performance is significantly improved using a priority-queue-
based strategy for storing connected components. We utilized both benchmark and
larger networks with many thousands of nodes, where finding solutions using current
approaches typically requires a significant amount of time. The resulting greedy algorithm
is shown to yield better results than common centrality measures for large graphs while
being computationally competitive with degree-based greedy vertex removal. The results
on benchmark graphs led to the abstract construction of a worst-case input graph, which
was a consequence of identifying The Problem of Ties. Interesting future work may aim
to reduce the impact of this issue by incorporating additional information that is highly
correlated with the objective in order to better identify potentially interesting candidate
nodes for removal.
The algorithm proposed in this paper was given without any proof of approximation

quality, only indicating the extreme circumstances of problem instance. Future work will
prove this bound. Moreover, experimentation on different network types andmuch larger

Figure 4 Performance of the SEQ and three centrality-based strategies on the objective value. In all
cases, the greedy approach proposed in this paper yields the most desirable result.
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sized networks, including run time, should also be conducted. Potential improvements in
run time may be attainable if within-connected component objective function evaluation
was parallelized or a relationship between the nodes can be identified so that only anO(n)

process is required to update the impact of a vertex removal. Extensions to vertex- and
edge-weighted variants of the CNDP are also possible.

Appendix

A Evaluating objective function inO(|V| + |E|)

Algorithm 3 The pseudocode for EVALUATE.
Require: Stack S, DFN, LOW, COUNTED, PARENT, CUT_SIZE, ST_SIZE, IMPACT
1: num = 1, push(root,S)
2: repeat
3: Vertex v = peek(S)
4: y = next unvisited neighbour of v
5: if y exists then
6: mark y as visited, push(y,S)
7: DFN[y] = num; LOW[y] = DFN[y]; PARENT[y] = x;
8: ST_SIZE[y] = 1; IMPACT[y] = 0
9: num = num + 1

10: else
11: pop(S) and add v to list of removed vertices
12: for all neighbors w of v do
13: if DFN[w] < DFN[v] and PARENT[v] �= y then
14: LOW[v] = min(LOW[v],DFN[v])
15: else
16: LOW[v] = min(LOW[v], LOW[w])
17: if !COUNTED[w] and (PARENT[v] != w OR v is the root) then
18: COUNTED[w] = true
19: ST_SIZE[v] = ST_SIZE[v] + ST_SIZE[w]
20: end if
21: if LOW[w] ≥ DFN[v] and v is not the root then
22: mark v as an articulation point
23: CUT_SIZE[v] = CUT_SIZE[v] + ST_SIZE[w]
24: IMPACT[v] = IMPACT[v] + f(ST_SIZE[w])
25: end if
26: end if
27: if v is the root and it has more than one child then
28: mark root as an articulation point
29: end if
30: end for
31: end if
32: until done
33: for each visited vertex v do
34: if v is an articulation point then
35: IMPACT[v] = IMPACT[v] + f (num - CUT SIZE[v])
36: else
37: IMPACT[v] = IMPACT[v] + f (num - 1)
38: end if
39: maintain the vertex v∗ with minimum IMPACT value
40: end for
41: return v∗
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