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Abstract

This paper examines a simple definition of power as a composite centrality being the
composition of eigenvector centrality and edge betweeness. Various centralities
related to the composition are compared on social and collaboration networks. A
derived defection score for social fission scenarios is introduced and is demonstrated in
Zachary’s Karate club to predict the sole defection in terms of network measures rather
than psychological factors. In a network of political power in Mexico across various
periods, the two definitions of power serve to shed light on a political power transition
between two groups.
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Introduction
Networks are often modeled as a graph, which consists of set of nodes (V ) and edges
(E), such that E ⊆ V × V . If E is a symmetric relation, then G is called an undirected
graph. A network centrality is a function defined on V which assigns importance to nodes
according to certain criteria.
Various feedback centralities have been introduced (Seeley [1], Hubbell [2], Katz [3],

Bonacich [4]), which share the common objective of measuring a node’s importance while
taking into account the importance of its neighbors. The simplified form of a feedback
centrality termed eigenvector centrality is based on the Perron-Frobenius theorem which
ensures that for a strongly connected graph, the leading eigenvector of the adjacency
matrix contains only real positive values ([5]). Let X = (x1 . . . xn) be the eigenvector
of the largest eigenvalue of the adjacency matrix AG of G, and λ1 is the largest eigen-
value. Then, the eigenvector centrality of node i is CEV (i) = 1

λ1
xi. Informally, CEV

will find a set of nodes which are more densely connected (clique-like) than other sub-
sets of V. A node with a high CEV score would have relatively more edges between its
neighbors.
Betweeness centrality, which was introduced by Freeman in [6] and Anthonisse in [7],

measures the proportion of shortest paths passing by a given node. Formally, let σs,t be
the number of shortest paths between nodes s,t, and σs,t(v) be the number of shortest
paths between s,t that pass through v; then, the betweeness of v is defined as CB(v) =∑

s�=v
∑

t �=v
σs,t(v)
σs,t

. In [7], betweeness is also defined for edges, for an edge e ∈ E, CEB(e) =∑
s∈v

∑
t∈v

σs,t(e)
σs,t

. In a social network, an edge with high betweeness would mean that the
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relation between the represented actors is important in the sense that it is expected to be
used more by other actors in the network. Edge betweeness has also been used to detect
community structure ([8]).

Definitions and properties
Composite centralities have been suggested based on statistical measures ([9]); here, the
natural composition is taken. Let C1 be a node centrality, and C2 be an edge central-
ity whose values are non negative. The fact that C1 is node based and C2 is edge based
suggests a natural function composition, define:

AC2

[
i, j

] =
⎧⎨
⎩
C2((i, j)) (i, j) ∈ E

0 (i, j) �∈ E
(1)

And notate C1(C2)(v) as the value for v when C1 is computed on AC2 . A matrix is said
to be irreducible if its interpretation as a graph adjacency matrix produces a strongly
connected graph. IfG is an edge weighted graph, it may be thatCEB(e) = 0 for e ∈ E, while
for non-weighted graphs, this is not the case; since every edge would be on the shortest
path between its endpoints. Thus, for a weighted graph, using Equation 1 may produce a
reducible matrix, since some edges may have zero betweeness.

Proposition 0.1. Let G be an positive edge weighted undirected connected graph, then
ACEB is irreducible.

Proof. Let u, v ∈ V , since G is connected, there exists at least one shortest path Puv
connecting u and v. From the definition of CEB, for any edge e ∈ Puv, CEB(e) > 0. There-
fore, in the graph defined by ACEB , there exists a positively weighted path connecting
u and v.

NotateCEVB(v) = CEV (CEB)(v). From 0.1,CEVB is well defined, as the Perron-Frobenius
theorem holds the same way as for CEV . In this case, it is assumed that high edge betwee-
ness indicates a potentially important relation, and that an actor is more powerful if
it participates in important relations, either directly, or its neighbors have important
relations between themselves.

An artificial example

A simple example in Figure 1 demonstrates that CEVB may differ from both CEV ,CB or any
linear combination of them. The example consists of two small complete graphs which
are connected by one node (node 11) and another node (node 12) connected to node
11. Clearly, node 12 has zero CB and low CEV , but it has the second highest CEVB. Node
12 is accessible only via node 11, the most powerful node in all three measures, so if we
assume that all nodes are initially accessed at a similar rate, the relation between 11 and
12 will be the most used, while the nodes within the cliques would have many relations
that are used only between the two endpoints (see Figure 1). This shows that CEVB may
detect a ‘behind the scenes’ player like node 12, while CEV and CB would assign it low
scores.
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Figure 1 A simple example.

Eigenvectors in a weighted graph and scaling behaviour

The justification of using CEV on an edge weighted network is, as explained by Newman
in [10] , if X = (x1 . . . xn) is the leading eigenvector, then

CEV (i) = xi = 1
λ1

∑
j
Aijxj (2)

hence multiplying the weight of an edge by a positive factor will adjust the contribution
of the neighbour incident on that edge to the eigenvector centralities of its incident nodes
by the same factor, i.e. if the weight of (v,u) is 3 then the contribution of u to CEV (v) is
multiplied by a factor of 3. Thus, calculating the eigenvector centrality of an edge weighted
network would score nodes according to the weighted density of their neighborhood.
An informal scaling argument regarding CEVB is shown as follows. It is proven in [11]

that for a graph G = (V ,E) and any node v ∈ V ,

CB(v) =
∑

(u,v)∈E
CEB((u, v)) − (n − 1) (3)

Furthermore, it is numerically demonstrated in [12] that if G is a node degree scale
free network with exponent between 2 and 3, then CB follows a power law distribution
with exponent approximately 2.2. So, if CEV scales ‘nicely’ in relation to a node degree
power law exponent, that would mean that the row sums of the original adjacency matrix
are related to the scaling behaviour of CEV . Since node betweeness is distributed as a
power law as mentioned, then Equation 3 implies that CEVB will scale in a similar way
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in relation to CB, as the row sums in the edge betweeness weighted adjacency matrix are
proportional toCB. Indeed, visually inspecting the scatterplots of log-transformedCB and
CEVB (Figure 2) demonstrates that for nodes that do have zeroCB may still have significant
values of CEVB in a similar way as in the artificial example; as for nodes that do not have
zero CB, there is a linear or ‘cone’-shaped relation , which provides some evidence of a
power scaling relation between CB and CEVB.

Predicting loyalty in a fission scenario

Let V = S1∪S2 be a disjoint partition of V. Assume w.l.o.g that v ∈ S1. Let X = (x1, ..., xn)
be the leading eigenvector, then the contribution of S2 to CEVB(v) is:

CS2
EVB(v) =

∑
(v,vi)∈E,vi∈S2

CEB((v, vi))xi (4)

By the definition of CEVB as power, Equation 4 describes the proportion of power of v
that comes from direct links to the opposing group members. In a social fission situation,
it may be the case that members of one group defect to the other as in [13]. Motivated by
defection prediction, define the defection score as:

DEVB(v) = CS2
EVB(v) − CS1

EVB(v) (5)

For a node v, DEVB(v) is simply the difference between the power of v that comes from
links to the opposing group and the power that comes from links to its own group. It is
hypothesized that a high positive DEVB would mean a higher temptation to defect, while
a more negative DEVB would mean a greater tendency to stay put.

Figure 2 The Log/log relation of CB and CEVB. Clockwise from top left : Zachary’s Karate club, Mexican
political elite, Astrophysics collaboration and Newmans network science collaboration network. Negligible
values were added to CB to allow log of zero values. Both functions are translated to the origin (0, 0).
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Computational complexity

The complexity of computing a composite function as defined here is simply the sum of
the complexities of the underlying functions. An algorithm of O(|V ||E|) for betweeness
is described in [14]. Eigenvector centrality requires only the largest eigenvalue and the
corresponding eigenvector. In practice, this is solvable in O(|V | + |E|) using an ARPACK
eigenvector solver. Thus, the expected overall time is the same as for edge betweeness.
The computational complexity for DEVB(v) is O(|V |) if CEVB(v) is already computed.

Case studies
Several social networks are examined, two ‘friendship’ networks: Zachary’s Karate club
([13]) and a network of the Mexican political elite in the twentieth century. In addition,
two larger collaboration networks are studied, a collaboration network of researchers in
Network Science (NS) taken from [15] and the collaboration network of preprints on the
astrophysics archive at www.arxiv.org, 1995-1999, as compiled by Newman [16]. As can
be seen in Table 1, CEVB and CB are more correlated in the friendship networks than the
collaboration networks.

A network describing social fission

Zachary’s Karate club is one of the earliest social networks studied as a graph ([13]). The
network consists of 34 actors whose common activity is a Karate club, edges are weighted
by the level of acquaintance shared by actors beyond the club. The club underwent fission
during the period of observation due to a long conflict between the club administrator
and the Karate instructor. Zachary’s original analysis was based on network flow andmin-
imal cuts, where the edge weights represented capacity. In this case, the reciprocal of the
weights are taken, as the edge weights represent distance and not flow capacity. As seen
in Figure 3, CEVB differs from CEV and CB with regard to key players; for instance, actor
34 is reduced in CEVB in comparison to other actors, while actors 3 and 9 have a relative
increase in CEVB. By inspecting CEB visually in Figure 3, it indeed seems that actors 3 and
9 are better located within the network regarding proximity to edges with high betwee-
ness. Zachary’s flow analysis managed to model and predict the group affiliation before
and after the fissure with near perfection save one case.
Zachary’s original explanation [13] was psychological, based on the temporal circum-

stance of individual 9:
‘This can be explained by noting that he was only three weeks away from a test for black

belt (master status) when the split in the club occurred. Had he joined the officers’ club he
would have had to give up his rank and begin again in a new style of karate with a white
(beginner’s) belt, since the officers had decided to change the style of karate practiced in
their new club’.

Table 1 Spearman rank correlation scores compared for various networks

Network |V| |E| CEVB | CB CEVB | CEV CB | CEV
Karate club 34 78 0.762 0.479 0.398

Mexican politicians 35 117 0.703 0.607 0.739

NS collaboration 374 914 0.427 0.504 0.049

Astro-ph 14,845 119,652 0.604 0.786 0.431

www.arxiv.org
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Figure 3 The Karate club. Four centralities in Zachary’s network. Colors of nodes (blue or red) designate
faction membership, while the larger the node is, the higher the centrality score. For edge betweeness (lower
left), thicker edges have higher scores.

Here, an additional factor may be observed based on DEVB scores. DEV is defined in a
similar way toDEVB, using the adjacencymatrix of Gwithout computing edge betweeness,
and as visible in Figure 4, DEV predicts that actor 10 would have the highest incentive to
defect while DEVB predicts actor 9 for defection (as indeed took place). In addition, DEVB
predicts that actors 1 and 34, which are the leaders of the factions, would have the greatest
tendency to stay put while DEV makes no such prediction. Unfortunately, no data exists
as to the possible dilemmas of other actors such as nodes 10 and 33.

Collaboration networks

The NS network constructed by Newman ([15]) consists of 1,589 nodes; here, the largest
connected component is studied, consisting of 379 nodes. Edges are weighted by collab-
oration strength as defined in [16], so reciprocals are taken here to represent distance
between collaborators. The three centralities are shown in Figure 5, in which the five
nodes with the highest scores are identified by their ID (specific names are available in
[15] for readers interested). The occasional ‘local’ nature of CEV is apparent in Figure 5,
nodes on one sole branch of the network receive the highest scores due to a higher den-
sity of edges. In this case, CEV may show isolation rather than power, a group with many
links between themselves on an isolated branch. Examining the differences between CEVB
and CB, it is clear that actors 51, 52 and 95 score well in both measures, but actor 26 loses
power in CEVB, while actor 4 drops to the 19th place in the CEVB scores.
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Figure 4 Loyalty or defection. Predicting the incentive to defect. Larger squares mean a higher positive
defection score, while larger circles mean a more negative score, which represents the tendency to stay
within the original group.

Figure 5 A collaboration network of network scientists. Newman’s NS network. The ID’s of the five nodes
with the highest scores in each case are listed in descending order.
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As with the Karate club, the reason why actor 4 loses power according to CEVB is clearer
by looking at Figure 5, the edges with higher betweeness form a path through the ‘middle’
while actor 4 is located on a lower scored subsidiary of the sub-network of edges with
high betweeness. So, although actor 4 has high betweeness as a node centrality, CEVB is
reduced due to a lower scoring edge betweeness neighborhood.

A transition of political power

A network of the Mexican political elite was described in [17] and compiled in [18]. The
network consists of the core of the political elite and their collaborators across a time
period stretching from the early to late twentieth century. The edges of the network are
unweighted and represent close ties. During the time period examined, the PRI (Partido
Revolucionario Institucional) was continuously in power, however there was an internal
struggle between two main groups within the party, politicians associated with the mili-
tary against ‘civilian’ politicians. During the period, there was a transition of power from
the former to the latter. In this context, since the network spans most of the twentieth
century, CEV would represent the amount of connections surrounding a politician dur-
ing the height of his political activity but as already demonstrated in the NS network
(Figure 5) that is not necessarily the same as a high CEVB score. On the other hand, CEVB
would indicate the proximity of a politician to the relations that are expected to be signif-
icant throughout the era; therefore, CEVB is interpreted as political power. The defection
scores, in this context, are interpreted as the level of political collaboration with mem-
bers of the other side. In Figure 6, CEV and CEVB are examined in order to understand if
both perspectives can illuminate the power transition purely by examining the network.
In Figure 6, it can be seen that node 12 has the highest CEVB and CEV score. Node 12
represents Miguel Alemán Valdés, the 46th Mexican president whose reign marked the
transition from military associated power to more ‘civilian’ rule. Interestingly, he also has
the highest DEVB and DEV scores, meaning that the most powerful politician in the net-
work (highestCEVB score) collaborated closely with ‘civilian’ politicians, both from a ‘local’
viewpoint (high DEV ) and from a ‘global power’ viewpoint (high DEVB). Indeed, in 1952,
he was succeeded by node 18, Adolfo Ruiz Cortines, a ‘civilian’ politician, which signified
the beginning of the new era. A different observation from the DEVB chart is that a high
level of collaboration with the opposing side is more expressed than in DEV when family
ties are present. For instance, node 34 is Miguel Alemán Velasco who is the son of Miguel
Alemán Valdés, and node 14 is Ramón Beteta who was the brother of node 13, major
general Ignacio Beteta, a close associate of node 10, the powerful Lázaro Cárdenas, and
both 34 and 14 score high on DEVB. To conclude, the point of political power transition is
visible in Figure 6, and the idea that family ties may precede group affiliation in political
power sharing is visible in DEVB.

Conclusions
The composition CEVB was shown to be well defined, and it was shown to differ in sev-
eral aspects from CEV and CB in case studies. A node defection score based on CEVB and
CEV was defined for two-fission situations, and DEVB was shown to better predict the
sole defection in Zachary’s study than a similar defection score based purely on CEV . A
significance threshold for DEVB could be useful (scores below the threshold would mean
no defection) and may be worthwhile of further research. The empirical analysis suggests
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Figure 6 An analysis of a network of the Mexican elite in the twentieth century. Viewing the different
measures side by side enables to pinpoint the individual whose reign marked the power transition from
‘militarists’ to ‘civilians’.

thatCEVB balances the local properties of eigenvector centrality with the global properties
of betweeness, giving a different perspective on power distribution. CEVB in combination
with CEV and the defection scores were demonstrated to be useful tools in the analysis
of the transition and sharing of power in twentieth century Mexican politics. Finally, the
possibility of modeling k-fission scenarios (using a more general defection score) is a nat-
ural expansion but would need considerable supporting empirical data as to the behaviour
of individuals in such situations.

Data accessibility
Newman’s NS network is available at [19], and Zachary’s Karate club data was accessed
through [20].
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