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Introduction
Analyzing and controlling information diffusion in complex networks is of high research 
and practical interest nowadays. “Information” may appear in diverse forms, useful or 
malicious, each with different diffusion dynamics and demanding different types of con-
trol. Malicious information, e.g., a dangerous computer virus, might have catastrophic 
outcomes calling for suppressive control, while marketing advertisements can be 
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exploited for maximizing online revenues and may be enhanced by an amplifying type 
of control.

To better facilitate the increased needs for effective information exchange, continu-
ing technological advances in wireless and wired communications and the development 
of online social networks have given rise to “generalized” network systems. The latter 
consist of a physical layer, i.e., a wireless medium, and a social overlay, where social 
encounters develop, forming combined cyber-physical, e.g., social-wireless networks, 
referred to as generalized networks [1]. According to [2], generalized networks, even 
when consisting of a physical (e.g., wireless multihop) and only one social network can 
significantly improve information spread. In this paper, we focus on social-wireless types 
of generalized networks, while other types may be straightforwardly considered.

Motivated by the above observations on networks and information proliferation, in 
this paper, we focus on the diffusion dynamics and control of useful information in gen-
eralized networks. Various relevant works on the topic exist in the literature ("Related 
work and contributions"). However, albeit, they bear a specific drawback by not account-
ing for the evolution of user interest on the information diffused. Typically, humans 
interact with each other and exchange content on the basis of features such as “topics of 
information”. In particular, during an encounter, humans may not care for information 
that is out of their interest range at that particular time, thus not participating in the 
diffusion of the corresponding topic. Therefore, communicating information is highly 
affected by user interests and their temporal evolution, since not every contact does nec-
essarily imply information transfer for all the topics under diffusion. It rather depends 
both on human preferences and their interconnections (physical and social topology).

Several real-world examples indicate the dependence of information diffusion dynam-
ics on the temporal and topical variation of user interests [3–5]. For instance, advertise-
ments on summer vacations are expected to have a more successful spread outcome 
during the Spring and Summer months, while being hobbled during Fall and Winter 
months, highlighting an emergent seasonal periodicity with respect to user interests. 
Secondly, news on a soccer match might not be well spread within the members of a 
dance group, while they are expected to be quickly spread within the members of a soc-
cer club. The first of the above cannot be expressed by the current models of informa-
tion diffusion which do not segregate the diffusion success rate with respect to seasonal 
dependence, while the second case implies a non-homogeneous information rate across 
populations with different characteristics. As a result, for a realistic inclusion of users’ 
interests in the information diffusion model, the interests should be considered time 
varying, e.g., reflecting the evolving seasonal behavior of human beings [6]. The second 
example further implies the need of explicitly taking into account the subject of users’ 
interests, when designing information diffusion models.

Thus, in this paper we introduce and develop for the first time an information diffu-
sion modeling framework that takes into account both user interests’ differentiation and 
their possible temporal variability (e.g., periodicity). Furthermore, we provide an optimal 
control framework on top of the information diffusion model that allows for trading-off 
diffusion efficiency with the associated cost, leveraging on the impact that user inter-
est has on information dissemination dynamics. To the best of our knowledge, there is 
limited literature in the field of optimal control over diffusion dynamics described by 
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epidemic modeling with time-evolving parameters [6, 7]. Incorporating control, will 
benefit information spreading, particularly when there is limited interest on the useful 
information being diffused, in which case, it can be mapped to, e.g., advertising cam-
paigns or other incentives provided to users in an optimized way with respect to cost. 
An example of explicit control is the provision of incentives to users, e.g., in the form of 
competition, rewards, reputation, etc., to participate in information propagation when 
their interest itself in the propagated topic is limited, decreasing in this way the probabil-
ity that information propagation on a specific subject deceases fast enough. Significant 
outcomes are provided on the impact of each topological layer (social or wireless) and 
the associated interest parameters on the dynamics and control of information diffusion 
over complex social-wireless topologies, via analysis, numerical evaluations and simula-
tions of relevant scenarios. Furthermore, the properties/behavior of the optimal controls 
on information diffusion are extensively studied.

The rest of the paper is organized as follows. "Related work and contributions" 
describes related literature and positions our work within the existing relevant literature, 
while "System model, notation and assumptions" presents the employed system model. 
"Information diffusion modeling and analysis without control" analyzes the proposed 
information diffusion model and the examined application scenarios. In the sequel, 
"Optimal control framework for information diffusion" introduces the information dif-
fusion optimal control framework, while "Simulation and numerical results without 
applying control" and "Simulation results, numerical results and discussion in controlled 
information diffusion" present and thoroughly discuss the performed simulation results 
and numerical evaluations without and with control, respectively. Finally, "Conclusions" 
concludes the paper.

Related work and contributions
Due to the importance of information nowadays, studying the properties of its diffusion 
along with the possibility of control has attracted considerable interest. In this paper, we 
focus on two important facets of information diffusion, namely the dynamics of infor-
mation spreading and its optimal control.

Regarding the dynamics of information diffusion, the earliest and most frequently 
encountered approaches were inspired by epidemiological models [8, 9]. Some of the 
most recent ones are [1, 10–13], while more can be found in the references therein. 
More specifically, both stochastic and deterministic epidemic models exist for informa-
tion propagation [7, 14], where the nodes having received the information are denoted as 
“infected”. Stochastic epidemic models treat information propagation as a discrete time 
process (Discrete Time Markov Chain) [7, 14] being more suitable for small-scale sys-
tems whereas deterministic epidemic models assume continuous processes relying on 
the law of large numbers and applying differential equations or inclusions [15, 16], thus 
being more suitable for large-scale systems. In this paper, we will apply a deterministic 
epidemic model. Most of deterministic models consider the evolution of the cumulative 
system state/number of infected individuals (macroscopic modeling), denoted as “pop-
ulation dynamics”, assuming homogeneous infection rates for all population members. 
On the other hand, the deterministic “network” models study the state of each individual 
separately and also segregate infection rates between different pairs of individuals [7]. 
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However, system state transitions (i.e., population dynamics) depend on the state transi-
tion models developed for each individual, e.g., susceptible–infected–susceptible (SIS), 
etc. [7, 8]. Contrary to deterministic network models, a typical assumption when con-
sidering population dynamics is that of homogeneous mixing, where contact patterns 
between individuals are considered highly homogeneous [17]. Both types of models, sto-
chastic and deterministic, account for the endogenous (transition that takes place owe to 
internal individual operation, e.g., recovery transition) and exogenous (transitions dic-
tated by external factors, e.g., infection transition) transition rates expressing the topo-
logical and operational, endogenous or exogenous, factors that affect the evolution of 
the system [7].

Information dissemination epidemic models have been developed for different net-
work topologies, e.g., wireless networks [18], social networks [8] and multiple social 
networks [3], and generalized networks [1]. More specifically, epidemic models, e.g., 
SIS, susceptible–infected–removed (SIR) and susceptible–infected (SI) [6, 8] have been 
adopted and adapted over diverse network topologies to describe the spreading of use-
ful or malicious information. In this work, we mainly focus on the diffusion of useful 
information over generalized networks based on the SIS epidemic model. Our model lies 
between the frameworks of population dynamics and network models, since we study 
system state transitions while considering neighborhood relations in a node-degree 
sense.

Furthermore, to the best of our knowledge, the impact of user interests and their tem-
poral variability analyzed in this work have been considered in the literature in a limited 
degree, e.g., [3, 4, 19]. In [3], the authors aim at finding the minimum number of seed 
users who can spread the information to all users interested in the specific topic over 
multiple online social networks (where some users belong in more than one online social 
networks simultaneously). The work in [19] studies the role of information diffusion 
to the evolution of the network topology considering the link formation process with 
respect to sources/retransmitters of the information, based on users’ preferences. User 
interests in the information topics being propagated are also inferred and considered in 
[4] to detect active links in the diffusion of a given message over the network. Generally, 
most of the previous works, except from taking into account contact-related and topo-
logical factors affecting information diffusion dynamics [1, 13], they occasionally regard 
static users’ interests [3, 4], but not the user interest temporal variability. In a closer 
spirit to our approach, [6] studies the spatio-temporal dynamics of information diffu-
sion via partial differential equations, while incorporating time decreasing users’ inter-
est on the propagated messages. A similar study is performed for the case of malware 
dissemination over the Internet in [15]. Specifically, in [15], the infection rate decreases 
with time while this time dependence is shown via experimentation to model better the 
Code Red worm propagation. The reason for such decreasing infection rate is that worm 
spread over the Internet can be slowed down by countermeasures employed by users 
and congestion points arising over Internet. As in [15], in our approach, the introduction 
of the time evolving users’ interests in the information propagation decisions along with 
the consideration of a network substrate abolishes the homogeneity assumption. How-
ever, contrary to [15] and [6], in this work we are not restricted to decreasing with time 
users’ interests, but we apply diverse function forms of the latter (e.g., periodic).
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Apart from analyzing the spreading, controlling the information diffusion over various 
types of networks via explicit, e.g., [7, 10, 20–22] or implicit control, e.g., [16], is highly 
important. A thorough overview of the current framework of controlling epidemics can 
be found in [7], including heuristic feedback methods and optimal control policies for 
both population dynamics and deterministic network models along with spectral control 
policies for the latter. The authors usually adopt optimal control frameworks for obtain-
ing features allowing the control of the corresponding diffusion properties, which are 
modeled via differential equations (deterministic models). The work in [20], studies the 
possible attack strategies of malware over wireless networks and the extent of damage 
they can sustain. The control parameters consist of the transmission range and media 
scanning rate of the worm targeting at accelerating its spread. Malware information dis-
semination is also studied in [10], where the control signal distribution time is deter-
mined, aiming to minimize the number of infected nodes and the cost of control. Similar 
approaches for malware quarantining and filtering (e.g., configurable firewall) are devel-
oped and analyzed in [21–23]. These problem approaches, although different in various 
scopes compared to the target of this paper, they resemble and serve as driving forces to 
our proposed model and analysis.

Considering implicit control, in [16], malware information propagation is studied and 
analyzed over a homogeneous mixing network, where control takes the form of updates 
to nodes from an external source to which nodes reply via a best response (game theo-
retic) scheme. Also, in [16], there is an implicit introduction (i.e., via the time-varying 
state of the system) of time-varying behavior on the parameters of the information dif-
fusion epidemic model. However, this takes place in a more restricted sense and with a 
different scope (i.e., malware propagation) compared to our work.

Our work dealing with non-malicious information, identifies a major driving force for 
the successfulness of diffusion, namely user interest and its temporal properties, open-
ing up new directions for the optimal control of useful information diffusion taking into 
account these aspects as well. Moreover, although our approach adopts a similar prob-
lem formulation and analytical approach as in [20], contrary to [7, 10, 20–22], the state 
constraint, i.e., the epidemic-based differential equation of the evolution of the num-
ber of infected nodes, has time-varying parameters due to the temporal dependence of 
users’ interests considered in this paper.

System model, notation and assumptions
We focus on information diffusion and its optimal control in generalized networks, 
where the substrate is a wireless multihop network, i.e., user devices. Two different 
spreading pathways develop in such networks, namely information diffusion via either 
Multimedia Messaging Service (MMS) in the social layer or via WiFi/bluetooth (P) in 
the physical substrate [1] (Fig. 1). The former acts as a “long-range” information spread, 
since nodes communicating directly at the social layer may be actually separated by 
many hops in the physical layer. MMS transfers act as diffusion shortcuts. On the con-
trary, P-type information transfers act as local information ripples over short-range 
areas around information processors.

We consider a wireless multihop network of N nodes uniformly and independently 
distributed on a square region of side L. Each node has a transmission radius R. For 
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simplicity, mobility is ignored, since compared to an MMS type of information spread-
ing, the corresponding long-range information spreading achieved by mobility, which is 
essentially of P type, will lead to a similar, but smaller effect, as also argued in [1].

We assume M classes of information denoted by m = 1...M, as in [24]. Each class con-
sists of messages on a specific topic, e.g., summer vacations advertisements. Informa-
tion diffusion is studied separately for each class; however, interactions among separate 
classes are taken into consideration in the information diffusion model’s probabilistic 
setting. Each node i is characterized by its interest in class m at time t, denoted as Rm

i (t) , 
where 

∑

∀m Rm
i (t) ≤ 1, ∀i (e.g., normalization over all classes). The information diffu-

sion process proposed in this paper is based on the Susceptible–Infected–Susceptible 
(SIS) epidemic model [9]. We consider the following mapping. A node i is considered 
Infected (i.e., informed) for a specific class m of information if it possesses at least one 
message belonging in this class, otherwise i is considered Susceptible (i.e., not informed) 
for class m. This means that an informed/not-informed node is mapped to an infected/
susceptible state correspondingly, in epidemiology terms. More precisely, the transition 
from the susceptible state to the infected state for a particular class takes place when a 
node receives information about this class, while an infected node transits back to the 
susceptible state when it deletes all messages for this class.

In the rest of the paper, we will employ the notation provided in Table 1. If the network 
is directed, the out-degree is considered. f1(x), f2(x), f3(x) are general functions that will 
be used in the information diffusion model. Finally, the system model will be further 
enhanced in "Optimal control framework for information diffusion", where the optimal 

Fig. 1 The considered information diffusion mechanisms over generalized networks. WiFi/Bluetooth diffu-
sion (purple arrows) includes all neighbors within the transmission range of the user (physical layer), while 
MMS diffusion (green arrows) may take place with only specific neighbors of a user in social layer depending 
on their interest values in the propagated information
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control framework over the information dissemination modeling framework in general-
ized networks is introduced.

Information diffusion modeling and analysis without control
In this section, we describe the proposed information diffusion process that considers 
users’ social features/interests. Its analysis via epidemic modeling leads to the incorpo-
ration of the impact of nodes’ interests on the information diffusion dynamics. With 
respect to information diffusion, a node i is expected to perform/experience one of the 
following actions at each time t.

1. For the classes for which i is infected/informed:

(a) i diffuses information about class m with probability f1(Rm
i (t)) (also denoted as 

f1(t) for simplicity),
(b) i deletes all messages about class m with probability qf2(Rm

i (t)), where the 
parameter q is introduced to control the deletion process and f2(Rm

i (t)) will be 
also denoted as f2(t) for simplicity.
We consider that the duration of each time slot permits only the completion of 
one action, thus only one class m will be selected and either (a) or (b) will hap-
pen. This means that 

2. Node i performs another action—which is not of interest for the information diffu-
sion—with probability equal to 1−

∑

m: i∈Im(t)(f1(R
m
i (t))+ qf2(R

m
i (t))).

If choosing one class m for action (a) (with probability f1(Rm
i (t))), node i performs one 

of the following:

∑

m: i∈Im(t)

(f1(R
m
i (t))+ qf2(R

m
i (t))) ≤ 1.

Table 1 Notation and explanation of symbols.

Symbol Interpretation

Im(t) Number of Infected nodes for class m

Sm(t) Number of Susceptible nodes concerning class m

Im(t) Set of Infected nodes concerning class m

NS(i) Set of node i’s friends in the social layer

NP(i) Set of connections of i in the wireless network (physical layer)

0 ≤ p1, p2, q ≤ 1 Probabilities defined in the proposed information diffusion model

N
avg
S

The average degree of all nodes in the social layer

f1(x) f1(x) : [0, 1] → [0, 1] monotonically increasing on x

f2(x) f2(x) : [0, 1] → [0, 1] monotonically decreasing on x

f3(x) f3(x) : [0, 1] → [0, 1] monotonically increasing on x
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  • with probability p1, node i employs an MMS type of transmission, including as 
receivers each j ∈ NS(i) selected with probability f3(Rm

j (t)) (also denoted as f3(t) for 
simplicity), where f3(Rm

j (t)) for all j ∈ NS(i) does not form a probability distribution,
  • with probability p2, node i broadcasts to all its NP(i) neighbors (P-type action).

Note that p1 + p2 ≤ 1.

The above diffusion process requires that there is always an infected node for every 
class to maintain the spreading. However, all infected nodes for a particular class may 
delete their information for this class, thus disrupting its diffusion. Exogenous impact 
such as the optimal control which will be introduced in "Optimal control framework for 
information diffusion", may be leveraged to alleviate in a certain degree such phenom-
ena of extinction of a whole information class. In the case of P-type contacts, we do not 
consider the interests of users receiving a P-induced message, as the latter is broadcasted 
indiscriminately to all of them.

In the following, we model the dynamics of the evolution of the number of infected 
nodes for each class m, Im(t), via differential equations that approximate the system 
evolution. Specifically, the approximate dynamics of Im(t) are captured by the following 
ordinary differential equation (ODE),

where f avg3 (t) is the average or the expected value of all f3 functions over the network at 
time t for the corresponding class m. Functions f avg1 (t), f

avg
2 (t) are similarly defined. The 

initial conditions are Im(0) = Im0 , ∀m, i.e., Im0  nodes are initially infected for each infor-
mation class m via the social layer.

The ODE (1) has a unique solution when f
avg
1 (t), f

avg
2 (t), f

avg
3 (t) are continuous 

functions with respect to time (Cauchy–Lipschitz Theorem [25]). The right-hand side 
is obviously Lipschitz continuous with respect to Im. This fact has an impact on the 
design of possible forms for the interests’ functions Rm

i (t), ∀m, i, which should be con-
tinuous in time. It also has impact on the design of possible formats for the functions 
f
avg
1 (t), f

avg
2 (t), f

avg
3 (t).

A suitable selection for the functions f1, f2, f3 in the working example scenarios that 
follow is:

This configuration is not restrictive in the sense that others may be designed for other 
scenarios/applications. It is important to note that Eq. (1) is approximate since averages 

(1)

dIm(t)

dt
= p1f

avg
1 (t)f

avg
3 (t)

Sm(t)

N
Im(t)N

avg
s

+ p2N
πR2

L2
Sm(t)

N
Im(t)f

avg
1 (t)

− qIm(t)f
avg
2 (t),

(2)

f1(R
m
i (t)) =

Rm
i (t)

2M
,

f2(R
m
i (t)) =

1− Rm
i (t)

2M
,

f3(R
m
j (t)) = Rm

j (t).
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or expected values of the functions f1, f2, f3 are used. However, such an approximate 
form can be used to demonstrate the important characteristics of information diffusion 
dynamics in specific interesting cases that will be examined via appropriately designed 
scenarios in the sequel.

Scenario 1: periodic users’ interests

In this scenario, two classes of information are considered. The time continu-
ous interests’ functions take sinusoidal forms to express users’ time periodic-
ity of their interest with respect to the propagated information. Specifically, 
R1
i (t) = 1− Ai sin

2(a(t + bi))+ Bi, ∀i, for class m = 1, where a > 0 determines the 
period of users’ interests and Ai, bi, Bi are appropriately defined constants. Then, 
R2
i (t) = Ai sin

2(a(t + bi))− Bi, ∀i, so that R1
i (t)+ R2

i (t) = 1, ∀t, i. Note that, we 
consider the same frequency for all sinusoidal interests assuming the propagation of 
information that intrigues the attention of all users over specific time periods such as 
vacations, summer sports, Halloween, etc.

Based on the configuration for the functions f1, f2, f3 defined above (Eq. 2), their aver-
age values for class 1 become

where bi = b, ∀ i, and the constants A,  B are computed by averaging the interests over 
all users at time t. The average values of functions f1, f2, f3 for class 2 are defined similarly.

We can also assume that f avg1 (t), f
avg
2 (t), f

avg
3 (t) represent the expected values of the 

corresponding functions of users’ interests at time t. Thus, users’ interests will vary ran-
domly according to a distribution with mean value 1− A sin2(a(t + b))+ B for class 
1, letting the complementary interest (i.e., with mean value A sin2(a(t + b))− B) to be 
assigned to class 2.

In this case, the ODE (1) for class 1, becomes

and similarly, the ODE (1) for class 2, can be written as

f
avg
1 (t) =

1− A sin2(a(t + b))+ B

2M
,

f
avg
2 (t) =

A sin2(a(t + b))− B

2M
,

f
avg
3 (t) = 1− A sin2(a(t + b))+ B,

(3)

dI1(t)

dt
=

p1N
avg
s

N
(N − I1(t))I1(t)

(1− A sin2(a(t + b))+ B)2

2M

+ p2
πR2

L2
(N − I1(t))I1(t)

(1− A sin2(a(t + b))+ B)

2M

− qI1(t)
(A sin2(a(t + b))− B)

2M
,

(4)

dI2(t)

dt
=

p1N
avg
s

N
(N − I2(t))I2(t)

(A sin2(a(t + b))− B)2

2M

+ p2
πR2

L2
(N − I2(t))I2(t)

(A sin2(a(t + b))− B)

2M

− qI2(t)
(1− A sin2(a(t + b))+ B)

2M
.
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The solution of both Eqs. (3), (4) takes a complex form which does not provide any intui-
tion regarding the dynamics of change of the number of infected nodes for each class, 
I1(t), I2(t). For this reason, we apply a finite difference approach to approximate them 
as follows. Let M1(t) be the right-hand side of Eq. (3) and M2(t) be the right-hand side 
of Eq. (4). Then, the finite difference scheme with sufficiently small time step �t > 0 and 
t ≥ 0 yields:

It can be observed that when 1− A sin2(a(t + b))+ B ∼= 0, M1(t) ∼= −
qI1(t)
2M , thus 

I1(t +�t) < I1(t) for that time periods, while complementarily S1(t +�t) > S1(t). The 
converse holds for the time periods where 1− A sin2(a(t + b))+ B ∼= 1. Therefore, the 
periodicity of user interests is reflected in the information diffusion dynamics, where it 
is possible that the number of infected nodes does not converge to a specific value but 
rather fluctuates according to a time period determined by user interest periodicity.

Scenario 2: comparison of information diffusion dynamics among groups with different 

characteristics

In this scenario, we apply constant interests to study how information of a specific sub-
ject spreads in groups characterized by different features such as in the second example 
described in the introductory section ("Background"). This special case is similar to the 
SIS models developed in literature [8, 9] in the sense that the parameters applied in the 
ODEs describing the dynamics of information diffusion are constant, contrary to the time 
varying parameters ( f avg1 (t), f

avg
2 (t), f

avg
3 (t)) considered in this paper. Therefore, the 

already existing schemes [26] constitute special cases of our proposed diffusion model.
In this framework, we consider two groups and one information class (e.g., class 1). For 

both groups R1
i (t) = a, ∀i, 0 < a < 1, where for the first group a is close to 1 while in the 

second group a gets closer to 0. In this particular case of constant interests, the solu-
tion of Eq. (1) attains a less complex form than in Scenario 1. However, we will use again 
the finite difference approximation of Eqs. (5), (6), where the definitions of M1(t), M2(t) 
are based on constant interests adapted for the two groups correspondingly, to get more 
intuition about the derived convergence in the number of infected nodes. Specifically, 
as it will be verified via simulation and numerical results in "Simulation and numeri-
cal results without applying control", a higher constant interest by users implies conver-
gence of the number of infected nodes to a higher value.

Scenario 3: increasing vs. decreasing users’ interest

In this scenario, there exist two classes of information, while the population has increas-
ing interest for the one class and decreasing for the other. The appropriate interest func-
tions for this case are formulated, ∀i, as follows:

where A,   B,   C are constants.

(5)I1(t +�t) = I1(t)+M1(t) ·�t,

(6)I2(t +�t) = I2(t)+M2(t) ·�t.

(7)R1
i (t) = B

At

At + C
, R2

i (t) = B
C

At + C
,
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Again, we will use the finite difference approximation of Eqs. (5), (6), where the defini-
tions of M1(t), M2(t) for each class correspondingly are based on Eq. (7).

Optimal control framework for information diffusion
In this section, we introduce an optimal control framework for the previously presented 
information diffusion model for a specific class m. The objective in this optimal control 
problem is to maximize the number of infected (informed) nodes for a topic/class m by 
applying an exogenous aid/force, i.e., the control, while taking into account associated 
control costs, e.g., advertising cost. The motivation behind this is twofold. First it might 
be necessary to apply a control action to boost users’ interest to increase information 
spreading. Secondly, more resources might be required (by increasing a control signal) 
when users are more interested in a topic to conserve resources by not wasting them 
when users are not interested in the propagated information. Thus, this approach will 
allow affecting the information diffusion over the susceptible (non-informed) users, via 
properly controlling user interests.

Assuming the control signal is given by a function u(.) = {u(t)|t ∈ [0,T ]}, we aim at 
maximizing the objective function:

where k1, kI ≥ 0, k2 ≤ 0 are parameters expressing the trade-off between control cost 
and diffusion efficiency. Parameters k1, k2 refer to the operation during a specific time 
interval within [0, T] and kI refers to the final state of the system. We aim at finding an 
optimal control u∗(.) such that:

The control problem will be solved subject to the approximate dynamics of the evolution 
of the number of informed nodes, which is similar to Eq. (1):

with Im(0) = Im0  (Sm(0) = N − Im0 ). Also the following state conditions should hold:

for every t. Note that Eq. (10) differs from Eq. (1) due to the introduction of the con-
trol u(t) in the summands of its right-hand side, where the probabilities f avg1 (t), f

avg
2 (t) 

have been replaced with f
avg
1 (t)g1(u(t)), f

avg
2 (t)g2(u(t)). The control u(.) depends 

on the controller’s budget for topic m, while the control region is defined as 
� = {u(.) : [0,T ] → R|umin ≤ u(t) ≤ umax, ∀ t} and also each u(.) is a piece-wise 
continuous function such that its left and right limits exist. Functions g1, g2 are non-
negative, differentiable and either convex or concave with respect to u. While g1 is 

(8)J (u(.)) =

∫ T

0

(

k1I
m(t)+ k2u(t)

)

dt + kI I
m(T ),

(9)J (u∗(.)) = max
u(.)

J (u(.)).

(10)

dIm(t)

dt
=

N
avg
s p1

N
f
avg
1 (t)f

avg
3 (t)(N − Im(t))Im(t)g1(u(t))

+ p2
πR2

L2
f
avg
1 (t)Im(t)(N − Im(t))g1(u(t))

− qIm(t)f
avg
2 (t)g2(u(t)),

(11)N = Im(t)+ Sm(t), 0 ≤ Im(t) ≤ N , t ∈ [0,T ],
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increasing with u, g2 is decreasing, and g1, g2 : [umin,umax] → [0, 1]. The control might 
take the form of incentives for increasing user interest, or it may exploit the increased 
user interest to reinforce information spreading, while such behavior will be explored 
in the following.

The next proposition allows us to ignore the state constraints expressed in Eq. (11) in 
the rest of the analysis.

Proposition 1 For any u(.) ∈ �, the state function Im(.) : [0,T ] → R that satisfies 
Im(0) = Im0 , also satisfies Eq. (11).

Proof Let t0 be the first time instant in [0, T] where Im(t0) = 0 or Im(t0) = N .

  • If Im(t0) = 0 then Sm(t0) = N  and dI
m(t)
dt |t=t+0

= 0, meaning that Im(t) = 0, for 
every t > t0, t ≤ T .

  • If Im(t0) = N  then Sm(t0) = 0. Thus, dI
m(t)
dt |t=t+0

= −qN f
avg
2 (t0)g2(u(t0)) < 0, since 

f
avg
2 (t0), g2(u(t0)) > 0, meaning that Im(t+0 ) ≤ N . Similarly for all other t ′ ∈ (t0,T ] 

where Im(t ′) = N . �

The following proposition proves that the number of infected nodes for class m, Im(t) 
is strictly positive for every t ∈ [0,T ].

Proposition 2 We have that Im(t) ≥ Im0 e−qf
avg
2max

g2(umin)t ≥ 0, ∀t ∈ [0,T ].

Proof It holds that dIm(t)
dt ≥ −qIm(t)f

avg
2 (t)g2(u(t)), which means that 

Im(t)′

Im(t) ≥ −qf
avg
2maxg2(umin), where f avg2max = max∀t f

avg
2 (t) and since g2 is decreasing with 

u. Thus, ln Im(t) ≥ −qf
avg
2max

g2(umin)t + ln Im(0), yielding Im(t) ≥ Im0 e−qf
avg
2max

g2(umin)t, for 
every t ∈ [0,T ]. �

Definition 1 The pair (Im(.),u(.)) is an admissible pair if the following hold: (i) 
u(.) ∈ � , (ii) the state (Im(.)) constraint of Eq. (10) holds. Then u(.) is called an admis-
sible control [20].

Definition 2 An admissible control u(.) is an optimal control, if J (u(.)) ≥ J (u(.)) for all 
admissible controls u(.) [20].

Based on these two definitions, we will apply Pontryagin’s Maximum Principle [20, 
27–29] to determine the optimal control’s functional form and study its properties. Let 
us denote as �(t) the adjoint/costate variable of the Pontryagin’s Maximum Principle [27] 
at time t ∈ [0,T ]. First, we define the Hamiltonian function, H, at time t as:

(12)

H(Im(t),u(t), �(t)) = k1I
m(t)+ k2u(t)

+ �(t)

[

N
avg
s p1

N
f
avg
1 (t)f

avg
3 (t)(N − Im(t))Im(t)g1(u(t))

+ p2
πR2

L2
f
avg
1 (t)Im(t)(N − Im(t))g1(u(t))

− qIm(t)f
avg
2 (t)g2(u(t))

]

.
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Assuming that u∗(.) is the optimal control value and Im∗
(.) is the corresponding state tra-

jectory, i.e., the one solving Eq. (10) for u∗(.), according to Pontryagin’s Maximum Prin-
ciple [27], there exists a function �∗(.) : [0,T ] → R such that

where �∗(.) is the optimal costate (adjoint) function and also the optimal control, u∗(.), is 
computed as:

For simplicity, from now on we omit the symbol ∗ from the optimal values. We can prove 
the following proposition which will be useful in studying the properties of the optimal 
control function.

Proposition 3 We have that �(t) > 0 for t ∈ [0,T ).

Proof We follow a similar proof to the one of Lemma 2 in [20]. First we show that �(t) 
is strictly positive over an interval of non-zero length towards the end of [0, T). It holds 
that �(T ) = kI ≥ 0. If kI > 0, this statement holds due to continuity. If kI = 0, then from 
(13) and for t = T  we have: d�(t)

dt
|t=T = −k1 < 0, i.e., descending from positive values 

before reaching the value kI = 0, and this statement also holds.
As t ′ < T , consider the latest time in [0, T) that �(t ′) = 0, i.e., �(t) > 0 for t ′ < t < T  . 

Then, d�(t)
dt

|t=t ′+ = −k1 < 0 which is impossible since for t > t ′, � is positive and thus it 
should increase from the zero value. The latter statement concludes the proof of Propo-
sition 3.  �

Let us now omit the time dependence over the employed notation for brevity reasons. 
We can define the functional:

(13)

d�∗(t)

dt
= −

∂H

∂Im
= −k1 − �

∗(t)

[

N
avg
s p1

N
f
avg
1 (t)f

avg
3 (t)(N − 2Im∗(t))g1(u

∗(t))

+ p2
πR2

L2
f
avg
1 (t)(N − 2Im

∗

(t))g1(u
∗(t))

− qf
avg
2 (t)g2(u

∗(t))

]

,

(14)�
∗(T ) = kI (transversality condition),

(15)u∗(t) = u(t) ∈ arg max
u∈�

H(Im
∗

(t),u, �∗(t)), 0 ≤ t ≤ T .

(16)

φ(u) = k2u+ �

[

N
avg
s p1

N
f
avg
1 f

avg
3 (N − Im)Img1(u)

+ p2
πR2

L2
f
avg
1 Im(N − Im)g1(u)

− qImf
avg
2 g2(u)

]

,
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and search for an optimal u, i.e., such that φ(u) ≥ φ(u) for all admissible u ∈ �. The 
functional φ(u) is derived by the Hamiltonian (Eq. 12) for a particular time, considering 
only the terms that depend on u.

Given the possible forms of the functions g1, g2 with respect to the control u (convex 
or concave), the following cases can be identified:

1. g1 convex and g2 concave. Then φ is convex with respect to u. Due to convex maxi-
mization, the optimal control will be necessarily at the extrema of the range of the 
control, determined by comparison as: 

2. g1 concave and g2 convex. Then φ is concave with respect to u. In this case, a concave 
maximization takes place, where the maxima of φ(u) occur at the points where the 
partial derivative with respect to u is zero, or at the extrema of the range of the con-
trol, determined by comparison. The equation ∂φ

∂u = 0 becomes: 

 where � > 0 from Proposition 3. If u′ is the solution of the above, then the optimal 
control becomes: 

In this case based on the explicit forms of functions g1, g2, we can study possible rela-
tions/properties of the optimal control with respect to users’ interests, as it will be 
performed in the following sections.

3. g1 concave and g2 concave. We have 

where A1 =
N

avg
s p1
N f

avg
1 f

avg
3 (N − Im)Im

∂2g1(u)

∂u2
+ p2

πR2

L2
f
avg
1 Im(N − Im)

∂2g1(u)

∂u2
≤ 0 

and B1 = qImf
avg
2

∂2g2(u)

∂u2
≤ 0. Thus, ∂

2φ(u)
∂u2

≤ 0 if |A1| ≥ |B1|, that leads to a concave 

maximization as in case 2 above, or ∂
2φ(u)
∂u2

≥ 0 if |A1| ≤ |B1|, that leads to a convex 
maximization as in case 1 above.

4. g1 convex and g2 convex. Then ∂
2g1(u)

∂u2
≥ 0, ∂

2g2(u)

∂u2
≥ 0. Thus, ∂

2φ(u)
∂u2

≥ 0 if |A1| ≥ |B1| , 

that leads to a convex maximization as in case 1 above, or ∂
2φ(u)
∂u2

≤ 0 if |A1| ≤ |B1|, 
that leads to a concave maximization as in case 2 above.

(17)u∗ =

{

umin if φ(umin) > φ(umax),
umax if φ(umin) < φ(umax).

(18)

−
k2

�
=

∂g1(u)

∂u

[

N
avg
s p1

N
f
avg
1 f

avg
3 (N − Im)Im

+ p2
πR2

L2
f
avg
1 Im(N − Im)

]

−
∂g2(u)

∂u
qImf

avg
2 ,

(19)u∗ = max
{

umin,min{u′,umax}
}

.

(20)

∂2φ(u)

∂u2
= �

[

N
avg
s p1

N
f
avg
1 f

avg
3 (N − Im)Im

∂2g1(u)

∂u2

+ p2
πR2

L2
f
avg
1 Im(N − Im)

∂2g1(u)

∂u2

− qImf
avg
2

∂2g2(u)

∂u2

]

,
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We should note that the controller applies one kind of control with aim to increase 
Im(t) trading-off cost, but this impacts in a different way each part of the information 
propagation equation (i.e., Eq. 10) via the functions g1(u), g2(u).

At this point, we study the case 2 more extensively, by choosing a (non-restrictive) 
specific form for the control functions g1(u), g2(u), as follows:

This choice serves the purpose of boosting the number of infected (informed) nodes for 
the examined class by increasing probabilities of communicating/transferring knowledge 
via g1(u) > 1 in the first and second summands of the right-hand side of Eq. (10), and by 
decreasing probabilities of knowledge “deletion” via g2(u) < 1 in the last summand of 
the right-hand side of Eq. (10). Then, after computing ∂g1(u)

∂u ,
∂g2(u)
∂u , replacing them in Eq. 

(18) and solving the latter, the optimal control takes the following formula:

where { }umax
umin

 expresses projection to [umin,umax] and

At this point, we study some properties of Ŵ (Eq. 23) that will assist in the interpreta-
tion of the observable behavior of the optimal control in "Simulation results, numerical 
results and discussion in controlled information diffusion". First, we study the depend-
ence of Ŵ on the values of interest for the examined class m, i.e., Rm

avg. By considering Eq. 
(2) providing the types of f avg1 , f

avg
2 , f

avg
3 , Ŵ is increasing with Rm

avg, i.e., ∂Ŵ
∂Rmavg

> 0 if

Therefore, Ŵ will become an increasing function of interest for class m only if the num-
ber of infected nodes for class m becomes less that the threshold ITH. This behavior is 
also expected for the optimal control itself, u∗ (Eq. 22), since by Proposition 3 it holds 
− �

k2
> 0 (if ignoring the dependence of � on Rm

avg). This fact, which will be verified via 
numerical evaluations in "Simulation results, numerical results and discussion in con-
trolled information diffusion", indicates the targeted trade-off between information 
spread and cost, while leveraging users’ interests for class m. If the number of infected 
nodes for class m is high enough, higher that ITH, the optimal control saves resources 
when the corresponding user interest for class m increases. When the number of 

(21)

g1(u) = 1+
ln(1+ u)

ln(1+ umax)
,

g2(u) =
ln(1+ umax)− ln(1+ u))

ln(1+ umax)
.

(22)u∗ =

{

−1−
�Ŵ

k2

}umax

umin

,

(23)

Ŵ =
1

ln(1+ umax)

[

N
avg
s p1

N
f
avg
1 f

avg
3 (N − Im)Im + p2

πR2

L2
f
avg
1 Im(N − Im)

+ qImf
avg
2

]

.

(24)
Im < N −

q

N
avg
s p12Rmavg

N +
p2πR2

L2

= ITH .
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infected nodes falls below ITH, the control increases with user interest, aiming to lever-
age from higher values of interest to drastically boost the number of infected nodes for 
class m. This behavior emerges also in the case of power control in a wireless channel, 
where high power values are optimal under good channel conditions, to exploit the max-
imum possible data transfer rates [30]. Since ITH (Eq. 24) is time varying, as Rm

avg evolves 
with time ("Information diffusion modeling and analysis without control"), the monot-
ony of Ŵ may also change with time. Generally, higher values of Rm

avg lead to a higher 
range of values of the number of infected nodes for which Ŵ is increasing with interest 
for class m.

Obviously, Ŵ is a concave function of Im, attaining its maximum at 

Immax =
FRmavg+G( 1

Rmavg
−1)+K

DRmavg+E , where F =
N

avg
S p1
2M , E =

p2πR
2

L2M
, D =

N
avg
S p1
MN  , G =

q
2M, 

K =
p2πR

2N

L22M
. Note that Immax is decreasing with interest when 

(FE + GD − DK )(Rm
avg)

2 − 2GDRm
avg − GE < 0, where D, E, F, G, K, are determined by 

the parameters of the system. In this case, for higher values of interest it is intuitively 
expected that the optimal control (Eq. 22) will achieve its maximum on a lower value of 
Im, if ignoring any dependence of � on the examined parameters, i.e., Im,Rm

avg.

Computing the optimal control value

Although Eqs. (17, 19) provide the form of the optimal control, computing the optimal 
control value is more complex, demanding the knowledge of the value of the adjoint 
variable, �, for each t. In this section, we construct the Hamilton–Jacobi–Bellman (HJB) 
equation [27–29] and solve it via a numerical approach to obtain optimal control values 
within the control time interval ([0, T]).

Definition 3 We define the Value function V (Im, t), where Im(t) = Im ∈ R, 0 ≤ t ≤ T  , 
as follows:

Actually, the Value function is obtained by varying the starting time of control within 
the control interval [0, T] and the initial value of infected nodes for class m. The HJB 
equation is formulated as the following partial differential equation:

where H is the Hamiltonian function defined in Eq. (12). Also, at each time t ∈ [0,T ], we 
have ∂V (Im∗(t),t)

∂Im = �
∗(t), where the symbol ∗ again is used for denoting the optimal values 

obtained for u∗(t). At this point, we will solve numerically the HJB equation [31] (Eq. 25) 
to compute the Value function for each t ∈ [0,T ). Then, the optimal control values will 
be obtained via Eqs. (17, 19) if replacing � with ∂V

∂Im both computed at the examined time 
t. Applying a finite difference scheme and denoting as u(t) the optimal control value, Eq. 
(25) takes the following form:

V (Im, t) = sup
u(.)∈�

J (u(.)), V (Im,T ) = kI I
m (final condition).

(25)

dV (Im, t)

dt
+max

u∈�
H

(

Im,u,
∂V (Im, t)

∂Im

)

= 0,

V (Im,T ) = kI I
m,
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where �Im, �t are the steps of state and time and Eq. (26) is solved backwards since we 
know the Value function at the end, T, of the control time interval. Specifically, we com-
pute the Value function for all Im ∈ {1, 2, ...,N } at time 0 ≤ t −�t < T  from the corre-
sponding ones at time t. When computing the optimal control values via Eqs. (19), (17) 
we replace � with ∂V

∂Im

∣

∣

t
=

V (Im+�Im,t)−V (Im−�Im,t)
2�Im . Furthermore, in the numerical solu-

tion of the HJB, we apply as a boundary condition for the partial derivative of the Value 
function with respect to state the following ∂V

∂Im

∣

∣

t=T
= ∂V

∂Im

∣

∣

t=T−�t
.

Simulation and numerical results without applying control
In this section, we present simulation and numerical results for each users’ interest sce-
nario of "Information diffusion modeling and analysis without control". Specifically, the 
simulation results refer to the realization of the diffusion model described in "Informa-
tion diffusion modeling and analysis without control" in MATLAB, while numerical 
results refer to the approximate solution (via finite difference scheme) of the ODEs in 
each scenario with the same parameters as in the corresponding simulation.

The simulation setting is as follows. We consider a generalized network, the wire-
less substrate of which consists of a wireless multihop network with N = 500 nodes 
deployed over a square region with side L = 350m and with homogeneous transmis-
sion radius among nodes equal to R = 25m. All simulation results are obtained as aver-
ages over several wireless topologies (#2) and multiple repetitions (#3) for the diffusion 
at each topology. Furthermore, we examine two overlaying social network topologies 
over the same set of nodes as the wireless substrate, namely one scale-free and one 
small-world [32]. For the scale-free network topology, the social degree for each node 
is drawn from the power-law distribution with exponent 3, as observed for many social 
networks [33] (specifically the probability density function is f (x) =

(

2
x

)3
, x ≥ 2),  

and the corresponding social layer’s neighbors of each node are chosen randomly. The 
small-world topology is constructed following the Watts & Strogatz paradigm [34]. For 
both topologies, N avg

S
∼= 4. However, the degree distribution in the small-world topol-

ogy is much more homogeneous than the corresponding one of the scale-free social 
topology. Also, the scale-free topology presents low average path length, which is a 
small-world feature [32]. Note that the value �t should be appropriately small, so that 
the solution of the ODE derived via the finite difference scheme (Eqs.  5, 6), approxi-
mates closely the precise solution of the ODE. We chose �t = 0.4. Finally, 10 nodes out 
of 500 are initially infected (e.g., via MMS) for each class in all simulation and numeri-
cal results that follow.

(26)

V (Im, t)− V (Im, t −�t)

�t
+ k1I

m + k2u(t)

+
V (Im +�Im, t)− V (Im −�Im, t)

2�Im

[

N
avg
s p1

N
f
avg
1 (t)f

avg
3 (t)(N − Im)Img1(u(t))

+ p2
πR2

L2
f
avg
1 (t)Im(N − Im)g1(u(t))− qImf

avg
2 (t)g2(u(t))

]

= 0,

V (Im,T ) = kI I
m,
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Scenario 1: information diffusion dynamics in the case of periodic users’ interests

In this scenario, we consider that the users’ interests vary uniformly and randomly with 
mean value 1− 1

4 sin
2( π

180 (t + 100))− 1
7 for the first class and 14 sin

2( π
180 (t + 100))+ 1

7 
for the second class with the constraint that the interests of one node for the two classes 
are complementary (i.e., in the corresponding scenario of "Information diffusion mod-
eling and analysis without control", A = 1

4 , B = − 1
7 , a = π

180 , b = 100). Therefore, the 
period of the interests’ functions is one year, a fact that can be reflected in realistic situ-
ations as the ones explained in "Background". The values of p1, p2, q will be specified in 
each simulation case.

Fig.  2a compares the dynamics of the information diffusion for class 1 as derived 
by numerically solving Eq. (3) with the results obtained via simulations according to 
the proposed diffusion model in "Information diffusion modeling and analysis with-
out control". The same is illustrated in Fig. 2b for class 2 (where the numerical results 
are obtained via numerically solving Eq.  4). The involved parameters take the values 
p1 = p2 = 0.5, i.e., P and MMS types of transfer take place with the same probability in 
case of diffusion and q = 0.2. The results are the same independently of the social topol-
ogy, i.e., small-world or scale-free.

The periodic behavior of users’ interests is also reflected in the dynamics of informa-
tion diffusion, as expected from the discussion in "Information diffusion modeling and 
analysis without control", and the number of infected nodes does not converge to a spe-
cific value as predicted by the conventional models in the literature [1, 13]. We observe 
that for class 1, the numerical results approximate well the ones obtained from simula-
tions. In the case of class 2, i.e., in the case of lower interest for the information under 
propagation, it can be stated that the numerical results mostly overestimate the number 
of infected nodes. This observation can be explained by the fact that in the simulations, 
the number of infected nodes may become zero when all nodes delete their messages 
for a particular class, whereas according to Proposition 2, the theoretical number of 
infected nodes is always greater than zero. Thus, in the simulation it becomes likely that 
the information propagation for a class terminates (a fact that becomes more probable 
when interest values are lower), whereas in theory there is always enough quantity of 
infected nodes to spread information if the users’ interest for the latter increases.

The results in Fig. 3a, b concern only the case of P type, while the results in Fig. 4a, b 
refer to the case of applying MMS type alone. By comparing these figures, it is observed 
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Fig. 2 P & MMS types of information diffusion dynamics for periodic interests, with parameters p1 = p2 = 0.5, 
q = 0.2
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that P type plays a significant role in maintaining the diffusion alive with respect to class 
2 in which users’ interest for the diffused information attains lower values. Generally, 
P type further boosts information spreading for both classes. In Fig. 4a, for class 1, the 
diffusion dynamics over the small-world topology approximate much closer the numeri-
cal results than over the scale-free topology, whereas in the other cases, both topologies 
present similar behavior.

To conclude for this scenario, the theoretical model overestimates the volume of the 
information spreading, especially for class 2, which is characterized by lower values of 
interest. Also, the behavior in both cases of social topologies, i.e., small-world and scale-
free, does not differentiate significantly.

Scenario 2: information diffusion dynamics in the presence of groups with different 

characteristics

In this evaluation scenario, based on the description of "Information diffusion modeling 
and analysis without control", we consider one information class and two groups with dif-
ferent interests in this information class. Group 1 has an interest value of 0.8 and Group 2 
has an interest value of 0.2. Fig. 5a, b indicate that the interest plays significant role in the 
number of infected nodes to which the dynamics of information diffusion converge. In 
Group 1 the participants of which are highly interested in this information class, finally all 
nodes become infected. The parameters’ values are specified in the legends of the figures. 
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Fig. 3 P type of information diffusion dynamics for periodic interests, with parameters p1 = 0, p2 = 1, 
q = 0.6
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Fig. 4 MMS type of information diffusion dynamics for periodic interests, with parameters p1 = 1, p2 = 0, 
q = 0.6
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It is also observed that for high interest the approximation of the theoretical model to the 
simulation results is satisfactory, while for lower interest, the theoretical model overesti-
mates the simulation results. However, in the latter case (Fig. 5b), the diffusion dynamics 
over the small-world topology obtained via simulations lie much closer to the numerical 
results. In Fig. 5a, where interest values are higher, both social topologies present similar 
behavior concerning the information diffusion dynamics.

Scenario 3: information diffusion dynamics in the case of increasing vs. decreasing users’ 

interests

The results regarding this evaluation scenario are shown in Fig.  6a, b, where 
A = 5, C = 10, B = 0.5 in Eq. (7). Fig. 6a,  demonstrates the dynamics of information 
diffusion for the first class, where it is observed that the number of infected nodes ini-
tially presents a steep increase and then it increases with much lower rate. Regarding the 
information diffusion dynamics for class 2, from Fig. 6b it is observed that there is an 
initial increase which later deflates, due to the decreasing with time user interests, even-
tually yielding zero number of infected nodes for the simulation results and close to zero 
number of infected nodes for the numerical results (Proposition 2). Such dynamics can-
not be captured by previous state-of-the art information diffusion models using constant 
diffusion parameters.
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Fig. 5 P & MMS types of information diffusion dynamics for constant interests, with parameters 
p1 = 0.6, p2 = 0.4, q = 0.2
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Fig. 6 P & MMS types of information diffusion dynamics for decreasing vs. increasing with time interests, 
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Simulation results, numerical results and discussion in controlled information 
diffusion
In this section, we further study and evaluate the introduction of control—as described 
in "Optimal control framework for information diffusion"—in the three scenarios of 
"Simulation and numerical results without applying control". The values of the parame-
ters that are used in "Simulation and numerical results without applying control" remain 
the same, except otherwise mentioned. Additionally, we consider umin = 0, umax = 30 , 
�Im = 1, ∀m, �t = 10−4, k1 = 1, k2 = −3, kI = 1, T = 2, and finally, the topology on 
the social layer is considered as scale free. Note that �t << �Im so that the HJB solu-
tion converges [31]. The control is applied to only one class (or equivalently one group 
for constant interests) and specifically, we chose the class m = 2 (or equivalently Group 
2 for constant interests), to evaluate how information diffusion behaves under low val-
ues of interest when introducing control, and compare this behavior with the case when 
no control is applied (similarly to "Simulation and numerical results without applying 
control"). In the following subsections, in each scenario, we compare the numerical 
(derived via Eq. 10 using Eq. 21) and simulation results with and without control regard-
ing the number of infected nodes for the second class/group, while we also study several 
properties and the behavior of the optimal control itself. We adapt the diffusion model 
of "Information diffusion modeling and analysis without control" to introduce control 
by replacing the probabilities f avg1 (t), f

avg
2 (t) with f avg1 (t)g1(u(t)), f

avg
2 (t)g2(u(t)), as 

implied by comparing Eq. (10) with Eq. (1). Every simulation runs for 200 time steps, i.e., 
the control time T = 2 is divided into smaller time intervals each having a duration of 
0.01.

Scenario 1: controlled information diffusion dynamics in the case of periodic users’ 

interests

Similar to "Scenario 1: information diffusion dynamics in the case of periodic users’ 
interests", we consider that the users’ interests vary uniformly and randomly with mean 
value 1− 1

4 sin
2( π

0.5 (t + 0.2))− 1
7 for the first class and 14 sin

2( π
0.5 (t + 0.2))+ 1

7 for the 
second class with the constraint that the interests of one node for the two classes are 
complementary.

Fig.  7 presents the dynamics of the information diffusion for class 2 when applying 
periodic interests as defined above. Specifically, Fig. 7a depicts the dynamics of informa-
tion diffusion for the second class derived from simulations with and without control. 
We observe that similar to the results of "Scenario 1: information diffusion dynamics in 
the case of periodic users’ interests" the periodicity of users’ interests is also reflected 
to the dynamics of information diffusion, while the introduction of control significantly 
improves the expected number of infected nodes (there is an increase of one hundred 
nodes) and reduces the amplitude of the sinusoidal curve, i.e., the variance of the num-
ber of infected nodes. Fig. 7b depicts the same comparison when the dynamics of infor-
mation diffusion are derived via Eq. (10). Note that Eq. (10) is solved numerically in a 
similar way to Eq. (6), demanding more running time to converge due to the small value 
of �t, which is the reason why the running time in Fig. 7b is more than two periods. 
Comparing Fig. 7a, b, we observe that the introduction of control leads to a much closer 
approximation of the simulation results from the numerical ones, compared to the 
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absence of control that is also discussed in "Scenario 1: information diffusion dynam-
ics in the case of periodic users’ interests". Finally, Fig. 7c zooms in two specific periods 
of Fig. 7b, after the convergence of the numerical solution of Eq. (10), to indicate in a 
clearer way the periodicity in the information diffusion dynamics.
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Fig. 7 Periodic users’ interests: dynamics of information diffusion for class 2 with p1 = p2 = 0.5, q = 0.3
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Figure  8 studies the behavior of the optimal control with respect to the number of 
infected nodes and the users’ evolving interest for the class m = 2. From Fig.  8b, we 
observe that the optimal control is a concave function of the number of infected nodes 
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Fig. 8 Study of the optimal control’s behavior for class 2. The arrow denotes time evolution
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(for all times), achieving its maximum value at a different number of infected nodes, 
Immax , at each time or value of interest. This behavior is intuitively expected from the 
analysis of "Optimal control framework for information diffusion" with respect to Ŵ 
(Eq. (23)), although it ignores the dependence of the adjoint variable � on the number of 
infected nodes. Furthermore, comparing Fig. 8a, b, we observe that Immax decreases with 
interest which can be intuitively explained by the fact that for our considered param-
eters the corresponding condition stated at the end of "Optimal control framework for 
information diffusion" is satisfied. More specifically, higher values of interest, e.g., points 
1,  2,  6,  7 of the users’ interest sinusoidal function in Fig. 8a lead to lower values of Immax 
as it is observed in the corresponding optimal control curves 1,  2,  6,  7 in Fig. 8b. More-
over, comparing Fig. 8a, b and more specifically the interest values 1, 2, ..., 10 in Fig. 8a 
with their corresponding control curves in Fig. 8b, it can be observed that the values of 
the optimal control follow a sinusoidal-like evolution being aligned with the sinusoidal 
evolution of users’ interest. The decreasing with time trend in the optimal control values, 
which cannot be explained by the Ŵ function (Eq. 23, "Optimal control framework for 
information diffusion"), can be justified by the decreasing values of the adjoint variable � 
with time as shown in Fig. 8c where time is indicated by the arrow.

Finally, Fig. 9 shows the monotonicity of the optimal control with respect to interest 
for different values of the number of infected nodes for class m = 2. The applied param-
eters in these simulations lead to a threshold value ITH ("Optimal control framework 
for information diffusion") at most (considering the maximum value of users’ interest) 
equal to 473 nodes. Thus, it is expected that when Im=2 > 473 nodes the optimal control 
will be decreasing with interest and the opposite will hold for Im=2 < 473 nodes. This 
expectation is verified in Fig.  9, where the monotonicity change is performed around 
Im=2 = 470 nodes, while below 470 the optimal control value increases with interest 
(Fig. 9a–e) and above this value (Fig. 9g, h) it decreases with interest balancing in this 
way the cost with the information propagation efficiency as also discussed in "Optimal 
control framework for information diffusion". Note that in Fig. 9, the ticks on the hori-
zontal axis are not simple interest values, but they are the values of interest over a two-
period time interval as shown in Fig. 8a. Therefore, time has also impact on the adjoint 
variable � affecting the optimal control values leading, e.g., here to decreasing optimal 
control values with time as it can be observed in all subfigures of Fig. 9. Time evolution 
is denoted by the arrows in each subfigure of Fig. 9.

Scenario 2: controlled information diffusion dynamics in the presence of groups 

with different characteristics

In this section, we consider constant users’ interests adopting the same parameter values 
as in "Scenario 2: information diffusion dynamics in the presence of groups with differ-
ent characteristics". Fig. 10 presents the dynamics of the information diffusion for Group 
2 and indicates several properties of the optimal control. Specifically, Fig.  10a depicts 
the dynamics of information diffusion for Group 2 derived from simulations and com-
puted numerically both cases with and without control (Eqs.  1, 10). As in the case of 
periodic users’ interests, the introduction of control increases the number of infected 
nodes. Note that the numerical results of Eq. (10) refer to a time interval of length 2 after 
convergence (see also the discussion in "Scenario 1: information diffusion dynamics in 
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the case of periodic users’ interests"). As it is shown in Fig. 10a, introducing control leads 
to a tighter approximation of the simulation results from the numerical ones, compared 
to the absence of control.

Figure 10c studies the behavior of the optimal control with respect to the number of 
infected nodes and time for the class m = 2. As in Fig. 8b, we observe that the optimal 
control is a concave function of the number of infected nodes (for all times) while Immax 

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

2

4

6

8

10

Values of f
1
avg Function 

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=50

a

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=150

b

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=250

c

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2

4

6

8

10

12

14

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=350

d

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2

3

4

5

6

7

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=450

e

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2

2.5

3

3.5

4

4.5

5

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=470

f

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2

2.5

3

3.5

4

4.5

5

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=480

g

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1.5

2

2.5

3

3.5

4

4.5

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=490

h
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remains approximately stable (due to the consideration of constant interests). The opti-
mal control values decrease with time (indicated by the arrow) due to the decreasing 
values of the adjoint variable � with time as shown in Fig. 10b.
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Scenario 3: controlled information diffusion dynamics in the case of decreasing with time 

users’ interests

In this section, we consider users’ interests that decrease with time using the same 
parameters/interest functions with "Scenario 3: information diffusion dynamics in the 
case of increasing vs. decreasing users’ interest". Figure 11 presents the dynamics of the 
information diffusion for class 2 and indicates several properties of the optimal control. 
Specifically, Fig. 11a depicts the dynamics of information diffusion for the second class 
(m = 2) derived from simulations and computed numerically both cases with and with-
out control (Eqs. 1, 10). We observe that the decrease of users’ interests is reflected to the 
dynamics of information diffusion, although the later exhibits a much smaller decreasing 
rate. As in the cases of periodic and constant users’ interests, the introduction of control 
increases the number of infected nodes. Note that the numerical results of Eq. (10) refer 
to a time interval of length 2 after convergence (see also the discussion in "Scenario 1: 
controlled information diffusion dynamics in the case of periodic users’ interests"). As it 
is shown in Fig. 11a, introducing control leads to a tighter approximation of the simula-
tion results from the numerical ones compared to the absence of control.

Figure  11c studies the behavior of the optimal control with respect to the number 
of infected nodes and the users’ evolving interest for the class m = 2. As in Fig. 8b, we 
observe that the optimal control is a concave function of the number of infected nodes 
(for all times), achieving its maximum value at a different number of infected nodes, 
Immax , for different times (or values of interest) while Immax values decrease with inter-
est, as explained in "Scenario 1: controlled information diffusion dynamics in the case 
of periodic users’ interests". The optimal control values decrease with time (indicated 
by the arrow) due to the decreasing values of users’ interests and the decrease of the 
adjoint variable � with time as shown in Fig. 11b. Finally, Fig. 12 shows the monotonic-
ity of the optimal control with respect to user interest for different values of the number 
of infected nodes for class m = 2. The deployed parameters lead to a threshold value of 
at most ITH = 475 ("Optimal control framework for information diffusion") (consider-
ing the maximum value of users’ interest). Below ITH = 475 the optimal control value 
increases with interest (Fig. 12a–e) and above this value (Fig. 12f, g) it decreases with 
interest. The dependence of the adjoint variable � on time affects the optimal control val-
ues, impacting the monotonicity of the optimal control with respect to user interest and 
the number of infected nodes, as shown in Fig. 12f, g where the optimal control becomes 
increasing instead of decreasing (which is expected) with user interest after a specific 
time. Time evolution is denoted by the arrows in each subfigure of Fig. 12.

Conclusions
In this paper, we introduced a novel framework for modeling and controlling useful 
information diffusion in generalized networks that takes into account user interests and 
their features, i.e., interest periodicity or interest dependence on the topic of the propa-
gated information. The epidemic equations were numerically solved and compared with 
simulation results for three indicative operational scenarios, yielding significant results 
on the impact of each associated factor (e.g., topology layer, interest values and time var-
iedness) on diffusion dynamics. Furthermore, optimal controls were obtained and stud-
ied over each information class, while simulation and numerical results are provided for 
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the cases where user interest is low and diffusion needs boosting to improve the effi-
ciency of useful information spreading. Interesting behavioral properties of the opti-
mal controls with respect to their dependence on the evolving users’ interests and the 
number of infected nodes are shown via analysis (on an intuitive basis) and numerical 
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evaluations. Our future work will focus on studying the cases where interest classes may 
have correlations, and the impact that these correlations may have on the corresponding 
controls.

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
0

5

10

15

20

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=50

(a)

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
0

5

10

15

20

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=250

(b)

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
2

4

6

8

10

12

14

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=350

(c)

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
2.5

3

3.5

4

4.5

5

5.5

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=450

(d)

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
2.5

3

3.5

4

4.5

5

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=460

(e)

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
2

2.5

3

3.5

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=480

(f)

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
1.8

2

2.2

2.4

2.6

2.8

3

Values of f
1
avg Function

V
al

u
es

 o
f 

C
o

n
tr

o
l

Number of Infected Nodes=490

(g)
Fig. 12 User interest that is decreasing with time: study of the optimal control’s behavior with respect to 
users’ interest and the number of infected nodes for class 2
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